-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathmain_r04.cpp
243 lines (193 loc) · 8.38 KB
/
main_r04.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
#include "SkeletonSensor.h"
// openCV
#include <opencv/highgui.h>
#include <opencv/cv.h>
using namespace cv;
#include <iostream>
using namespace std;
// globals
SkeletonSensor* sensor;
const unsigned int XRES = 640;
const unsigned int YRES = 480;
const float DEPTH_SCALE_FACTOR = 255./4096.;
// defines the value about which thresholding occurs
const unsigned int BIN_THRESH_OFFSET = 5;
// defines the value about witch the region of interest is extracted
const unsigned int ROI_OFFSET = 70;
// median blur factor
const unsigned int MEDIAN_BLUR_K = 5;
// returns true if the hand is near the sensor area
bool handApproachingDisplayPerimeter(float x, float y)
{
return (x > (XRES - ROI_OFFSET)) || (x < (ROI_OFFSET)) ||
(y > (YRES - ROI_OFFSET)) || (y < (ROI_OFFSET));
}
// conversion from cvConvexityDefect
struct ConvexityDefect
{
Point start;
Point end;
Point depth_point;
float depth;
};
// Thanks to Jose Manuel Cabrera for part of this C++ wrapper function
void findConvexityDefects(vector<Point>& contour, vector<int>& hull, vector<ConvexityDefect>& convexDefects)
{
if(hull.size() > 0 && contour.size() > 0)
{
CvSeq* contourPoints;
CvSeq* defects;
CvMemStorage* storage;
CvMemStorage* strDefects;
CvMemStorage* contourStr;
CvConvexityDefect *defectArray = 0;
strDefects = cvCreateMemStorage();
defects = cvCreateSeq( CV_SEQ_KIND_GENERIC|CV_32SC2, sizeof(CvSeq),sizeof(CvPoint), strDefects );
//We transform our vector<Point> into a CvSeq* object of CvPoint.
contourStr = cvCreateMemStorage();
contourPoints = cvCreateSeq(CV_SEQ_KIND_GENERIC|CV_32SC2, sizeof(CvSeq), sizeof(CvPoint), contourStr);
for(int i = 0; i < (int)contour.size(); i++) {
CvPoint cp = {contour[i].x, contour[i].y};
cvSeqPush(contourPoints, &cp);
}
//Now, we do the same thing with the hull index
int count = (int) hull.size();
//int hullK[count];
int* hullK = (int*) malloc(count*sizeof(int));
for(int i = 0; i < count; i++) { hullK[i] = hull.at(i); }
CvMat hullMat = cvMat(1, count, CV_32SC1, hullK);
// calculate convexity defects
storage = cvCreateMemStorage(0);
defects = cvConvexityDefects(contourPoints, &hullMat, storage);
defectArray = (CvConvexityDefect*)malloc(sizeof(CvConvexityDefect)*defects->total);
cvCvtSeqToArray(defects, defectArray, CV_WHOLE_SEQ);
//printf("DefectArray %i %i\n",defectArray->end->x, defectArray->end->y);
//We store defects points in the convexDefects parameter.
