-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogistic_regression_tf1.py
129 lines (108 loc) · 3.6 KB
/
logistic_regression_tf1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# %%
# logistic_regression_tf1
#
# - deferred execution
# - input dataset
# - custom model layers
# - custom training loop
import time
import tensorflow.compat.v1 as tf
import numpy as np
import matplotlib.pyplot as plt
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
tf.disable_v2_behavior()
# hyperparameters
learning_rate = 0.01
batch_size = 128
n_classes = 10
n_epochs = 30
n_features = 28 * 28
n_test = 10000
class LrModel(object):
def __init__(self):
self.w = tf.get_variable(
'weights',
shape=[n_features, n_classes],
dtype=tf.float32,
initializer=tf.random_normal_initializer(0, 0.01),
)
self.b = tf.get_variable(
'bias', shape=[1, n_classes], dtype=tf.float32, initializer=tf.zeros_initializer()
)
def inference(self, x):
logits = tf.matmul(x, self.w) + self.b
return logits
def loss(self, logits, labels):
entropy = tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits)
return tf.reduce_mean(entropy, name='loss')
def evaluation(self, logits, labels):
preds = tf.nn.softmax(logits)
correct = tf.equal(tf.argmax(preds, 1), tf.argmax(labels, 1))
accuracy = tf.reduce_sum(tf.cast(correct, tf.int32))
return accuracy
def load_dataset():
(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()
x_train = x_train.reshape((x_train.shape[0], -1)).astype('float32') / 255
x_test = x_test.reshape((x_test.shape[0], -1)).astype('float32') / 255
y_train = tf.one_hot(y_train, n_classes)
y_test = tf.one_hot(y_test, n_classes)
train_data = tf.data.Dataset.from_tensor_slices((x_train, y_train))
test_data = tf.data.Dataset.from_tensor_slices((x_test, y_test))
return (train_data, test_data)
def main():
# dataset
(train_ds, test_ds) = load_dataset()
(train_ds, test_ds) = (train_ds.batch(batch_size), test_ds.batch(batch_size))
iterator = tf.data.Iterator.from_structure(
tf.data.get_output_types(train_ds), tf.data.get_output_shapes(train_ds)
)
images, labels = iterator.get_next()
print(f'images: {images.shape}, labels: {labels.shape}')
# graph
optimizer = tf.train.AdamOptimizer(learning_rate)
model = LrModel()
logits = model.inference(images)
loss = model.loss(logits, labels)
accuracy = model.evaluation(logits, labels)
train_op = optimizer.minimize(loss)
# train
init = tf.global_variables_initializer()
train_init = iterator.make_initializer(train_ds)
test_init = iterator.make_initializer(test_ds)
losses = []
with tf.Session() as sess:
sess.run(init)
# train
start_time = time.time()
for step in range(n_epochs):
print(f'epoch {step}')
sess.run(train_init)
total_loss = 0
try:
while True:
_, l = sess.run([train_op, loss])
total_loss += l
except tf.errors.OutOfRangeError:
pass
losses.append(total_loss)
end_time = time.time()
print(f'total time: {end_time - start_time}s')
# evaluate
sess.run(test_init)
correct = 0
try:
while True:
correct += sess.run(accuracy)
except tf.errors.OutOfRangeError:
pass
print(f'accuracy: {correct/n_test}')
# summary
plt.plot(np.squeeze(losses))
plt.title('Learning rate')
plt.xlabel('iterations (per hundreds)')
plt.ylabel('loss')
plt.show()
if __name__ == '__main__':
main()
# %%