-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkeras_fine.py
191 lines (167 loc) · 7.69 KB
/
keras_fine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Standard labels for Cifar100 using Keras
# Matching the network structure of the Caffe network for Cifar100
# Only using the fine labels, so accuracy can be reported
from __future__ import print_function
optimizer = 'sgd'#'rmsprop'
model_style = 'original'#'original'#'wider'#'nodrop_wider'#'original'#'wider'
nb_epoch = 5#1500
learning_rate = 0.01#0.01
data_augmentation = True
more_augmentation = False#True
model_name = '%s_%s_e%s_a%s' % (model_style, optimizer, nb_epoch, data_augmentation)
if more_augmentation:
model_name += '_moreaug'
if optimizer == 'sgd':
model_name += '_lr%s' % learning_rate
gpu = 'gpu1'
import os
os.environ["THEANO_FLAGS"] = "mode=FAST_RUN,device=%s,floatX=float32" % gpu
from keras.datasets import cifar100
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential, Graph
from keras.layers.core import Dense, Dropout, Activation, Flatten
from keras.layers.convolutional import Convolution2D, MaxPooling2D
from keras.optimizers import SGD
from keras.utils import np_utils
import cPickle as pickle
from network_utils import accuracy, load_custom_weights
# Open an IPython session if an exception is found
import sys
from IPython.core import ultratb
sys.excepthook = ultratb.FormattedTB(mode='Verbose', color_scheme='Linux', call_pdb=1)
batch_size = 32
nb_classes_fine = 100
nb_classes_coarse = 20
# input image dimensions
img_rows, img_cols = 32, 32
# the CIFAR10 images are RGB
img_channels = 3
# the data, shuffled and split between train and test sets
(X_train, y_train_fine), (X_test, y_test_fine) = cifar100.load_data(label_mode='fine')
(_, y_train_coarse), (_, y_test_coarse) = cifar100.load_data(label_mode='coarse')
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
print('y_train_fine shape:', y_train_fine.shape)
print('y_train_coarse shape:', y_train_coarse.shape)
# convert class vectors to binary class matrices
Y_train_fine = np_utils.to_categorical(y_train_fine, nb_classes_fine)
Y_train_coarse = np_utils.to_categorical(y_train_coarse, nb_classes_coarse)
Y_test_fine = np_utils.to_categorical(y_test_fine, nb_classes_fine)
Y_test_coarse = np_utils.to_categorical(y_test_coarse, nb_classes_coarse)
print('Y_train_fine shape:', Y_train_fine.shape)
print('Y_train_coarse shape:', Y_train_coarse.shape)
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
X_train /= 255
X_test /= 255
######################
# Beginning of Model #
######################
model = Sequential()
"""
model.add(Convolution2D(64, 4, 4, border_mode='same',
input_shape=(img_channels, img_rows, img_cols)))
model.add(Convolution2D(42, 1, 1))
model.add(Activation('relu'))
model.add(Convolution2D(32, 1, 1))
model.add(MaxPooling2D(pool_size=(3, 3),strides=(2,2)))
model.add(Dropout(0.25))
model.add(Activation('relu'))
model.add(Convolution2D(42, 4, 4))
model.add(MaxPooling2D(pool_size=(3, 3),strides=(2,2)))
model.add(Dropout(0.25)) #FIXME: figure out correct dropout amount
model.add(Activation('relu'))
model.add(Convolution2D(64, 2, 2))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2,2)))
model.add(Activation('relu'))
model.add(Flatten())
#inner product layer
model.add(Dense(768))
#sigmoid layer
model.add(Activation('sigmoid'))
#ip_f
model.add(Dense(100))
#accuracy_f
#loss_f
model.add(Activation('softmax'))
"""
model.add(Convolution2D(32, 3, 3, border_mode='same',
input_shape=(img_channels, img_rows, img_cols)))
model.add(Activation('relu'))
model.add(Convolution2D(32, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
#model.add(Dropout(0.25))
model.add(Convolution2D(64, 3, 3, border_mode='same'))
model.add(Activation('relu'))
model.add(Convolution2D(64, 3, 3))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
#model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
#model.add(Dropout(0.5))
model.add(Dense(100))
model.add(Activation('softmax'))
training = True # if the network should train, or just load the weights from elsewhere
load_matching = False # if the network should load the weights from the model trained on both labels
if optimizer == 'sgd':
# let's train the model using SGD + momentum (how original).
sgd = SGD(lr=learning_rate, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer=sgd)
else:
model.compile(loss='categorical_crossentropy', metrics=['accuracy'], optimizer=optimizer)
if training:
if not data_augmentation:
print('Not using data augmentation.')
history = model.fit(X_train, Y_train_fine, batch_size=batch_size,
nb_epoch=nb_epoch, show_accuracy=True,
validation_data=(X_test, Y_test_fine), shuffle=True)
else:
print('Using real-time data augmentation.')
# this will do preprocessing and realtime data augmentation
datagen = ImageDataGenerator(
featurewise_center=False, # set input mean to 0 over the dataset
samplewise_center=False, # set each sample mean to 0
featurewise_std_normalization=False, # divide inputs by std of the dataset
samplewise_std_normalization=False, # divide each input by its std
zca_whitening=False, # apply ZCA whitening
rotation_range=0, # randomly rotate images in the range (degrees, 0 to 180)
width_shift_range=0.1, # randomly shift images horizontally (fraction of total width)
height_shift_range=0.1, # randomly shift images vertically (fraction of total height)
horizontal_flip=True, # randomly flip images
vertical_flip=False) # randomly flip images
# compute quantities required for featurewise normalization
# (std, mean, and principal components if ZCA whitening is applied)
datagen.fit(X_train)
# fit the model on the batches generated by datagen.flow()
history = model.fit_generator(datagen.flow(X_train, Y_train_fine, batch_size=batch_size),
samples_per_epoch=X_train.shape[0],
nb_epoch=nb_epoch, show_accuracy=True,
validation_data=(X_test, Y_test_fine),
nb_worker=1)
model.save_weights('net_output/cifar100_fine_%s_weights.h5' % model_name)
json_string = model.to_json()
open('net_output/cifar100_fine_%s_architecture.json' % model_name, 'w').write(json_string)
pickle.dump(history.history, open('net_output/cifar100_fine_%s_history.p' % model_name,'w'))
print("saving to: cifar100_fine_%s" % model_name)
elif load_matching:
load_custom_weights(model, 'net_output/keras_cifar100_matching_weights.h5')
Y_predict_test = model.predict(X_test, batch_size=batch_size, verbose=1)
Y_predict_train = model.predict(X_train, batch_size=batch_size, verbose=1)
test_accuracy_fine = accuracy(Y_predict_test, Y_test_fine)
print("Fine test accuracy: %f" % test_accuracy_fine)
train_accuracy_fine = accuracy(Y_predict_train, Y_train_fine)
print("Fine train accuracy: %f" % train_accuracy_fine)
else:
model.load_weights('cifar100_fine_%s_weights.h5' % model_name)
Y_predict_test = model.predict(X_test, batch_size=batch_size, verbose=1)
Y_predict_train = model.predict(X_train, batch_size=batch_size, verbose=1)
Y_predict_test_fine = Y_predict_test['output_fine']
test_accuracy_fine = accuracy(Y_predict_test_fine, Y_test_fine)
print("Fine test accuracy: %f" % test_accuracy_fine)
Y_predict_train_fine = Y_predict_train['output_fine']
train_accuracy_fine = accuracy(Y_predict_train_fine, Y_train_fine)
print("Fine train accuracy: %f" % train_accuracy_fine)