-
-
Notifications
You must be signed in to change notification settings - Fork 235
/
bloom.go
453 lines (388 loc) · 12.7 KB
/
bloom.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
/*
Package bloom provides data structures and methods for creating Bloom filters.
A Bloom filter is a representation of a set of _n_ items, where the main
requirement is to make membership queries; _i.e._, whether an item is a
member of a set.
A Bloom filter has two parameters: _m_, a maximum size (typically a reasonably large
multiple of the cardinality of the set to represent) and _k_, the number of hashing
functions on elements of the set. (The actual hashing functions are important, too,
but this is not a parameter for this implementation). A Bloom filter is backed by
a BitSet; a key is represented in the filter by setting the bits at each value of the
hashing functions (modulo _m_). Set membership is done by _testing_ whether the
bits at each value of the hashing functions (again, modulo _m_) are set. If so,
the item is in the set. If the item is actually in the set, a Bloom filter will
never fail (the true positive rate is 1.0); but it is susceptible to false
positives. The art is to choose _k_ and _m_ correctly.
In this implementation, the hashing functions used is murmurhash,
a non-cryptographic hashing function.
This implementation accepts keys for setting as testing as []byte. Thus, to
add a string item, "Love":
uint n = 1000
filter := bloom.New(20*n, 5) // load of 20, 5 keys
filter.Add([]byte("Love"))
Similarly, to test if "Love" is in bloom:
if filter.Test([]byte("Love"))
For numeric data, I recommend that you look into the binary/encoding library. But,
for example, to add a uint32 to the filter:
i := uint32(100)
n1 := make([]byte,4)
binary.BigEndian.PutUint32(n1,i)
f.Add(n1)
Finally, there is a method to estimate the false positive rate of a
Bloom filter with _m_ bits and _k_ hashing functions for a set of size _n_:
if bloom.EstimateFalsePositiveRate(20*n, 5, n) > 0.001 ...
You can use it to validate the computed m, k parameters:
m, k := bloom.EstimateParameters(n, fp)
ActualfpRate := bloom.EstimateFalsePositiveRate(m, k, n)
or
f := bloom.NewWithEstimates(n, fp)
ActualfpRate := bloom.EstimateFalsePositiveRate(f.m, f.k, n)
You would expect ActualfpRate to be close to the desired fp in these cases.
The EstimateFalsePositiveRate function creates a temporary Bloom filter. It is
also relatively expensive and only meant for validation.
*/
package bloom
import (
"bytes"
"encoding/binary"
"encoding/json"
"fmt"
"io"
"math"
"github.com/bits-and-blooms/bitset"
)
// A BloomFilter is a representation of a set of _n_ items, where the main
// requirement is to make membership queries; _i.e._, whether an item is a
// member of a set.
type BloomFilter struct {
m uint
k uint
b *bitset.BitSet
}
func max(x, y uint) uint {
if x > y {
return x
}
return y
}
// New creates a new Bloom filter with _m_ bits and _k_ hashing functions
// We force _m_ and _k_ to be at least one to avoid panics.
func New(m uint, k uint) *BloomFilter {
return &BloomFilter{max(1, m), max(1, k), bitset.New(m)}
}
// From creates a new Bloom filter with len(_data_) * 64 bits and _k_ hashing
// functions. The data slice is not going to be reset.
func From(data []uint64, k uint) *BloomFilter {
m := uint(len(data) * 64)
return FromWithM(data, m, k)
}
// FromWithM creates a new Bloom filter with _m_ length, _k_ hashing functions.
// The data slice is not going to be reset.
func FromWithM(data []uint64, m, k uint) *BloomFilter {
return &BloomFilter{m, k, bitset.From(data)}
}
// baseHashes returns the four hash values of data that are used to create k
// hashes
func baseHashes(data []byte) [4]uint64 {
var d digest128 // murmur hashing
hash1, hash2, hash3, hash4 := d.sum256(data)
return [4]uint64{
hash1, hash2, hash3, hash4,
}
}
// location returns the ith hashed location using the four base hash values
func location(h [4]uint64, i uint) uint64 {
ii := uint64(i)
return h[ii%2] + ii*h[2+(((ii+(ii%2))%4)/2)]
}
// location returns the ith hashed location using the four base hash values
func (f *BloomFilter) location(h [4]uint64, i uint) uint {
return uint(location(h, i) % uint64(f.m))
}
// EstimateParameters estimates requirements for m and k.
