Skip to content

Latest commit

 

History

History
 
 

detection

Applying Context Cluster to Object Detection

Our detection implementation is based on MMDetection and PVT detection. Thank the authors for their wonderful works.

Note

Please note that we just simply follow the hyper-parameters of PVT which may not be the optimal ones for Context Cluster. Feel free to tune the hyper-parameters to get better performance.

Usage

Install MMDetection from souce cocde,

or

pip install mmdet --user

Data preparation

Prepare COCO according to the guidelines in MMDetection.

Results and models on COCO

Backbone Parmas AP-box AP-box@50 AP-box@75 AP-mask AP-mask@50 AP-mask@75 Download
ResNet18 31.2M 34.0 54.0 36.7 31.2 51.0 32.7
PVT-Tiny 32.9M 36.7 59.2 39.3 35.1 56.7 37.3
CoC-small-4 33.6M 35.9 58.3 38.3 33.8 55.3 35.8 [model]
CoC-small-25 33.6M 37.5 60.1 40.0 35.4 57.1 37.9 [model]
CoC-small-49 33.6M 37.2 59.8 39.7 34.9 56.7 37.0 [model]
---- ---- ---- ---- ---- ---- ---- ---- ----
ResNet50 44.2M 38.0 58.6 41.4 34.4 55.1 36.7
PVT-Small 44.1M 40.4 62.9 43.8 37.8 60.1 40.3
CoC-medium-4 42.1M 38.6 61.1 41.5 36.1 58.2 38.0 [model]
CoC-medium-25 42.1M 40.1 62.8 43.6 37.4 59.9 40.0 [model]
CoC-medium-49 42.1M 40.6 63.3 43.9 37.6 60.1 39.9 [model]

Evaluation

To evaluate Context Cluster + Mask R-CNN on COCO val2017, run:

dist_test.sh configs/{configure-file} /path/to/checkpoint_file 8 --out results.pkl --eval bbox segm

Training

To train Context Cluster + Mask R-CNN on COCO train2017:

dist_train.sh configs/{configure-file} 8