forked from Barry-Jay/lambdaSF
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLamSF_Substitution.v
538 lines (463 loc) · 16.1 KB
/
LamSF_Substitution.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
(**********************************************************************)
(* This program is free software; you can redistribute it and/or *)
(* modify it under the terms of the GNU Lesser General Public License *)
(* as published by the Free Software Foundation; either version 2.1 *)
(* of the License, or (at your option) any later version. *)
(* *)
(* This program is distributed in the hope that it will be useful, *)
(* but WITHOUT ANY WARRANTY; without even the implied warranty of *)
(* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *)
(* GNU General Public License for more details. *)
(* *)
(* You should have received a copy of the GNU Lesser General Public *)
(* License along with this program; if not, write to the Free *)
(* Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA *)
(* 02110-1301 USA *)
(**********************************************************************)
(**********************************************************************)
(* Intensional Lambda Calculus *)
(* *)
(* is implemented in Coq by adapting the implementation of *)
(* Lambda Calculus from Project Coq *)
(* 2015 *)
(**********************************************************************)
(**********************************************************************)
(* LamSF_Substitution.v *)
(* *)
(* adapted from Substitution.v for Lambda Calculus *)
(* *)
(* Barry Jay *)
(* *)
(**********************************************************************)
Require Import Arith.
Require Import Test.
Require Import General.
Require Import LamSF_Terms.
Require Import LamSF_Substitution_term.
Require Import LamSF_Redexes.
Require Import Omega.
(****************************)
(* Substitution of redexes *)
(****************************)
(* Similar to lift_rec of Terms *)
Fixpoint lift_rec_r (L : redexes) : nat -> nat -> redexes :=
fun k n : nat =>
match L with
| Var i => Var (relocate i k n)
| Opp o => Opp o
| Ap b M N => Ap b (lift_rec_r M k n) (lift_rec_r N k n)
| Fun M => Fun (lift_rec_r M (S k) n)
end.
Definition lift_r (n : nat) (N : redexes) := lift_rec_r N 0 n.
Definition insert_Var (N : redexes) (i k : nat) :=
match compare k i with
(* k<i *) | inleft (left _) => Var (pred i)
(* k=i *) | inleft _ => lift_r k N
(* k>i *) | _ => Var i
end.
(* Similar to subst_rec of Terms *)
Fixpoint subst_rec_r (L : redexes) : redexes -> nat -> redexes :=
fun (N : redexes) (k : nat) =>
match L with
| Var i => insert_Var N i k
| Opp o => Opp o
| Ap b M M' => Ap b (subst_rec_r M N k) (subst_rec_r M' N k)
| Fun M => Fun (subst_rec_r M N (S k))
end.
Definition subst_r (N M : redexes) := subst_rec_r M N 0.
(* Lifting lemmas *)
Lemma lift_le :
forall (n i k : nat), k <= i -> lift_rec_r (Var i) k n = Var (n + i).
Proof.
simpl in |- *; unfold relocate in |- *.
intros; elim (test k i); intro P; trivial with arith.
absurd (k > i); trivial with arith.
apply le_not_gt; trivial with arith.
Qed.
Lemma lift1 :
forall (U : redexes) (j i k : nat),
lift_rec_r (lift_rec_r U i j) (j + i) k = lift_rec_r U i (j + k).
Proof.
simple induction U; split_all; try (case b); split_all.
unfold relocate; elim (test i n); split_all.
elim (test (j + i) (j + n)); split_all.
elim plus_permute; elim plus_assoc; trivial with arith.
noway.
elim (test (j + i) n); simpl in |- *; intros; trivial with arith.
noway.
replace (S(j+i)) with (j+ S i) by omega.
rewrite H. auto.
Qed.
Lemma lift_lift_rec :
forall (U : redexes) (k p n i : nat),
i <= n ->
lift_rec_r (lift_rec_r U i p) (p + n) k = lift_rec_r (lift_rec_r U n k) i p.