for(int i = 0; i<defects->total; i++){
ConvexityDefect def;
def.start = Point(defectArray[i].start->x, defectArray[i].start->y);
def.end = Point(defectArray[i].end->x, defectArray[i].end->y);
def.depth_point = Point(defectArray[i].depth_point->x, defectArray[i].depth_point->y);
def.depth = defectArray[i].depth;
convexDefects.push_back(def);
}
// release memory
cvReleaseMemStorage(&contourStr);
cvReleaseMemStorage(&strDefects);
cvReleaseMemStorage(&storage);
}
}
int main(int argc, char** argv)
{
// initialize the kinect
sensor = new SkeletonSensor();
sensor->initialize();
sensor->setPointModeToProjective();
Mat depthRaw(YRES, XRES, CV_16UC1);
Mat depthShow(YRES, XRES, CV_8UC1);
//Mat rightHand(ROI_OFFSET*2, ROI_OFFSET*2, CV_8UC1); // hand processing
// rectangle used to extract hand regions from depth map
Rect roi;
roi.width = ROI_OFFSET*2;
roi.height = ROI_OFFSET*2;
namedWindow("depthFrame", CV_WINDOW_AUTOSIZE);
namedWindow("handFrame", CV_WINDOW_AUTOSIZE);
int key = 0;
while(key != 27 && key != 'q')
{
sensor->waitForDeviceUpdateOnUser();
int handDepth;
if(sensor->getNumTrackedUsers() > 0)
{
Skeleton skel = sensor->getSkeleton(sensor->getUID(0));
SkeletonPoint rightHand = skel.rightHand;
if(rightHand.confidence == 1.0)
{
handDepth = rightHand.z * (DEPTH_SCALE_FACTOR);
if(!handApproachingDisplayPerimeter(rightHand.x, rightHand.y))
{
roi.x = rightHand.x - ROI_OFFSET;
roi.y = rightHand.y - ROI_OFFSET;
//printf("Hand depth = %d\n", handDepth);
}
}
}
else
handDepth = -1;
// update 16 bit depth matrix
memcpy(depthRaw.data, sensor->getDepthData(), XRES*YRES*2);
depthRaw.convertTo(depthShow, CV_8U, DEPTH_SCALE_FACTOR);
// extract hand from image
Mat rightHandCpy(depthShow, roi);
Mat rightHand = rightHandCpy.clone();
// binary threshold
if(handDepth != -1)
rightHand = (rightHand > (handDepth - BIN_THRESH_OFFSET)) & (rightHand < (handDepth + BIN_THRESH_OFFSET));
// last pre-filtering step, apply median blur
medianBlur(rightHand, rightHand, MEDIAN_BLUR_K);
// create debug image of thresholded hand and cvt to RGB so hints show
Mat rightHandDebug = rightHand.clone();
cvtColor(rightHandDebug, rightHandDebug, CV_GRAY2RGB);
std::vector< std::vector<Point> > contours;
findContours(rightHand, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
if (contours.size()) {
for (int i = 0; i < contours.size(); i++) {
vector<Point> contour = contours[i];
Mat contourMat = Mat(contour);
double cArea = contourArea(contourMat);
if(cArea > 2000) // likely the hand
{
Scalar center = mean(contourMat);
Point centerPoint = Point(center.val[0], center.val[1]);
// approximate the contour by a simple curve
vector<Point> approxCurve;
approxPolyDP(contourMat, approxCurve, 10, true);
vector< vector<Point> > debugContourV;
debugContourV.push_back(approxCurve);
drawContours(rightHandDebug, debugContourV, 0, Scalar(0, 128, 0), 3);
vector<int> hull;
convexHull(Mat(approxCurve), hull, false, false);
// draw the hull points
for(int j = 0; j < hull.size(); j++)
{
int index = hull[j];
circle(rightHandDebug, approxCurve[index], 3, Scalar(0,128,200), 2);
}
//Convexity Defects Processing - TODO Later
vector<ConvexityDefect> convexDefects;
findConvexityDefects(approxCurve, hull, convexDefects);
printf("Number of defects: %d.\n", (int) convexDefects.size());
for(int j = 0; j < convexDefects.size(); j++)
{
circle(rightHandDebug, convexDefects[j].depth_point, 3, Scalar(128,155,200), 2);
}
// assemble point set of convex hull
vector<Point> hullPoints;
for(int k = 0; k < hull.size(); k++)
{
int curveIndex = hull[k];
Point p = approxCurve[curveIndex];
hullPoints.push_back(p);
}
// area of hull and curve
double hullArea = contourArea(Mat(hullPoints));
double curveArea = contourArea(Mat(approxCurve));
double handRatio = curveArea/hullArea;
//printf("Area of approxContour: %f\n", curveArea);
//printf("Area of convexHull: %f\n", hullArea);
// hand is grasping
if(handRatio > 0.8)
circle(rightHandDebug, centerPoint, 5, Scalar(0,255,0), 5);
else
circle(rightHandDebug, centerPoint, 5, Scalar(0,0,255), 5);
}
}
}
resize(rightHandDebug, rightHandDebug, Size(), 3, 3);
imshow("depthFrame", depthShow);
imshow("handFrame", rightHandDebug);
key = waitKey(10);
}
delete sensor;
return 0;
}