-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDRYBEANS.py
206 lines (141 loc) · 5.34 KB
/
DRYBEANS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun May 7 20:16:41 2023
@author: blkcap
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
# %matplotlib inline
import seaborn as sns
from sklearn.preprocessing import LabelEncoder
# =============================================================================
# import os
# for dirname, _, filenames in os.walk(''):
# for filename in filenames:
# print(os.path.join(dirname, filename))
#
# =============================================================================
df = pd.read_excel('Dry_Bean_Dataset.xlsx')
df.head(10)
# =============================================================================
# df = pd.DataFrame(data)
# print(df)
#
# df.shape
# dfSum= data.describe()
# print(dfSum)
#
# df.info()
#
# =============================================================================
# Select features to plot
features = ["Area", "Perimeter", "MajorAxisLength", "MinorAxisLength", "AspectRation",
"Eccentricity", "ConvexArea", "EquivDiameter", "Extent", "Solidity",
"roundness", "Compactness", "ShapeFactor1", "ShapeFactor2", "ShapeFactor3",
"ShapeFactor4"]
#Understanding the dataset
# Create subplots with multiple histograms
fig, axs = plt.subplots(nrows=4, ncols=4, figsize=(15,15))
# Flatten the axs array for easy indexing
axs = axs.flatten()
# Create a histogram for each feature and add it to a subplot
for i, feature in enumerate(features):
axs[i].hist(df[feature], bins=30)
axs[i].set_title(feature)
axs[i].set_xlabel(feature)
axs[i].set_ylabel("Count")
# Remove extra subplots
while i+1 < len(axs):
fig.delaxes(axs[i+1])
i += 1
# Adjust layout
plt.tight_layout()
# Show the plot
plt.show()
# Count occurrences of each category
class_counts = df["Class"].value_counts()
print(class_counts)
class_ = {'DERMASON':0, 'SIRA':1, 'SEKER':2, 'HOROZ':3, 'CALI':4, 'BARBUNYA':5, 'BOMBAY':6}
df['Class'] = df['Class'].replace(class_)
# Create a bar chart
class_counts.plot.bar()
# Set chart title and axis labels
plt.title("Class Distribution")
plt.xlabel("Class")
plt.ylabel("Count")
# Show the chart
plt.show()
# Since class is str replace with int
labelencoder = LabelEncoder()
df["Class"] = labelencoder.fit_transform(df['Class'])
df.head(10)
print(df)
# Compute correlation matrix
plt.figure(figsize=(12,12))
corr_matrix = df.corr()
# Create a heatmap of the correlation matrix
sns.heatmap(corr_matrix,annot = True, cmap=plt.cm.Reds)
# Set chart title
plt.title("Correlation Matrix")
# Show the chart
plt.show()
# =============================================================================
#
# from sklearn.ensemble import RandomForestClassifier
#
# Features = np.array(["Area", "Perimeter", "MajorAxisLength", "MinorAxisLength", "AspectRation",
# "Eccentricity", "ConvexArea", "EquivDiameter", "Extent", "Solidity",
# "roundness", "Compactness", "ShapeFactor1", "ShapeFactor2", "ShapeFactor3",
# "ShapeFactor4"])
# clf = RandomForestClassifier()
# clf.fit(df[Features], df['Class'])
#
# importances = clf.feature_importances_
# sorted_idx = np.argsort(importances)
#
# padding = np.arange(len(features)) + 0.5
# plt.barh(padding, importances[sorted_idx], align='center')
# plt.yticks(padding, features[sorted_idx])
# plt.xlabel("Relative Importance")
# plt.title("Variable Importance")
# plt.show()
#
# =============================================================================
# =============================================================================
# # Select features to plot
# features = ["Area", "Perimeter", "MajorAxisLength", "MinorAxisLength", "AspectRation",
# "Eccentricity", "ConvexArea", "EquivDiameter", "Extent", "Solidity",
# "roundness", "Compactness", "ShapeFactor1", "ShapeFactor2", "ShapeFactor3",
# "ShapeFactor4"]
#
# # Create a histogram for each feature
# for feature in features:
# plt.hist(df[feature], bins=30)
# plt.title(feature)
# plt.xlabel(feature)
# plt.ylabel("Count")
# plt.show()
# =============================================================================
# =============================================================================
# # =============================================================================
# # plt.hist(df['Area'], label = "Area")
# # =============================================================================
# plt.hist(df['Perimeter'], label = "Perimeter")
# # =============================================================================
# # plt.hist(df['MajorAxisLength'], label = "Major Axis Len")
# # =============================================================================
# plt.hist(df['MinorAxisLength'], label = "Minor Axis Len")
# plt.hist(df['AspectRation'], label = "AspectRation")
# plt.hist(df['Eccentricity'], label = "Eccentricity")
# # =============================================================================
# # plt.hist(df['ConvexArea'], label = "ConvexArea")
# # =============================================================================
# plt.hist(df['EquivDiameter'], label = "EquivDiameter")
# plt.hist(df['Extent'], label = "Extenet")
# plt.hist(df['Solidity'], label = "Solidity")
# plt.legend(loc = 'upper right')
# plt.show()
#
# =============================================================================