Skip to content

Latest commit

 

History

History
63 lines (43 loc) · 1.46 KB

readme.md

File metadata and controls

63 lines (43 loc) · 1.46 KB

Given an integer n, return an array ans of length n + 1 such that for each i (0 <= i <= n), ans[i] *is the number of* 1*'s in the binary representation of* i.

Example 1:

Input: n = 2 Output: [0,1,1] Explanation: 0 --> 0 1 --> 1 2 --> 10

Example 2:

Input: n = 5 Output: [0,1,1,2,1,2] Explanation: 0 --> 0 1 --> 1 2 --> 10 3 --> 11 4 --> 100 5 --> 101

Constraints:

  • 0 <= n <= 105

Follow up:

  • It is very easy to come up with a solution with a runtime of O(n log n). Can you do it in linear time O(n) and possibly in a single pass?
  • Can you do it without using any built-in function (i.e., like __builtin_popcount in C++)?

Solution

class Solution:
    def countBits(self, n: int) -> List[int]:
        # Create a list with n+1 elements, initialized to 0
        result = [0] * (n + 1)

        # Loop through each number from 1 to n (inclusive)
        for i in range(1, n + 1):
            # result[i >> 1] gives the number of set bits in i//2
            # (i & 1) checks if i is odd; if odd, add 1 more set bit
            result[i] = result[i >> 1] + (i & 1)

        # Return the list of results
        return result

Thoughts

Time Complexity

O(n). We compute the number of set bits for each number from 0 to n exactly once.

Space Complexity

O(n) for the output array.