Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Enable WFA across a portfolio of assets #125

Open
jaymon0703 opened this issue Aug 25, 2020 · 0 comments
Open

Enable WFA across a portfolio of assets #125

jaymon0703 opened this issue Aug 25, 2020 · 0 comments

Comments

@jaymon0703
Copy link
Collaborator

jaymon0703 commented Aug 25, 2020

Description

WFA does not work as expected for portfolios with more than one symbol.

Expected behavior

Perform parameter optimization and WFA across a portfolio of assets based on their own unique optimal paramater combinations.

Minimal, reproducible example

require(quantstrat)
suppressWarnings(rm("order_book.macd",pos=.strategy))
suppressWarnings(rm("account.macd","portfolio.macd",pos=.blotter))
suppressWarnings(rm("account.st","portfolio.st","stock.str","stratMACD","startDate","initEq",'start_t','end_t'))

#correct for TZ issues if they crop up
oldtz<-Sys.getenv('TZ')
if(oldtz=='') {
  Sys.setenv(TZ="GMT")
}

stock.str=c('AAPL','MSFT') # what are we trying it on

#MA parameters for MACD
fastMA = 12 
slowMA = 26 
signalMA = 9
maType="EMA"

currency('USD')
stock(stock.str,currency='USD',multiplier=1)

startDate='2006-12-31'
initEq=1000000
portfolio.st='macd'
account.st='macd'

initPortf(portfolio.st,symbols=stock.str)
initAcct(account.st,portfolios=portfolio.st)
initOrders(portfolio=portfolio.st)

strat.st<-portfolio.st
# define the strategy
strategy(strat.st, store=TRUE)

#one indicator
add.indicator(strat.st, name = "MACD", 
              arguments = list(x=quote(Cl(mktdata)),
                               nFast=fastMA, 
                               nSlow=slowMA),
              label='_' 
)

#two signals
add.signal(strat.st,name="sigThreshold",
           arguments = list(column="signal._",
                            relationship="gt",
                            threshold=0,
                            cross=TRUE),
           label="signal.gt.zero"
)

add.signal(strat.st,name="sigThreshold",
           arguments = list(column="signal._",
                            relationship="lt",
                            threshold=0,
                            cross=TRUE),
           label="signal.lt.zero"
)

####
# add rules

# entry
add.rule(strat.st,name='ruleSignal', 
         arguments = list(sigcol="signal.gt.zero",
                          sigval=TRUE, 
                          orderqty=100, 
                          ordertype='market', 
                          orderside='long', 
                          threshold=NULL),
         type='enter',
         label='enter',
         storefun=FALSE
)

# exit
add.rule(strat.st,name='ruleSignal', 
         arguments = list(sigcol="signal.lt.zero",
                          sigval=TRUE, 
                          orderqty='all', 
                          ordertype='market', 
                          orderside='long', 
                          threshold=NULL,
                          orderset='exit2'),
         type='exit',
         label='exit'
)

#end rules
####

getSymbols(stock.str,from=startDate, to='2014-06-01', src='yahoo')
start_t<-Sys.time()
out<-applyStrategy(strat.st , portfolios=portfolio.st,parameters=list(nFast=fastMA, nSlow=slowMA, nSig=signalMA,maType=maType),verbose=TRUE)
end_t<-Sys.time()
print(end_t-start_t)

start_t<-Sys.time()
updatePortf(Portfolio=portfolio.st,Dates=paste('::',as.Date(Sys.time()),sep=''))
end_t<-Sys.time()
print("trade blotter portfolio update:")
print(end_t-start_t)

# set tz as it was before the demo
Sys.setenv(TZ=oldtz)


require(foreach,quietly=TRUE)
require(iterators)
require(quantstrat)

#retrieve the strategy from the environment, since the 'macd' strategy uses store=TRUE
strategy.st <- 'macd'

### Set up Parameter Values
.FastMA = (1:10)
.SlowMA = (5:25)
.nsamples = 15 #for random parameter sampling, less important if you're using doParallel or doMC


### MA paramset

add.distribution(strategy.st,
                 paramset.label = 'MA',
                 component.type = 'indicator',
                 component.label = '_', #this is the label given to the indicator in the strat
                 variable = list(n = .FastMA),
                 label = 'nFAST'
)

add.distribution(strategy.st,
                 paramset.label = 'MA',
                 component.type = 'indicator',
                 component.label = '_', #this is the label given to the indicator in the strat
                 variable = list(n = .SlowMA),
                 label = 'nSLOW'
)

add.distribution.constraint(strategy.st,
                            paramset.label = 'MA',
                            distribution.label.1 = 'nFAST',
                            distribution.label.2 = 'nSLOW',
                            operator = '<',
                            label = 'MA'
)


###
wfportfolio <- "wf.macd"
initPortf(wfportfolio,symbols=stock.str)
initOrders(portfolio=wfportfolio)
wf_start <- Sys.time()
registerDoSEQ() # for debugging
wfresults <- walk.forward(strategy.st, 
                          paramset.label = 'MA', 
                          portfolio.st = wfportfolio, 
                          account.st = account.st, 
                          nsamples = .nsamples,
                          period = 'months',
                          k.training = 36,
                          k.testing = 12,
                          verbose =TRUE,
                          anchored = TRUE,
                          include.insamples = TRUE,
                          savewf = FALSE
)
wf_end <-Sys.time()

cat("\n Running the walk forward search: \n ")
print(wf_end-wf_start)
cat(" Total trials:",.strategy$macd$trials,"\n")

wfa.stats <- wfresults$tradeStats

print(wfa.stats)

chart.forward(wfresults)

# resulting stats are identical for both symbols, AAPL and MSFT

Session Info

R version 4.0.2 (2020-06-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.1 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8       
 [4] LC_COLLATE=en_US.UTF-8     LC_MONETARY=en_US.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C              
[10] LC_TELEPHONE=C             LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] graphics  grDevices utils     datasets  stats     methods   base     

other attached packages:
 [1] iterators_1.0.12           quantstrat_0.16.8          foreach_1.5.0             
 [4] blotter_0.15.0             PerformanceAnalytics_2.0.4 FinancialInstrument_1.3.1 
 [7] quantmod_0.4.17            TTR_0.23-6                 xts_0.12-0                
[10] zoo_1.8-8                 

loaded via a namespace (and not attached):
[1] quadprog_1.5-8   lattice_0.20-41  codetools_0.2-16 MASS_7.3-51.6    grid_4.0.2      
[6] curl_4.3         boot_1.3-25      tools_4.0.2      compiler_4.0.2  
@jaymon0703 jaymon0703 self-assigned this Aug 25, 2020
jaymon0703 added a commit that referenced this issue Aug 25, 2020
apply.paramset and applyStrategy will now apply the appropriate mktdata related to each symbol in the portfolio, as opposed to just the first.

See #125
jaymon0703 added a commit that referenced this issue Aug 25, 2020
Adding dailyStats to the results output in apply.paramset which is called by walk.forward. When the number of symbols in the portfolio is >1, we will select dailyStats as the objective function.

TODO: make it more conditional on alternate user-specified objective functions.

See #125
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

1 participant