Given an integer array nums
that may contain duplicates, return all possible subsets (the power set).
The solution set must not contain duplicate subsets. Return the solution in any order.
Example 1:
Input: nums = [1,2,2] Output: [[],[1],[1,2],[1,2,2],[2],[2,2]]
Example 2:
Input: nums = [0] Output: [[],[0]]
1 <= nums.length <= 10
-10 <= nums[i] <= 10
class Solution:
def subsetsWithDup(self, nums: List[int]) -> List[List[int]]:
def backtrack(start, path):
result.append(path.copy())
for i in range(start, len(nums)):
# Skip duplicates
if i > start and nums[i] == nums[i - 1]:
continue
path.append(nums[i])
backtrack(i + 1, path)
path.pop()
nums.sort() # Sort the array to handle duplicates
result = []
backtrack(0, [])
return result
The time complexity of this solution is O(2^N), where N is the number of elements in the input array. In the worst case, each element is unique, leading to 2^N possible subsets.
The space complexity is O(2^N) for storing the result. The recursion stack will use O(N) space in the worst case.