Proof.
simple induction U; simpl in |- *; intros; try (case b); split_all.
(* Var *)
unfold relocate in |- *.
elim (test n0 n); elim (test i n); simpl in |- *.
elim (test (p + n0) (p + n)); elim (test i (k + n)); simpl in |- *; intros.
rewrite plus_permute; trivial with arith.
absurd (i > n); auto with arith.
apply gt_le_trans with (k + n); trivial with arith.
absurd (n0 > n); auto with arith.
apply plus_gt_reg_l with p; trivial with arith.
absurd (n0 > n); auto with arith.
apply plus_gt_reg_l with p; trivial with arith.
intros; absurd (i > n); trivial with arith.
apply le_not_gt; apply le_trans with n0; trivial with arith.
intros; elim (test (p + n0) (p + n)); simpl in |- *; intros;
trivial with arith.
absurd (n0 > n); trivial with arith.
apply le_not_gt; apply (fun p n m : nat => plus_le_reg_l n m p) with p;
trivial with arith.
intros; elim (test (p + n0) n); simpl in |- *; intros; trivial with arith.
absurd (n0 > n); trivial with arith.
apply le_not_gt; apply le_trans with (p + n0); trivial with arith.
(* Ap *)
rewrite H; trivial with arith.
rewrite H0; trivial with arith.
rewrite H; trivial with arith.
rewrite H0; trivial with arith.
(* Fun *)
replace (S(p + n)) with (p + S n) by omega.
rewrite H; auto. omega.
Qed.
Lemma lift_lift :
forall (U : redexes) (k p n : nat),
lift_rec_r (lift_r p U) (p + n) k = lift_r p (lift_rec_r U n k).
Proof.
unfold lift_r in |- *; intros; apply lift_lift_rec; trivial with arith.
Qed.
(*
Lemma liftrecO : forall (U : redexes) (n : nat), lift_rec_r U n 0 = U.
Proof.
simple induction U; split_all; unfold relocate; elim (test n0 n); split_all.
Qed.
Lemma liftO : forall U : redexes, lift_r 0 U = U.
Proof.
unfold lift_r in |- *; intro U; apply liftrecO.
Qed.
*)
Lemma lift_rec_lift_rec :
forall (U : redexes) (n p k i : nat),
k <= i + n ->
i <= k -> lift_rec_r (lift_rec_r U i n) k p = lift_rec_r U i (p + n).
Proof.
simple induction U; simpl in |- *; intros; split_all.
(* Var *)
unfold relocate in |- *; elim (test i n); intro P.
elim (test k (n0 + n)); intro Q.
rewrite plus_assoc_reverse; trivial with arith.
absurd (k > n0 + n); trivial with arith.
apply le_not_gt; apply le_trans with (i + n0); trivial with arith.
replace (i + n0) with (n0 + i); auto with arith; apply plus_le_compat_l;
trivial with arith.
elim (test k n); intro Q; trivial with arith.
absurd (i > k).
apply le_not_gt; trivial with arith.
apply gt_le_trans with n; trivial with arith.
(* Ap *)
rewrite H; trivial with arith; rewrite H0; trivial with arith.
(* Fun *)
rewrite H; trivial with arith; try omega.
Qed.
Lemma lift_rec_lift :
forall (U : redexes) (n p k i : nat),
k <= n -> lift_rec_r (lift_r n U) k p = lift_r (p + n) U.
Proof.
unfold lift_r in |- *; intros; rewrite lift_rec_lift_rec; trivial with arith.
Qed.
(* The three cases of substitution of U for (Var n) *)
Lemma subst_eq :
forall (M U : redexes) (n : nat),
subst_rec_r (Var n) U n = lift_r n U.
Proof.
simpl in |- *; unfold insert_Var in |- *.
intros; elim (compare n n); intro P.
elim P; intro Q; simpl in |- *; trivial with arith.
absurd (n > n); trivial with arith.
absurd (n > n); trivial with arith.
Qed.
