-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlefse.py
executable file
·241 lines (224 loc) · 9.27 KB
/
lefse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
import os,sys,math,pickle
import random as lrand
import rpy2.robjects as robjects
import argparse
import numpy
#import svmutil
def init():
lrand.seed(1982)
robjects.r('library(splines)')
robjects.r('library(stats4)')
robjects.r('library(survival)')
robjects.r('library(mvtnorm)')
robjects.r('library(modeltools)')
robjects.r('library(coin)')
robjects.r('library(MASS)')
def get_class_means(class_sl,feats):
means = {}
clk = class_sl.keys()
for fk,f in feats.items():
means[fk] = [numpy.mean((f[class_sl[k][0]:class_sl[k][1]])) for k in clk]
return clk,means
def save_res(res,filename):
with open(filename, 'w') as out:
for k,v in res['cls_means'].items():
out.write(k+"\t"+str(math.log(max(max(v),1.0),10.0))+"\t")
if k in res['lda_res_th']:
for i,vv in enumerate(v):
if vv == max(v):
out.write(str(res['cls_means_kord'][i])+"\t")
break
out.write(str(res['lda_res'][k]))
else: out.write("\t")
out.write( "\t" + res['wilcox_res'][k]+"\n")
def load_data(input_file, nnorm = False):
with open(input_file, 'rb') as inputf:
inp = pickle.load(inputf)
if nnorm: return inp['feats'],inp['cls'],inp['class_sl'],inp['subclass_sl'],inp['class_hierarchy'],inp['norm']
else: return inp['feats'],inp['cls'],inp['class_sl'],inp['subclass_sl'],inp['class_hierarchy']
def load_res(input_file):
with open(input_file, 'rb') as inputf:
inp = pickle.load(inputf)
return inp['res'],inp['params'],inp['class_sl'],inp['subclass_sl']
def test_kw_r(cls,feats,p,factors):
robjects.globalenv["y"] = robjects.FloatVector(feats)
for i,f in enumerate(factors):
robjects.globalenv['x'+str(i+1)] = robjects.FactorVector(robjects.StrVector(cls[f]))
fo = "y~x1"
#for i,f in enumerate(factors[1:]):
# if f == "subclass" and len(set(cls[f])) <= len(set(cls["class"])): continue
# if len(set(cls[f])) == len(cls[f]): continue
# fo += "+x"+str(i+2)
kw_res = robjects.r('kruskal.test('+fo+',)$p.value')
return float(tuple(kw_res)[0]) < p, float(tuple(kw_res)[0])
def test_rep_wilcoxon_r(sl,cl_hie,feats,th,multiclass_strat,mul_cor,fn,min_c,comp_only_same_subcl,curv=False):
comp_all_sub = not comp_only_same_subcl
tot_ok = 0
alpha_mtc = th
all_diff = []
for pair in [(x,y) for x in cl_hie.keys() for y in cl_hie.keys() if x < y]:
dir_cmp = "not_set" #
l_subcl1, l_subcl2 = (len(cl_hie[pair[0]]), len(cl_hie[pair[1]]))
if mul_cor != 0: alpha_mtc = th*l_subcl1*l_subcl2 if mul_cor == 2 else 1.0-math.pow(1.0-th,l_subcl1*l_subcl2)
ok = 0
curv_sign = 0
first = True
for i,k1 in enumerate(cl_hie[pair[0]]):
br = False
for j,k2 in enumerate(cl_hie[pair[1]]):
if not comp_all_sub and k1[len(pair[0]):] != k2[len(pair[1]):]:
ok += 1
continue
cl1 = feats[sl[k1][0]:sl[k1][1]]
cl2 = feats[sl[k2][0]:sl[k2][1]]
med_comp = False
if len(cl1) < min_c or len(cl2) < min_c:
med_comp = True
sx,sy = numpy.median(cl1),numpy.median(cl2)
if cl1[0] == cl2[0] and len(set(cl1)) == 1 and len(set(cl2)) == 1:
tres, first = False, False
elif not med_comp:
robjects.globalenv["x"] = robjects.FloatVector(cl1+cl2)
robjects.globalenv["y"] = robjects.FactorVector(robjects.StrVector(["a" for a in cl1]+["b" for b in cl2]))
pv = float(robjects.r('pvalue(wilcox_test(x~y,data=data.frame(x,y)))')[0])
tres = pv < alpha_mtc*2.0
if first:
first = False
if not curv and ( med_comp or tres ):
dir_cmp = sx < sy
#if sx == sy: br = True
elif curv:
dir_cmp = None
if med_comp or tres:
curv_sign += 1
dir_cmp = sx < sy
else: br = True
elif not curv and med_comp:
if ((sx < sy) != dir_cmp or sx == sy): br = True
elif curv:
if tres and dir_cmp == None:
curv_sign += 1
dir_cmp = sx < sy
if tres and dir_cmp != (sx < sy):
br = True
curv_sign = -1
elif not tres or (sx < sy) != dir_cmp or sx == sy: br = True
if br: break
ok += 1
if br: break
if curv: diff = curv_sign > 0
else: diff = (ok == len(cl_hie[pair[1]])*len(cl_hie[pair[0]])) # or (not comp_all_sub and dir_cmp != "not_set")
if diff: tot_ok += 1
if not diff and multiclass_strat: return False
if diff and not multiclass_strat: all_diff.append(pair)
if not multiclass_strat:
tot_k = len(cl_hie.keys())
for k in cl_hie.keys():
nk = 0
for a in all_diff:
if k in a: nk += 1
if nk == tot_k-1: return True
return False
return True
