-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathMPU9250.cpp
590 lines (499 loc) · 22.8 KB
/
MPU9250.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
/**
* Invensense MPU-9250 library using the SPI interface
*
* Copyright (C) 2015 Brian Chen
*
* Open source under the MIT License. See LICENSE.txt.
*/
#include "SPI.h"
#include "MPU9250.h"
unsigned int MPU9250::WriteReg( uint8_t WriteAddr, uint8_t WriteData )
{
unsigned int temp_val;
select();
SPI.transfer(WriteAddr);
temp_val=SPI.transfer(WriteData);
deselect();
//delayMicroseconds(50);
return temp_val;
}
unsigned int MPU9250::ReadReg( uint8_t WriteAddr, uint8_t WriteData )
{
return WriteReg(WriteAddr | READ_FLAG,WriteData);
}
void MPU9250::ReadRegs( uint8_t ReadAddr, uint8_t *ReadBuf, unsigned int Bytes )
{
unsigned int i = 0;
select();
SPI.transfer(ReadAddr | READ_FLAG);
for(i = 0; i < Bytes; i++)
ReadBuf[i] = SPI.transfer(0x00);
deselect();
//delayMicroseconds(50);
}
/* INITIALIZATION
* usage: call this function at startup, giving the sample rate divider (raging from 0 to 255) and
* low pass filter value; suitable values are:
* BITS_DLPF_CFG_256HZ_NOLPF2
* BITS_DLPF_CFG_188HZ
* BITS_DLPF_CFG_98HZ
* BITS_DLPF_CFG_42HZ
* BITS_DLPF_CFG_20HZ
* BITS_DLPF_CFG_10HZ
* BITS_DLPF_CFG_5HZ
* BITS_DLPF_CFG_2100HZ_NOLPF
* returns 1 if an error occurred
*/
#define MPU_InitRegNum 17
bool MPU9250::init(bool calib_gyro, bool calib_acc){
pinMode(my_cs, OUTPUT);
#ifdef CORE_TEENSY
digitalWriteFast(my_cs, HIGH);
#else
digitalWrite(my_cs, HIGH);
#endif
float temp[3];
if(calib_gyro && calib_acc){
calibrate(g_bias, a_bias);
}
else if(calib_gyro){
calibrate(g_bias, temp);
}
else if(calib_acc){
calibrate(temp, a_bias);
}
uint8_t i = 0;
uint8_t MPU_Init_Data[MPU_InitRegNum][2] = {
{BIT_H_RESET, MPUREG_PWR_MGMT_1}, // Reset Device
{0x01, MPUREG_PWR_MGMT_1}, // Clock Source
{0x00, MPUREG_PWR_MGMT_2}, // Enable Acc & Gyro
{my_low_pass_filter, MPUREG_CONFIG}, // Use DLPF set Gyroscope bandwidth 184Hz, temperature bandwidth 188Hz
{BITS_FS_250DPS, MPUREG_GYRO_CONFIG}, // +-250dps
{BITS_FS_2G, MPUREG_ACCEL_CONFIG}, // +-2G
{my_low_pass_filter_acc, MPUREG_ACCEL_CONFIG_2}, // Set Acc Data Rates, Enable Acc LPF , Bandwidth 184Hz
{0x12, MPUREG_INT_PIN_CFG}, //
//{0x40, MPUREG_I2C_MST_CTRL}, // I2C Speed 348 kHz
//{0x20, MPUREG_USER_CTRL}, // Enable AUX
{0x30, MPUREG_USER_CTRL}, // I2C Master mode and set I2C_IF_DIS to disable slave mode I2C bus
{0x0D, MPUREG_I2C_MST_CTRL}, // I2C configuration multi-master IIC 400KHz
{AK8963_I2C_ADDR, MPUREG_I2C_SLV0_ADDR}, // Set the I2C slave addres of AK8963 and set for write.
//{0x09, MPUREG_I2C_SLV4_CTRL},
//{0x81, MPUREG_I2C_MST_DELAY_CTRL}, // Enable I2C delay
{AK8963_CNTL2, MPUREG_I2C_SLV0_REG}, // I2C slave 0 register address from where to begin data transfer
{0x01, MPUREG_I2C_SLV0_DO}, // Reset AK8963
{0x81, MPUREG_I2C_SLV0_CTRL}, // Enable I2C and set 1 byte
{AK8963_CNTL1, MPUREG_I2C_SLV0_REG}, // I2C slave 0 register address from where to begin data transfer
#ifdef AK8963FASTMODE
{0x16, MPUREG_I2C_SLV0_DO}, // Register value to 100Hz continuous measurement in 16bit
#else
{0x12, MPUREG_I2C_SLV0_DO}, // Register value to 8Hz continuous measurement in 16bit
#endif
{0x81, MPUREG_I2C_SLV0_CTRL} //Enable I2C and set 1 byte
};
for(i = 0; i < MPU_InitRegNum; i++) {
WriteReg(MPU_Init_Data[i][1], MPU_Init_Data[i][0]);
delayMicroseconds(1000); // I2C must slow down the write speed, otherwise it won't work
}
set_acc_scale(BITS_FS_2G);
set_gyro_scale(BITS_FS_250DPS);
calib_mag(); // If experiencing problems here, just comment it out. Should still be somewhat functional.