Lemma subst_gt :
forall (M U : redexes) (n p : nat),
n > p -> subst_rec_r (Var n) U p = Var (pred n).
Proof.
simpl in |- *; unfold insert_Var in |- *.
intros; elim (compare p n); intro P.
elim P; intro Q; trivial with arith.
absurd (n > p); trivial with arith; rewrite Q; trivial with arith.
absurd (n > p); auto with arith.
Qed.
Lemma subst_lt :
forall (U : redexes) (n p : nat), p > n -> subst_rec_r (Var n) U p = Var n.
Proof.
simpl in |- *; unfold insert_Var in |- *.
intros; elim (compare p n); intro P; trivial with arith.
absurd (p > n); trivial with arith; elim P; intro Q; auto with arith.
rewrite Q; trivial with arith.
Qed.
(* Substitution lemma *)
Lemma lift_rec_subst_rec :
forall (V U : redexes) (k p n : nat),
lift_rec_r (subst_rec_r V U p) (p + n) k =
subst_rec_r (lift_rec_r V (S (p + n)) k) (lift_rec_r U n k) p.
Proof.
simple induction V; split_all.
(* 2 Fun *)
2: replace (S(p + n)) with (S p + n) by omega; rewrite H; auto.
(* 1 Var *)
unfold insert_Var, relocate in |- *.
elim (compare p n); intro P.
(* 1.1 P : {(gt n p)}+{p=n} *)
elim P; intro P1.
(* 1.1.1 P1 : (gt n p) *)
elim (test (S (p + n0)) n); intro Q.
(* 1.1.1.1 Q : (le (S (plus p n0)) n) *)
elim (compare p (k + n)); intro R.
(* 1.1.1.1.1 R : {(lt p (plus k n))}+{p=(plus k n)} *)
elim R; intro R1; simpl in |- *.
(* 1.1.1.1.1.1 R1 : (lt p (plus k n)) *)
unfold relocate in |- *.
elim (test (p + n0) (pred n)); intro S.
assert(k+ pred n = pred (k+n)) by omega.
rewrite H; auto.
noway.
noway.
noway.
elim (compare p n); intro R.
(* 1.1.1.2.1 R : {(lt p n)}+{p=n} *)
elim R; intro R1.
simpl.
unfold relocate.
(* 1.1.1.2.1.1 R1 : (lt p n) *)
elim (test (p + n0) (pred n)); intro C.
noway.
auto.
noway.
noway.
elim (test (S (p + n0)) n); intro Q.
(* 1.1.2.1 Q : (le (S (plus n n0)) n) *)
noway.
subst.
(* 1.1.2.2 Q : (gt (S (plus n n0)) n) *)
elim (compare n n); intro R.
(* 1.1.2.2.1 R : {(lt n n)}+{n=n} *)
elim R; intro R1.
noway.
rewrite lift_lift; trivial with arith.
noway.
(* 1.2 P : (gt p n) *)
elim (test (S (p + n0)) n); intro Q.
(* 1.2.1 Q : (le (S (plus p n0)) n) *)
noway.
elim (compare p n); intro R.
(* 1.2.2.1 R : {(lt p n)}+{p=n} *)
elim R; intro R1; try noway.
simpl.
unfold relocate.
elim(test (p+n0) n); split_all; try noway.
Qed.
Lemma lift_subst :
forall (U V : redexes) (k n : nat),
lift_rec_r (subst_r U V) n k =
subst_r (lift_rec_r U n k) (lift_rec_r V (S n) k).
Proof.
unfold subst_r in |- *; intros.
replace (S n) with (S (0 + n)).
elim lift_rec_subst_rec; trivial with arith.
simpl in |- *; trivial with arith.
Qed.
Lemma subst_rec_lift_rec1 :
forall (U V : redexes) (n p k : nat),
k <= n ->
subst_rec_r (lift_rec_r U k p) V (p + n) =
lift_rec_r (subst_rec_r U V n) k p.