// Based on https://bitbucket.org/ww/bloom/src/829aa19d01d9/bloom.go
// used with permission.
func EstimateParameters(n uint, p float64) (m uint, k uint) {
m = uint(math.Ceil(-1 * float64(n) * math.Log(p) / math.Pow(math.Log(2), 2)))
k = uint(math.Ceil(math.Log(2) * float64(m) / float64(n)))
return
}
// NewWithEstimates creates a new Bloom filter for about n items with fp
// false positive rate
func NewWithEstimates(n uint, fp float64) *BloomFilter {
m, k := EstimateParameters(n, fp)
return New(m, k)
}
// Cap returns the capacity, _m_, of a Bloom filter
func (f *BloomFilter) Cap() uint {
return f.m
}
// K returns the number of hash functions used in the BloomFilter
func (f *BloomFilter) K() uint {
return f.k
}
// BitSet returns the underlying bitset for this filter.
func (f *BloomFilter) BitSet() *bitset.BitSet {
return f.b
}
// Add data to the Bloom Filter. Returns the filter (allows chaining)
func (f *BloomFilter) Add(data []byte) *BloomFilter {
h := baseHashes(data)
for i := uint(0); i < f.k; i++ {
f.b.Set(f.location(h, i))
}
return f
}
// Merge the data from two Bloom Filters.
func (f *BloomFilter) Merge(g *BloomFilter) error {
// Make sure the m's and k's are the same, otherwise merging has no real use.
if f.m != g.m {
return fmt.Errorf("m's don't match: %d != %d", f.m, g.m)
}
if f.k != g.k {
return fmt.Errorf("k's don't match: %d != %d", f.m, g.m)
}
f.b.InPlaceUnion(g.b)
return nil
}
// Copy creates a copy of a Bloom filter.
func (f *BloomFilter) Copy() *BloomFilter {
fc := New(f.m, f.k)
fc.Merge(f) // #nosec
return fc
}
// AddString to the Bloom Filter. Returns the filter (allows chaining)
func (f *BloomFilter) AddString(data string) *BloomFilter {
return f.Add([]byte(data))
}
// Test returns true if the data is in the BloomFilter, false otherwise.
// If true, the result might be a false positive. If false, the data
// is definitely not in the set.
func (f *BloomFilter) Test(data []byte) bool {
h := baseHashes(data)
for i := uint(0); i < f.k; i++ {
if !f.b.Test(f.location(h, i)) {
return false
}
}
return true
}
// TestString returns true if the string is in the BloomFilter, false otherwise.
// If true, the result might be a false positive. If false, the data
// is definitely not in the set.
func (f *BloomFilter) TestString(data string) bool {
return f.Test([]byte(data))
}
// TestLocations returns true if all locations are set in the BloomFilter, false
// otherwise.
func (f *BloomFilter) TestLocations(locs []uint64) bool {
for i := 0; i < len(locs); i++ {
if !f.b.Test(uint(locs[i] % uint64(f.m))) {
return false
}
}
return true
}
// TestAndAdd is equivalent to calling Test(data) then Add(data).
// The filter is written to unconditionnally: even if the element is present,
// the corresponding bits are still set. See also TestOrAdd.
// Returns the result of Test.
func (f *BloomFilter) TestAndAdd(data []byte) bool {
present := true
h := baseHashes(data)
for i := uint(0); i < f.k; i++ {
l := f.location(h, i)
if !f.b.Test(l) {
present = false
}
f.b.Set(l)
}
return present
}
// TestAndAddString is the equivalent to calling Test(string) then Add(string).
// The filter is written to unconditionnally: even if the string is present,
// the corresponding bits are still set. See also TestOrAdd.
// Returns the result of Test.
func (f *BloomFilter) TestAndAddString(data string) bool {
return f.TestAndAdd([]byte(data))
}
// TestOrAdd is equivalent to calling Test(data) then if not present Add(data).
// If the element is already in the filter, then the filter is unchanged.
// Returns the result of Test.
func (f *BloomFilter) TestOrAdd(data []byte) bool {
present := true
h := baseHashes(data)
for i := uint(0); i < f.k; i++ {
l := f.location(h, i)
if !f.b.Test(l) {
present = false
f.b.Set(l)
}
}
return present
}
// TestOrAddString is the equivalent to calling Test(string) then if not present Add(string).
// If the string is already in the filter, then the filter is unchanged.
// Returns the result of Test.
func (f *BloomFilter) TestOrAddString(data string) bool {
return f.TestOrAdd([]byte(data))
}
// ClearAll clears all the data in a Bloom filter, removing all keys
func (f *BloomFilter) ClearAll() *BloomFilter {
f.b.ClearAll()
return f
}
// EstimateFalsePositiveRate returns, for a BloomFilter of m bits
// and k hash functions, an estimation of the false positive rate when
//
// storing n entries. This is an empirical, relatively slow
//
// test using integers as keys.
// This function is useful to validate the implementation.
func EstimateFalsePositiveRate(m, k, n uint) (fpRate float64) {
rounds := uint32(100000)
// We construct a new filter.
f := New(m, k)
n1 := make([]byte, 4)
// We populate the filter with n values.
for i := uint32(0); i < uint32(n); i++ {
binary.BigEndian.PutUint32(n1, i)
f.Add(n1)
}
fp := 0
// test for number of rounds
for i := uint32(0); i < rounds; i++ {
binary.BigEndian.PutUint32(n1, i+uint32(n)+1)
if f.Test(n1) {
fp++
}
}
fpRate = float64(fp) / (float64(rounds))
return
}
// Approximating the number of items
// https://en.wikipedia.org/wiki/Bloom_filter#Approximating_the_number_of_items_in_a_Bloom_filter
func (f *BloomFilter) ApproximatedSize() uint32 {
x := float64(f.b.Count())
m := float64(f.Cap())
k := float64(f.K())
size := -1 * m / k * math.Log(1-x/m) / math.Log(math.E)
return uint32(math.Floor(size + 0.5)) // round
}
// bloomFilterJSON is an unexported type for marshaling/unmarshaling BloomFilter struct.
type bloomFilterJSON struct {
M uint `json:"m"`
K uint `json:"k"`
B *bitset.BitSet `json:"b"`
}
// MarshalJSON implements json.Marshaler interface.
func (f BloomFilter) MarshalJSON() ([]byte, error) {
return json.Marshal(bloomFilterJSON{f.m, f.k, f.b})
}
// UnmarshalJSON implements json.Unmarshaler interface.
func (f *BloomFilter) UnmarshalJSON(data []byte) error {
var j bloomFilterJSON
err := json.Unmarshal(data, &j)
if err != nil {
return err
}
f.m = j.M
f.k = j.K
f.b = j.B
return nil
}
// WriteTo writes a binary representation of the BloomFilter to an i/o stream.
// It returns the number of bytes written.
//
// Performance: if this function is used to write to a disk or network
// connection, it might be beneficial to wrap the stream in a bufio.Writer.
// E.g.,
//
// f, err := os.Create("myfile")
// w := bufio.NewWriter(f)
func (f *BloomFilter) WriteTo(stream io.Writer) (int64, error) {
err := binary.Write(stream, binary.BigEndian, uint64(f.m))
if err != nil {
return 0, err
}
err = binary.Write(stream, binary.BigEndian, uint64(f.k))
if err != nil {
return 0, err
}
numBytes, err := f.b.WriteTo(stream)
return numBytes + int64(2*binary.Size(uint64(0))), err
}
// ReadFrom reads a binary representation of the BloomFilter (such as might
// have been written by WriteTo()) from an i/o stream. It returns the number
// of bytes read.
//
// Performance: if this function is used to read from a disk or network
// connection, it might be beneficial to wrap the stream in a bufio.Reader.
// E.g.,
//
// f, err := os.Open("myfile")
// r := bufio.NewReader(f)
func (f *BloomFilter) ReadFrom(stream io.Reader) (int64, error) {
var m, k uint64
err := binary.Read(stream, binary.BigEndian, &m)
if err != nil {
return 0, err
}
err = binary.Read(stream, binary.BigEndian, &k)
if err != nil {
return 0, err
}
b := &bitset.BitSet{}
numBytes, err := b.ReadFrom(stream)
if err != nil {
return 0, err
}
f.m = uint(m)
f.k = uint(k)
f.b = b
return numBytes + int64(2*binary.Size(uint64(0))), nil
}
// GobEncode implements gob.GobEncoder interface.
func (f *BloomFilter) GobEncode() ([]byte, error) {
var buf bytes.Buffer
_, err := f.WriteTo(&buf)
if err != nil {
return nil, err
}
return buf.Bytes(), nil
}
// GobDecode implements gob.GobDecoder interface.
func (f *BloomFilter) GobDecode(data []byte) error {
buf := bytes.NewBuffer(data)
_, err := f.ReadFrom(buf)
return err
}
// MarshalBinary implements binary.BinaryMarshaler interface.
func (f *BloomFilter) MarshalBinary() ([]byte, error) {
var buf bytes.Buffer
_, err := f.WriteTo(&buf)
if err != nil {
return nil, err
}
return buf.Bytes(), nil
}
// UnmarshalBinary implements binary.BinaryUnmarshaler interface.
func (f *BloomFilter) UnmarshalBinary(data []byte) error {
buf := bytes.NewBuffer(data)
_, err := f.ReadFrom(buf)
return err
}
// Equal tests for the equality of two Bloom filters
func (f *BloomFilter) Equal(g *BloomFilter) bool {
return f.m == g.m && f.k == g.k && f.b.Equal(g.b)
}
// Locations returns a list of hash locations representing a data item.
func Locations(data []byte, k uint) []uint64 {
locs := make([]uint64, k)
// calculate locations
h := baseHashes(data)
for i := uint(0); i < k; i++ {
locs[i] = location(h, i)
}
return locs
}