return 0;
}
/* ACCELEROMETER SCALE
* usage: call this function at startup, after initialization, to set the right range for the
* accelerometers. Suitable ranges are:
* BITS_FS_2G
* BITS_FS_4G
* BITS_FS_8G
* BITS_FS_16G
* returns the range set (2,4,8 or 16)
*/
unsigned int MPU9250::set_acc_scale(int scale){
unsigned int temp_scale;
WriteReg(MPUREG_ACCEL_CONFIG, scale);
switch (scale){
case BITS_FS_2G:
acc_divider=16384;
break;
case BITS_FS_4G:
acc_divider=8192;
break;
case BITS_FS_8G:
acc_divider=4096;
break;
case BITS_FS_16G:
acc_divider=2048;
break;
}
temp_scale = WriteReg(MPUREG_ACCEL_CONFIG|READ_FLAG, 0x00);
switch (temp_scale){
case BITS_FS_2G:
temp_scale=2;
break;
case BITS_FS_4G:
temp_scale=4;
break;
case BITS_FS_8G:
temp_scale=8;
break;
case BITS_FS_16G:
temp_scale=16;
break;
}
return temp_scale;
}
/* GYROSCOPE SCALE
* usage: call this function at startup, after initialization, to set the right range for the
* gyroscopes. Suitable ranges are:
* BITS_FS_250DPS
* BITS_FS_500DPS
* BITS_FS_1000DPS
* BITS_FS_2000DPS
* returns the range set (250,500,1000 or 2000)
*/
unsigned int MPU9250::set_gyro_scale(int scale){
unsigned int temp_scale;
WriteReg(MPUREG_GYRO_CONFIG, scale);
switch (scale){
case BITS_FS_250DPS: gyro_divider = 131; break;
case BITS_FS_500DPS: gyro_divider = 65.5; break;
case BITS_FS_1000DPS: gyro_divider = 32.8; break;
case BITS_FS_2000DPS: gyro_divider = 16.4; break;
}
temp_scale = WriteReg(MPUREG_GYRO_CONFIG|READ_FLAG, 0x00);
switch (temp_scale){
case BITS_FS_250DPS: temp_scale = 250; break;
case BITS_FS_500DPS: temp_scale = 500; break;
case BITS_FS_1000DPS: temp_scale = 1000; break;
case BITS_FS_2000DPS: temp_scale = 2000; break;
}
return temp_scale;
}
/* WHO AM I?
* usage: call this function to know if SPI is working correctly. It checks the I2C address of the
* mpu9250 which should be 0x71
*/
unsigned int MPU9250::whoami(){
unsigned int response;
response = WriteReg(MPUREG_WHOAMI|READ_FLAG, 0x00);
return response;
}
/* READ ACCELEROMETER
* usage: call this function to read accelerometer data. Axis represents selected axis:
* 0 -> X axis
* 1 -> Y axis
* 2 -> Z axis
*/
void MPU9250::read_acc()
{
uint8_t response[6];
int16_t bit_data;
float data;
int i;
ReadRegs(MPUREG_ACCEL_XOUT_H,response,6);
for(i = 0; i < 3; i++) {
bit_data = ((int16_t)response[i*2]<<8)|response[i*2+1];
data = (float)bit_data;
accel_data[i] = data/acc_divider - a_bias[i];
}
}
/* READ GYROSCOPE
* usage: call this function to read gyroscope data. Axis represents selected axis:
* 0 -> X axis
* 1 -> Y axis
* 2 -> Z axis
*/
void MPU9250::read_gyro()
{
uint8_t response[6];
int16_t bit_data;
float data;
int i;
ReadRegs(MPUREG_GYRO_XOUT_H,response,6);
for(i = 0; i < 3; i++) {
bit_data = ((int16_t)response[i*2]<<8) | response[i*2+1];
data = (float)bit_data;
gyro_data[i] = data/gyro_divider - g_bias[i];
}
}
/* READ temperature
* usage: call this function to read temperature data.