Proof.
simple induction U; intros; simpl in |- *; split_all.
(* Var *)
unfold relocate.
elim(test k n); split_all; try noway.
unfold insert_Var.
elim(compare (p+n0) (p+n)); elim(compare n0 n); split_all; try noway.
elim a1; split_all; try noway.
elim a0; split_all; try noway.
unfold relocate.
elim(test k (pred n)); split_all; try noway.
assert(pred (p+n) = p + pred n) by omega.
rewrite H0; split_all.
elim a0; split_all; try noway.
rewrite lift_rec_lift; split_all.
elim a0; split_all; try noway.
elim a0; split_all; try noway.
unfold relocate.
elim(test k n); split_all; try noway.
unfold insert_Var.
elim(compare n0 n); split_all; try noway.
elim a; split_all; try noway.
elim(compare (p+n0) n); split_all; try noway.
elim a; split_all; try noway.
unfold relocate.
elim(test k n); split_all; try noway.
rewrite H; split_all. rewrite H0; split_all.
replace (S(p + n)) with (p + (S n)) by omega.
rewrite H; auto; try omega.
Qed.
Lemma subst_rec_lift1 :
forall (U V : redexes) (n p : nat),
subst_rec_r (lift_r p U) V (p + n) = lift_r p (subst_rec_r U V n).
Proof.
unfold lift_r in |- *; intros; rewrite subst_rec_lift_rec1;
trivial with arith.
Qed.
Lemma subst_rec_lift_rec :
forall (U V : redexes) (p q n : nat),
q <= p + n ->
n <= q -> subst_rec_r (lift_rec_r U n (S p)) V q = lift_rec_r U n p.
Proof.
simple induction U; intros; simpl in |- *; try (case b); split_all.
unfold insert_Var, relocate in |- *; simpl in |- *.
elim (test n0 n); intro P.
(* 1 P : (le n0 n) *)
elim (compare q (S (p + n))); intro Q; try noway.
(* 1.1 Q : {(lt q (S (plus p n)))}+{q=(S (plus p n))} *)
elim Q; intro Q1; simpl in |- *; trivial with arith; try noway.
elim (compare q n); intro Q; trivial with arith; try noway.
(* 2.1 Q : {(lt n q)}+{q=n} *)
elim Q; intro Q1; simpl in |- *; trivial with arith; try noway.
rewrite H; split_all.
rewrite H0; split_all.
rewrite H; split_all.
rewrite H0; split_all.
rewrite H; split_all; try omega.
Qed.
Lemma subst_rec_lift :
forall (U V : redexes) (p q : nat),
q <= p -> subst_rec_r (lift_r (S p) U) V q = lift_r p U.
Proof.
unfold lift_r in |- *; intros; rewrite subst_rec_lift_rec; trivial with arith.
elim plus_n_O; trivial with arith.
Qed.
(* subst_rec_subst_rec *)
Lemma subst_rec_subst_rec :
forall (V U W : redexes) (n p : nat),
subst_rec_r (subst_rec_r V U p) W (p + n) =
subst_rec_r (subst_rec_r V W (S (p + n))) (subst_rec_r U W n) p.
Proof.
simple induction V; split_all.
2: replace (S(p+n)) with (S p+n) by omega; rewrite H; split_all.
unfold insert_Var in |- *.
elim (compare p n); intro C.
(* 1.1 C : {(lt p n)}+{p=n} *)
elim C; intro D.
(* 1.1.1 D : (lt p n) *)
elim (compare (S (p + n0)) n); intro P; try noway.
