Skip to content

Latest commit

 

History

History
67 lines (46 loc) · 2.33 KB

index.md

File metadata and controls

67 lines (46 loc) · 2.33 KB

There is an integer array nums sorted in ascending order (with distinct values).

Prior to being passed to your function, nums is possibly rotated at an unknown pivot index k (1 <= k < nums.length) such that the resulting array is [nums[k], nums[k+1], ..., nums[n-1], nums[0], nums[1], ..., nums[k-1]] (0-indexed). For example, [0,1,2,4,5,6,7] might be rotated at pivot index 3 and become [4,5,6,7,0,1,2].

Given the array nums after the possible rotation and an integer target, return the index of target if it is in nums, or -1 if it is not in nums.

You must write an algorithm with O(log n) runtime complexity.

Example 1:

Input: nums = [4,5,6,7,0,1,2], target = 0 Output: 4

Example 2:

Input: nums = [4,5,6,7,0,1,2], target = 3 Output: -1

Example 3:

Input: nums = [1], target = 0 Output: -1

Constraints:

  • 1 <= nums.length <= 5000
  • -104 <= nums[i] <= 104
  • All values of nums are unique.
  • nums is an ascending array that is possibly rotated.
  • -104 <= target <= 104

Solution

class Solution:
    def search(self, nums: List[int], target: int) -> int:
        left, right = 0, len(nums) - 1

        while left <= right:
            mid = (left + right) // 2

            # If the target is found, return its index
            if nums[mid] == target:
                return mid

            # Determine which part of the array to search in
            if nums[left] <= nums[mid]:  # Left part is sorted
                if nums[left] <= target < nums[mid]:  # Target is in the left part
                    right = mid - 1
                else:  # Target is in the right part
                    left = mid + 1
            else:  # Right part is sorted
                if nums[mid] < target <= nums[right]:  # Target is in the right part
                    left = mid + 1
                else:  # Target is in the left part
                    right = mid - 1

        # If the loop ends, the target is not in the array
        return -1

Thoughts

The time complexity of this algorithm is O(log n), as it uses a binary search. The space complexity is O(1), as it only uses a constant amount of extra space.