* returns the value in °C
*/
void MPU9250::read_temp(){
uint8_t response[2];
int16_t bit_data;
float data;
ReadRegs(MPUREG_TEMP_OUT_H,response,2);
bit_data = ((int16_t)response[0]<<8)|response[1];
data = (float)bit_data;
temperature = (data/340)+36.53;
deselect();
}
/* READ ACCELEROMETER CALIBRATION
* usage: call this function to read accelerometer data. Axis represents selected axis:
* 0 -> X axis
* 1 -> Y axis
* 2 -> Z axis
* returns Factory Trim value
*/
void MPU9250::calib_acc()
{
uint8_t response[4];
int temp_scale;
//READ CURRENT ACC SCALE
temp_scale=WriteReg(MPUREG_ACCEL_CONFIG|READ_FLAG, 0x00);
set_acc_scale(BITS_FS_8G);
//ENABLE SELF TEST need modify
//temp_scale=WriteReg(MPUREG_ACCEL_CONFIG, 0x80>>axis);
ReadRegs(MPUREG_SELF_TEST_X,response,4);
calib_data[0] = ((response[0]&11100000)>>3) | ((response[3]&00110000)>>4);
calib_data[1] = ((response[1]&11100000)>>3) | ((response[3]&00001100)>>2);
calib_data[2] = ((response[2]&11100000)>>3) | ((response[3]&00000011));
set_acc_scale(temp_scale);
}
uint8_t MPU9250::AK8963_whoami(){
uint8_t response;
WriteReg(MPUREG_I2C_SLV0_ADDR,AK8963_I2C_ADDR|READ_FLAG); //Set the I2C slave addres of AK8963 and set for read.
WriteReg(MPUREG_I2C_SLV0_REG, AK8963_WIA); //I2C slave 0 register address from where to begin data transfer
WriteReg(MPUREG_I2C_SLV0_CTRL, 0x81); //Read 1 byte from the magnetometer
//WriteReg(MPUREG_I2C_SLV0_CTRL, 0x81); //Enable I2C and set bytes
delayMicroseconds(100);
response = WriteReg(MPUREG_EXT_SENS_DATA_00|READ_FLAG, 0x00); //Read I2C
//ReadRegs(MPUREG_EXT_SENS_DATA_00,response,1);
//response=WriteReg(MPUREG_I2C_SLV0_DO, 0x00); //Read I2C
return response;
}
void MPU9250::calib_mag(){
uint8_t response[3];
float data;
int i;
// Choose either 14-bit or 16-bit magnetometer resolution
//uint8_t MFS_14BITS = 0; // 0.6 mG per LSB
uint8_t MFS_16BITS =1; // 0.15 mG per LSB
// 2 for 8 Hz, 6 for 100 Hz continuous magnetometer data read
uint8_t M_8HZ = 0x02; // 8 Hz update
//uint8_t M_100HZ = 0x06; // 100 Hz continuous magnetometer
/* get the magnetometer calibration */
WriteReg(MPUREG_I2C_SLV0_ADDR,AK8963_I2C_ADDR|READ_FLAG); // Set the I2C slave addres of AK8963 and set for read.
WriteReg(MPUREG_I2C_SLV0_REG, AK8963_ASAX); // I2C slave 0 register address from where to begin data transfer
WriteReg(MPUREG_I2C_SLV0_CTRL, 0x83); // Read 3 bytes from the magnetometer
//WriteReg(MPUREG_I2C_SLV0_CTRL, 0x81); // Enable I2C and set bytes
delayMicroseconds(100000);
//response[0]=WriteReg(MPUREG_EXT_SENS_DATA_01|READ_FLAG, 0x00); //Read I2C
WriteReg(AK8963_CNTL1, 0x00); // set AK8963 to Power Down
delayMicroseconds(50000); // long wait between AK8963 mode changes
WriteReg(AK8963_CNTL1, 0x0F); // set AK8963 to FUSE ROM access
delayMicroseconds(50000); // long wait between AK8963 mode changes
ReadRegs(MPUREG_EXT_SENS_DATA_00,response,3);
//response=WriteReg(MPUREG_I2C_SLV0_DO, 0x00); // Read I2C
for(i = 0; i < 3; i++) {
data=response[i];
Magnetometer_ASA[i] = ((data-128)/256+1)*Magnetometer_Sensitivity_Scale_Factor;
}
WriteReg(AK8963_CNTL1, 0x00); // set AK8963 to Power Down
delayMicroseconds(50000);
// Configure the magnetometer for continuous read and highest resolution.
// Set bit 4 to 1 (0) to enable 16 (14) bit resolution in CNTL
// register, and enable continuous mode data acquisition (bits [3:0]),
// 0010 for 8 Hz and 0110 for 100 Hz sample rates.
WriteReg(AK8963_CNTL1, MFS_16BITS << 4 | M_8HZ); // Set magnetometer data resolution and sample ODR
delayMicroseconds(50000);
}
void MPU9250::read_mag(){
uint8_t response[7];
float data;
int i;
WriteReg(MPUREG_I2C_SLV0_ADDR,AK8963_I2C_ADDR|READ_FLAG); // Set the I2C slave addres of AK8963 and set for read.