(* 1.1.1.1 P : {(lt (S (plus p i)) n)}+{(S (plus p i))=n} *)
elim P; intro P1; try noway.
simpl.
unfold insert_Var.
elim(compare (p+n0) (pred n)); split_all.
elim a; split_all; try noway.
elim(compare p (pred n)); split_all; try noway.
elim a1; split_all; try noway.
elim(compare p (pred n)); split_all; try noway.
simpl.
unfold insert_Var.
elim(compare (p+n0) (pred n)); split_all.
elim a; split_all; try noway.
rewrite subst_rec_lift. auto.
omega.
noway.
simpl.
unfold insert_Var.
elim(compare (p+n0) (pred n)); split_all.
elim a; split_all; try noway.
elim(compare p n); split_all; try noway.
elim a; split_all; try noway.
elim(compare (S(p+n0)) n); split_all; try noway.
elim a; split_all; try noway.
unfold insert_Var.
elim(compare p n); split_all.
elim a; split_all; try noway.
rewrite subst_rec_lift1. auto.
noway.
elim(compare (S (p + n0)) n); split_all; try noway.
elim a; split_all; try noway.
unfold insert_Var.
elim(compare (p+n0) n); split_all; try noway.
elim a; split_all; try noway.
elim(compare p n); split_all; try noway.
elim a; split_all; try noway.
Qed.
Lemma subst_rec_subst_0 :
forall (U V W : redexes) (n : nat),
subst_rec_r (subst_rec_r V U 0) W n =
subst_rec_r (subst_rec_r V W (S n)) (subst_rec_r U W n) 0.
Proof.
intros; pattern n at 1 3 in |- *.
replace n with (0 + n).
rewrite (subst_rec_subst_rec V U W n 0); trivial with arith.
simpl in |- *; trivial with arith.
Qed.
(**************************)
(* The Substitution Lemma *)
(**************************)
Lemma substitution :
forall (U V W : redexes) (n : nat),
subst_rec_r (subst_r U V) W n =
subst_r (subst_rec_r U W n) (subst_rec_r V W (S n)).
Proof.
unfold subst_r in |- *; intros; apply subst_rec_subst_0; trivial with arith.
Qed.
(* Substitution preserves compatibility *)
Lemma lift_rec_preserve_comp :
forall U1 V1 : redexes,
comp U1 V1 -> forall n m : nat, comp (lift_rec_r U1 m n) (lift_rec_r V1 m n).
Proof. simple induction 1; simpl in |- *; intro b; case b; split_all. Qed.
Lemma subst_rec_preserve_comp :
forall U1 V1 : redexes, comp U1 V1 ->
forall U2 V2, comp U2 V2 ->
forall n : nat, comp (subst_rec_r U1 U2 n) (subst_rec_r V1 V2 n).
Proof.
simple induction 1; simpl in |- *; auto with arith.
split_all; unfold insert_Var.
elim (compare n i); split_all.
elim a; split_all.
unfold lift_r.
eapply2 lift_rec_preserve_comp.
Qed.
Lemma subst_preserve_comp :
forall U1 V1 U2 V2 : redexes,
comp U1 V1 -> comp U2 V2 -> comp (subst_r U2 U1) (subst_r V2 V1).
Proof.
intros; unfold subst_r in |- *; apply subst_rec_preserve_comp;
trivial with arith.
Qed.
(* Substitution preserves regularity *)
Lemma lift_rec_preserve_regular :
forall U : redexes,
regular U -> forall n m : nat, regular (lift_rec_r U m n).
Proof.
simple induction U; simpl in |- *; auto with arith; split_all.
gen2_case H H1 b.
gen2_case H H1 r.
Qed.
Lemma subst_rec_preserve_regular :
forall U V : redexes,
regular U -> regular V -> forall n : nat, regular (subst_rec_r U V n).
Proof.
intro U; elim U; simpl in |- *; auto with arith; split_all.
unfold insert_Var in |- *; elim (compare n0 n); split_all.
elim a; split_all.
unfold lift_r in |- *; apply lift_rec_preserve_regular;
trivial with arith.
gen_case H1 b.
gen2_case H H1 r.
Qed.
Lemma subst_preserve_regular :
forall U V : redexes, regular U -> regular V -> regular (subst_r U V).
Proof.
unfold subst_r in |- *; intros; apply subst_rec_preserve_regular;
trivial with arith.
Qed.