diff --git a/yoeo/scripts/createYOEOLabelsFromTORSO-21.py b/yoeo/scripts/createYOEOLabelsFromTORSO-21.py index ff74d22..443e4b5 100755 --- a/yoeo/scripts/createYOEOLabelsFromTORSO-21.py +++ b/yoeo/scripts/createYOEOLabelsFromTORSO-21.py @@ -8,14 +8,6 @@ from tqdm import tqdm -# Available classes for YOEO -CLASSES = { - 'bb_classes': ['ball', 'goalpost', 'robot'], - 'segmentation_classes': ['background', 'lines', 'field'], - 'skip_classes': ['obstacle', 'L-Intersection', 'X-Intersection', 'T-Intersection'] - } - - def range_limited_float_type_0_to_1(arg): """Type function for argparse - a float within some predefined bounds Derived from 'https://stackoverflow.com/questions/55324449/how-to-specify-a-minimum-or-maximum-float-value-with-argparse/55410582#55410582'. @@ -37,8 +29,16 @@ def range_limited_float_type_0_to_1(arg): parser.add_argument("--skip-blurred", action="store_true", help="Skip blurred labels") parser.add_argument("--skip-concealed", action="store_true", help="Skip concealed labels") parser.add_argument("--skip-classes", nargs="+", default=[], help="These bounding box classes will be skipped") +parser.add_argument("--robots-with-team-colors", action="store_true", help="The robot class will be subdivided into subclasses, one for each team color (currently either 'blue', 'red' or 'unknown').") args = parser.parse_args() +# Available classes for YOEO +CLASSES = { + 'bb_classes': ['ball', 'goalpost', 'robot'] if not args.robots_with_team_colors else ['ball', 'goalpost', 'robot_blue', 'robot_red', 'robot_unknown'], + 'segmentation_classes': ['background', 'lines', 'field'], + 'skip_classes': ['obstacle', 'L-Intersection', 'X-Intersection', 'T-Intersection'], + } + # Remove skipped classes from CLASSES list for skip_class in args.skip_classes: if skip_class in CLASSES['bb_classes']: @@ -122,33 +122,42 @@ def range_limited_float_type_0_to_1(arg): annotations = [] for annotation in image_data['annotations']: + # Skip annotations that are not in the image + if not annotation['in_image']: + continue + + # Derive the class name of the current annotation + class_name = annotation['type'] + if args.robots_with_team_colors and class_name == 'robot': + class_name += f"_{annotation['color']}" + # Skip annotations, if is not a bounding box or should be skipped or is blurred or concealed and user chooses to skip them - if (annotation['type'] in CLASSES['segmentation_classes'] or # Handled by segmentations - annotation['type'] in CLASSES['skip_classes'] or # Skip this annotation class + if (class_name in CLASSES['segmentation_classes'] or # Handled by segmentations + class_name in CLASSES['skip_classes'] or # Skip this annotation class (args.skip_blurred and annotation.get('blurred', False)) or (args.skip_concealed and annotation.get('concealed', False))): continue - elif annotation['type'] in CLASSES['bb_classes']: # Handle bounding boxes - if annotation['in_image']: # If annotation is not in image, do nothing - min_x = min(map(lambda x: x[0], annotation['vector'])) - max_x = max(map(lambda x: x[0], annotation['vector'])) - min_y = min(map(lambda x: x[1], annotation['vector'])) - max_y = max(map(lambda x: x[1], annotation['vector'])) - - annotation_width = max_x - min_x - annotation_height = max_y - min_y - relative_annotation_width = annotation_width / img_width - relative_annotation_height = annotation_height / img_height - - center_x = min_x + (annotation_width / 2) - center_y = min_y + (annotation_height / 2) - relative_center_x = center_x / img_width - relative_center_y = center_y / img_height - - classID = CLASSES['bb_classes'].index(annotation['type']) # Derive classID from index in predefined classes - annotations.append(f"{classID} {relative_center_x} {relative_center_y} {relative_annotation_width} {relative_annotation_height}") + elif class_name in CLASSES['bb_classes']: # Handle bounding boxes + min_x = min(map(lambda x: x[0], annotation['vector'])) + max_x = max(map(lambda x: x[0], annotation['vector'])) + min_y = min(map(lambda x: x[1], annotation['vector'])) + max_y = max(map(lambda x: x[1], annotation['vector'])) + + annotation_width = max_x - min_x + annotation_height = max_y - min_y + relative_annotation_width = annotation_width / img_width + relative_annotation_height = annotation_height / img_height + + center_x = min_x + (annotation_width / 2) + center_y = min_y + (annotation_height / 2) + relative_center_x = center_x / img_width + relative_center_y = center_y / img_height + + # Derive classID from index in predefined classes + classID = CLASSES['bb_classes'].index(class_name) + annotations.append(f"{classID} {relative_center_x} {relative_center_y} {relative_annotation_width} {relative_annotation_height}") else: - print(f"The annotation type '{annotation['type']}' is not supported. Image: '{img_name_with_extension}'") + print(f"The annotation type '{class_name}' is not supported. Image: '{img_name_with_extension}'") # Store bounding box annotations in .txt file with open(os.path.join(labels_dir, img_name_without_extension + ".txt"), "w") as output: