-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdisplay_images.py
91 lines (77 loc) · 2.95 KB
/
display_images.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import matplotlib.pyplot as plt
import numpy as np
import torch.utils.data
import torchvision.transforms as transforms
from torchvision import datasets
import moco.loader
# which class(es) to add to trainloader (just uses 100 of each)
classes = [0]
# which number image to display
image_id = 0
# bool if should be saved as well as displayed
save = False
# WITH AUGMENTATION
normalize = transforms.Normalize(mean=[0.4914, 0.4822, 0.4465],
std=[0.2023, 0.1994, 0.2010])
augmentation = [
transforms.RandomResizedCrop(96, scale=(0.2, 1.0)),
transforms.RandomApply([
transforms.ColorJitter(0.4, 0.4, 0.4, 0.1) # not strengthened
], p=0.8),
transforms.RandomGrayscale(p=0.2),
transforms.RandomApply([moco.loader.GaussianBlur([.1, 2.])], p=0.5),
transforms.RandomHorizontalFlip(p=0.5),
transforms.ToTensor(),
# normalize
]
train_dataset = datasets.STL10(root='./data', download=True,
transform=moco.loader.TwoCropsTransform(
transforms.Compose(augmentation)))
train_labels = np.array(train_dataset.labels)
train_idx = np.array(
[np.where(train_labels == i)[0][:100] for i in classes]).flatten()
train_dataset.labels = train_labels[train_idx]
train_dataset.data = train_dataset.data[train_idx]
train_loader = torch.utils.data.DataLoader(
train_dataset, shuffle=False)
images = [images for batch_index, (images, _) in enumerate(train_loader)]
plt.imshow(torch.tensor(images[image_id][0].squeeze()).permute(1, 2, 0))
plt.gca().set_axis_off()
plt.subplots_adjust(top=1, bottom=0, right=1, left=0,
hspace=0, wspace=0)
plt.margins(0, 0)
if save:
plt.savefig("image_aug1.pdf", bbox_inches='tight')
plt.show()
plt.imshow(torch.tensor(images[image_id][1].squeeze()).permute(1, 2, 0))
plt.gca().set_axis_off()
plt.subplots_adjust(top=1, bottom=0, right=1, left=0,
hspace=0, wspace=0)
plt.margins(0, 0)
if save:
plt.savefig("image_aug2.pdf", bbox_inches='tight')
plt.show()
# WITHOUT AUGMENTATION
augmentation = [
transforms.ToTensor(),
# normalize
]
train_dataset = datasets.STL10(root='./data', download=True,
transform=moco.loader.TwoCropsTransform(
transforms.Compose(augmentation)))
train_labels = np.array(train_dataset.labels)
train_idx = np.array(
[np.where(train_labels == i)[0][:100] for i in classes]).flatten()
train_dataset.labels = train_labels[train_idx]
train_dataset.data = train_dataset.data[train_idx]
train_loader = torch.utils.data.DataLoader(
train_dataset, shuffle=False)
images = [images for batch_index, (images, _) in enumerate(train_loader)]
plt.imshow(torch.tensor(images[image_id][0].squeeze()).permute(1, 2, 0))
plt.gca().set_axis_off()
plt.subplots_adjust(top=1, bottom=0, right=1, left=0,
hspace=0, wspace=0)
plt.margins(0, 0)
if save:
plt.savefig("image.pdf", bbox_inches='tight')
plt.show()