-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrnn_v2.py
217 lines (177 loc) · 6.42 KB
/
rnn_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
# %%
import numpy as np
import tensorflow as tf
import io
import time
## layers
class Dense(object):
def __init__(self, units, input_dim, activation=None, name='dense'):
self.units = units
self.activation = activation if activation else lambda x: x
with tf.name_scope(name):
self.w = tf.Variable(tf.random.uniform([input_dim, units]) * 0.01, name='w')
self.b = tf.Variable(tf.zeros([1, units]), name='b')
self.trainable_variables = [self.w, self.b]
def __call__(self, x):
z = x @ self.w + self.b
a = self.activation(z)
return a
class SimpleRnn(object):
"""Fully connected RNN layer where output is fed back to input
Call Arguments:
* x - input tensor with shape (m, t_x, n_x]
* a0 - initial state tensor used by the first cell [m, n_a]
"""
def __init__(
self,
units,
input_dim,
activation=tf.nn.tanh,
return_sequences=False,
return_state=False,
name='simplernn',
):
self.units = units
self.activation = activation if activation else lambda x: x
self.return_sequences = return_sequences
self.return_state = return_state
with tf.name_scope(name):
self.wax = tf.Variable(
tf.random.uniform([input_dim, units]) * 0.01, name="wax"
)
self.waa = tf.Variable(tf.random.uniform([units, units]) * 0.01, name="waa")
self.ba = tf.Variable(tf.zeros([1, units]), name="ba")
self.trainable_variables = [self.wax, self.waa, self.ba]
def __call__(self, x, a0):
_, t_x, _ = x.shape
at = a0
outputs = []
for t in range(t_x):
xt = x[:, t, :]
at = self._step_forward(xt, at)
outputs.append(at)
output = tf.stack(outputs, axis=1) if self.return_sequences else outputs[-1]
if self.return_state:
return output, at
else:
return output
def _step_forward(self, xt, a_prev):
zt = a_prev @ self.waa + xt @ self.wax + self.ba
at = self.activation(zt)
return at
## model
class RnnModel(object):
def __init__(self, n_a, vocab_size):
self.vocab_size = vocab_size
self.rnn1 = SimpleRnn(n_a, vocab_size, return_sequences=True, return_state=True)
self.dense1 = Dense(vocab_size, n_a, activation=None)
self.trainable_variables = (
self.rnn1.trainable_variables + self.dense1.trainable_variables
)
def __call__(self, inputs, a0):
x, a_last = self.rnn1(inputs, a0)
outputs = self.dense1(x)
return outputs, a_last
## dataset
def build_dataset(data, char_to_ix):
ds = []
for w in data.split('\n'):
w = w.lower().strip()
x = [char_to_ix[c] for c in w]
y = x + [char_to_ix['\n']]
ds.append((x, y))
return ds
def vectorize(x, y, n_x):
x0 = tf.zeros([1, n_x], dtype=tf.float32)
x = tf.one_hot(x, n_x, dtype=tf.float32)
x = tf.concat([x0, x], axis=0)
x = tf.reshape(x, [1, -1, n_x])
y = tf.one_hot(y, n_x, dtype=tf.float32)
y = tf.reshape(y, [1, -1, n_x])
return x, y
## sampling
def sample(model, limit, eos, seed=0):
m = 1
x = np.zeros([m, 1, model.vocab_size], dtype=np.float64)
a_prev = np.zeros([m, model.rnn1.units], dtype=np.float64)
output = []
for i in range(limit):
logits, a_next = model(x, a_prev)
predictions = tf.nn.softmax(logits, axis=2)
# Sampling is the selection of a value from a group of values,
# where each value has a probability of being picked.
# Pick the next character's index according to the probability
# distribution specified by ŷ⟨t+1⟩
np.random.seed(i + seed)
idx = np.random.choice(model.vocab_size, p=predictions[0][-1].numpy().ravel())
if idx == eos:
break
output.append(idx)
x = np.zeros([m, 1, model.vocab_size], dtype=np.float64)
x[0, 0, idx] = 1.0
a_prev = a_next
seed += 1
output.append(eos)
return output
## main
LEARNING_RATE = 0.001
N_EPOCHS = 1000
N_A = 50
GRAD_CLIP = 5.0
SKIP_SAMPLES = 7
@tf.function
def train_step(model, optimizer, x, y, a_prev, grad_clip):
with tf.GradientTape() as tape:
logits, a_last = model(x, a_prev)
entropy = tf.nn.softmax_cross_entropy_with_logits(labels=y, logits=logits, axis=2)
loss = tf.reduce_mean(entropy)
gradients = tape.gradient(loss, model.trainable_variables)
gradients = [tf.clip_by_value(g, -grad_clip, grad_clip) for g in gradients]
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
return loss, gradients, a_last
def main():
# dataset
data = io.open('data/names2.txt', encoding='utf-8').read().lower()
vocab = sorted(list(set(data)))
vocab_size = len(vocab)
char_to_ix = dict((c, i) for i, c in enumerate(vocab))
ix_to_char = dict((i, c) for i, c in enumerate(vocab))
ds = build_dataset(data, char_to_ix)
# model
model = RnnModel(N_A, vocab_size)
# train
optimizer = tf.optimizers.Adam(LEARNING_RATE)
writer = tf.summary.create_file_writer(
'graphs/rnn_tf_v1/lr' + str(optimizer.learning_rate.numpy())
)
a = tf.constant(np.zeros([1, N_A]), dtype=tf.float32)
skip_step = round(len(ds) / 10, -1)
start_time = time.time()
for n in range(1, N_EPOCHS + 1):
print(f'Epoch {n}/{N_EPOCHS}')
step = 0
total_loss = 0
for (x, y) in ds:
x, y = vectorize(x, y, vocab_size)
a = a if a != None and a.shape[0] == x.shape[0] else None
loss, _, a = train_step(model, optimizer, x, y, a, GRAD_CLIP)
step += 1
total_loss += loss
if step % skip_step == 0 or step == len(ds):
print(f'{step}/{len(ds)} - loss: {(total_loss/step):.4f}')
with writer.as_default():
tf.summary.scalar('loss', total_loss / step, step=n)
writer.flush()
if n % 1 == 0:
for i in range(SKIP_SAMPLES):
output = sample(model, 50, eos=char_to_ix['\n'], seed=i)
output = output[:-1]
output = [ix_to_char[idx] for idx in output]
print(''.join(output))
print('\n')
end_time = time.time()
print(f'Training time: {end_time - start_time}s')
writer.close()
if __name__ == '__main__':
main()
# %%