def contast_within_classes_or_few_per_class(feats,inds,min_cl,ncl):
ff = zip(*[v for n,v in feats.items() if n != 'class'])
cols = [ff[i] for i in inds]
cls = [feats['class'][i] for i in inds]
if len(set(cls)) < ncl:
return True
for c in set(cls):
if cls.count(c) < min_cl:
return True
cols_cl = [x for i,x in enumerate(cols) if cls[i] == c]
for i,col in enumerate(zip(*cols_cl)):
if (len(set(col)) <= min_cl and min_cl > 1) or (min_cl == 1 and len(set(col)) <= 1):
return True
return False
def test_lda_r(cls,feats,cl_sl,boots,fract_sample,lda_th,tol_min,nlogs):
fk = feats.keys()
means = dict([(k,[]) for k in feats.keys()])
feats['class'] = list(cls['class'])
clss = list(set(feats['class']))
for uu,k in enumerate(fk):
if k == 'class': continue
ff = [(feats['class'][i],v) for i,v in enumerate(feats[k])]
for c in clss:
if len(set([float(v[1]) for v in ff if v[0] == c])) > max(float(feats['class'].count(c))*0.5,4): continue
for i,v in enumerate(feats[k]):
if feats['class'][i] == c:
feats[k][i] = math.fabs(feats[k][i] + lrand.normalvariate(0.0,max(feats[k][i]*0.05,0.01)))
rdict = {}
for a,b in feats.items():
if a == 'class' or a == 'subclass' or a == 'subject':
rdict[a] = robjects.StrVector(b)
else: rdict[a] = robjects.FloatVector(b)
robjects.globalenv["d"] = robjects.DataFrame(rdict)
lfk = len(feats[fk[0]])
rfk = int(float(len(feats[fk[0]]))*fract_sample)
f = "class ~ "+fk[0]
for k in fk[1:]: f += " + " + k.strip()
ncl = len(set(cls['class']))
min_cl = int(float(min([cls['class'].count(c) for c in set(cls['class'])]))*fract_sample*fract_sample*0.5)
min_cl = max(min_cl,1)
pairs = [(a,b) for a in set(cls['class']) for b in set(cls['class']) if a > b]
for k in fk:
for i in range(boots):
means[k].append([])
for i in range(boots):
for rtmp in range(1000):
rand_s = [lrand.randint(0,lfk-1) for v in range(rfk)]
if not contast_within_classes_or_few_per_class(feats,rand_s,min_cl,ncl): break
rand_s = [r+1 for r in rand_s]
means[k][i] = []
for p in pairs:
robjects.globalenv["rand_s"] = robjects.IntVector(rand_s)
robjects.globalenv["sub_d"] = robjects.r('d[rand_s,]')
z = robjects.r('z <- suppressWarnings(lda(as.formula('+f+'),data=sub_d,tol='+str(tol_min)+'))')
robjects.r('w <- z$scaling[,1]')
robjects.r('w.unit <- w/sqrt(sum(w^2))')
robjects.r('ss <- sub_d[,-match("class",colnames(sub_d))]')
if 'subclass' in feats:
robjects.r('ss <- ss[,-match("subclass",colnames(ss))]')
if 'subject' in feats:
robjects.r('ss <- ss[,-match("subject",colnames(ss))]')
robjects.r('xy.matrix <- as.matrix(ss)')
robjects.r('LD <- xy.matrix%*%w.unit')
robjects.r('effect.size <- abs(mean(LD[sub_d[,"class"]=="'+p[0]+'"]) - mean(LD[sub_d[,"class"]=="'+p[1]+'"]))')
scal = robjects.r('wfinal <- w.unit * effect.size')
rres = robjects.r('mm <- z$means')
rowns = list(rres.rownames)
lenc = len(list(rres.colnames))
coeff = [abs(float(v)) if not math.isnan(float(v)) else 0.0 for v in scal]
res = dict([(pp,[float(ff) for ff in rres.rx(pp,True)] if pp in rowns else [0.0]*lenc ) for pp in [p[0],p[1]]])
for j,k in enumerate(fk):
gm = abs(res[p[0]][j] - res[p[1]][j])
means[k][i].append((gm+coeff[j])*0.5)
res = {}
for k in fk:
m = max([numpy.mean([means[k][kk][p] for kk in range(boots)]) for p in range(len(pairs))])
res[k] = math.copysign(1.0,m)*math.log(1.0+math.fabs(m),10)
return res,dict([(k,x) for k,x in res.items() if math.fabs(x) > lda_th])
def test_svm(cls,feats,cl_sl,boots,fract_sample,lda_th,tol_min,nsvm):
return NULL
"""
fk = feats.keys()
clss = list(set(cls['class']))
y = [clss.index(c)*2-1 for c in list(cls['class'])]
xx = [feats[f] for f in fk]
if nsvm:
maxs = [max(v) for v in xx]
mins = [min(v) for v in xx]
x = [ dict([(i+1,(v-mins[i])/(maxs[i]-mins[i])) for i,v in enumerate(f)]) for f in zip(*xx)]
else: x = [ dict([(i+1,v) for i,v in enumerate(f)]) for f in zip(*xx)]
lfk = len(feats[fk[0]])
rfk = int(float(len(feats[fk[0]]))*fract_sample)
mm = []
best_c = svmutil.svm_ms(y, x, [pow(2.0,i) for i in range(-5,10)],'-t 0 -q')
for i in range(boots):
rand_s = [lrand.randint(0,lfk-1) for v in range(rfk)]
r = svmutil.svm_w([y[yi] for yi in rand_s], [x[xi] for xi in rand_s], best_c,'-t 0 -q')
mm.append(r[:len(fk)])
m = [numpy.mean(v) for v in zip(*mm)]
res = dict([(v,m[i]) for i,v in enumerate(fk)])
return res,dict([(k,x) for k,x in res.items() if math.fabs(x) > lda_th])
"""