-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmnist.py
166 lines (137 loc) · 5.75 KB
/
mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Runs a simple model on the MNIST dataset."""
import argparse
import contextlib
import os
import tensorflow as tf
import tensorflow_datasets as tfds
NAME = 'minst'
def build_model():
"""Constructs the ML model used to predict handwritten digits."""
image = tf.keras.layers.Input(shape=(28, 28, 1))
y = tf.keras.layers.Conv2D(filters=32, kernel_size=5, padding='same', activation='relu')(image)
y = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same')(y)
y = tf.keras.layers.Conv2D(filters=32, kernel_size=5, padding='same', activation='relu')(y)
y = tf.keras.layers.MaxPooling2D(pool_size=(2, 2), strides=(2, 2), padding='same')(y)
y = tf.keras.layers.Flatten()(y)
y = tf.keras.layers.Dense(1024, activation='relu')(y)
y = tf.keras.layers.Dropout(0.4)(y)
probs = tf.keras.layers.Dense(10, activation='softmax')(y)
return tf.keras.models.Model(image, probs, name=NAME)
@tfds.decode.make_decoder(output_dtype=tf.float32)
def decode_image(example, feature):
"""Convert image to float32 and normalize from [0, 255] to [0.0, 1.0]."""
return tf.cast(feature.decode_example(example), dtype=tf.float32) / 255
def parse_args():
parser = argparse.ArgumentParser(description=NAME)
# storage paths
parser.add_argument(
'--data_dir', type=str, default='/tmp', help='The location of the input data.'
)
parser.add_argument(
'--model_dir', type=str, default='/tmp', help='The location of the model checkpoint files.'
)
parser.add_argument(
'--download',
action='store_true',
default=False,
help='Whether to download data to `--data_dir`.',
)
# training
parser.add_argument(
'--train_epochs', type=int, default=1, help='The number of epochs used to train.'
)
parser.add_argument(
'--epochs_between_evals',
type=int,
default=1,
help='The number of training epochs to run between evaluations.',
)
parser.add_argument(
'--batch_size', type=int, default=1024, help='Batch size for training and evaluation.'
)
# distribution
parser.add_argument(
'--distribution_strategy',
type=str,
default='mirrored',
help='The Distribution Strategy to use for training.',
)
parser.add_argument(
'--num_gpus', type=int, default=1, help='How many GPUs to use at each worker .'
)
parser.add_argument('--tpu', type=str, default=None, help='The Cloud TPU to use for training.')
return parser.parse_args()
def main():
args = parse_args()
ckpt_full_path = os.path.join(args.model_dir, 'model.ckpt-{epoch:04d}')
export_path = os.path.join(args.model_dir, 'saved_model')
# distribution strategy
if args.distribution_strategy == 'tpu':
resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu=args.tpu)
if args.tpu not in ('', 'local'):
tf.config.experimental_connect_to_cluster(resolver)
tf.tpu.experimental.initialize_tpu_system(resolver)
print("All devices: ", tf.config.list_logical_devices('TPU'))
strategy = tf.distribute.experimental.TPUStrategy(resolver)
strategy_scope = strategy.scope()
else:
strategy_scope = contextlib.nullcontext()
# dataset
mnist = tfds.builder('mnist', data_dir=args.data_dir)
if args.download:
mnist.download_and_prepare()
num_train_examples = mnist.info.splits['train'].num_examples
num_eval_examples = mnist.info.splits['test'].num_examples
mnist_train, mnist_test = mnist.as_dataset(
split=['train', 'test'],
decoders={'image': decode_image()}, # pylint: disable=no-value-for-parameter
as_supervised=True,
)
mnist_train = mnist_train.cache().repeat().shuffle(buffer_size=50000).batch(args.batch_size)
mnist_test = mnist_test.cache().repeat().batch(args.batch_size)
# model
with strategy_scope:
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
0.05, decay_steps=100000, decay_rate=0.96
)
optimizer = tf.keras.optimizers.SGD(learning_rate=lr_schedule)
model = build_model()
model.compile(
optimizer=optimizer,
loss='sparse_categorical_crossentropy',
metrics=['sparse_categorical_accuracy'],
)
model.summary()
# training
callbacks = [
tf.keras.callbacks.ModelCheckpoint(ckpt_full_path, save_weights_only=True),
tf.keras.callbacks.TensorBoard(log_dir=args.model_dir),
]
history = model.fit(
mnist_train,
epochs=args.train_epochs,
steps_per_epoch=num_train_examples // args.batch_size,
callbacks=callbacks,
validation_steps=num_eval_examples // args.batch_size,
validation_data=mnist_test,
validation_freq=args.epochs_between_evals,
)
model.save(export_path, include_optimizer=False)
eval_output = model.evaluate(mnist_test, steps=num_eval_examples // args.batch_size, verbose=2)
# stats = common.build_stats(history, eval_output, callbacks)
if __name__ == '__main__':
main()