WriteReg(MPUREG_I2C_SLV0_REG, AK8963_HXL); // I2C slave 0 register address from where to begin data transfer
WriteReg(MPUREG_I2C_SLV0_CTRL, 0x87); // Read 6 bytes from the magnetometer
// delayMicroseconds(1000);
ReadRegs(MPUREG_EXT_SENS_DATA_00,response,7);
// must start your read from AK8963A register 0x03 and read seven bytes so that upon read of ST2 register 0x09 the AK8963A will unlatch the data registers for the next measurement.
for(i = 0; i < 3; i++) {
mag_data_raw[i] = ((int16_t)response[i*2+1]<<8)|response[i*2];
data = (float)mag_data_raw[i];
mag_data[i] = data*Magnetometer_ASA[i];
}
}
uint8_t MPU9250::get_CNTL1(){
WriteReg(MPUREG_I2C_SLV0_ADDR,AK8963_I2C_ADDR|READ_FLAG); // Set the I2C slave addres of AK8963 and set for read.
WriteReg(MPUREG_I2C_SLV0_REG, AK8963_CNTL1); // I2C slave 0 register address from where to begin data transfer
WriteReg(MPUREG_I2C_SLV0_CTRL, 0x81); //Read 1 byte from the magnetometer
// delayMicroseconds(1000);
return WriteReg(MPUREG_EXT_SENS_DATA_00|READ_FLAG, 0x00); //Read I2C
}
void MPU9250::read_all(){
uint8_t response[21];
int16_t bit_data;
float data;
int i;
// Send I2C command at first
WriteReg(MPUREG_I2C_SLV0_ADDR,AK8963_I2C_ADDR|READ_FLAG); // Set the I2C slave addres of AK8963 and set for read.
WriteReg(MPUREG_I2C_SLV0_REG, AK8963_HXL); // I2C slave 0 register address from where to begin data transfer
WriteReg(MPUREG_I2C_SLV0_CTRL, 0x87); // Read 7 bytes from the magnetometer
// must start your read from AK8963A register 0x03 and read seven bytes so that upon read of ST2 register 0x09 the AK8963A will unlatch the data registers for the next measurement.
ReadRegs(MPUREG_ACCEL_XOUT_H,response,21);
// Get accelerometer value
for(i = 0; i < 3; i++) {
bit_data = ((int16_t)response[i*2]<<8) | response[i*2+1];
data = (float)bit_data;
accel_data[i] = data/acc_divider - a_bias[i];
}
// Get temperature
bit_data = ((int16_t)response[i*2]<<8) | response[i*2+1];
data = (float)bit_data;
temperature = ((data-21)/333.87)+21;
// Get gyroscope value
for(i=4; i < 7; i++) {
bit_data = ((int16_t)response[i*2]<<8) | response[i*2+1];
data = (float)bit_data;
gyro_data[i-4] = data/gyro_divider - g_bias[i-4];
}
// Get Magnetometer value
for(i=7; i < 10; i++) {
mag_data_raw[i-7] = ((int16_t)response[i*2+1]<<8) | response[i*2];
data = (float)mag_data_raw[i-7];
mag_data[i-7] = data * Magnetometer_ASA[i-7];
}
}
void MPU9250::calibrate(float *dest1, float *dest2){
uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data
uint16_t ii, packet_count, fifo_count;
int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0};
// reset device
WriteReg(MPUREG_PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device
delay(100);
// get stable time source; Auto select clock source to be PLL gyroscope reference if ready
// else use the internal oscillator, bits 2:0 = 001
WriteReg(MPUREG_PWR_MGMT_1, 0x01);
WriteReg(MPUREG_PWR_MGMT_2, 0x00);
delay(200);
// Configure device for bias calculation
WriteReg(MPUREG_INT_ENABLE, 0x00); // Disable all interrupts
WriteReg(MPUREG_FIFO_EN, 0x00); // Disable FIFO
WriteReg(MPUREG_PWR_MGMT_1, 0x00); // Turn on internal clock source
WriteReg(MPUREG_I2C_MST_CTRL, 0x00); // Disable I2C master
WriteReg(MPUREG_USER_CTRL, 0x00); // Disable FIFO and I2C master modes
WriteReg(MPUREG_USER_CTRL, 0x0C); // Reset FIFO and DMP
delay(15);
// Configure MPU6050 gyro and accelerometer for bias calculation
WriteReg(MPUREG_CONFIG, 0x01); // Set low-pass filter to 188 Hz
WriteReg(MPUREG_SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz
WriteReg(MPUREG_GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity
WriteReg(MPUREG_ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity
uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec
uint16_t accelsensitivity = 16384; // = 16384 LSB/g
// Configure FIFO to capture accelerometer and gyro data for bias calculation
WriteReg(MPUREG_USER_CTRL, 0x40); // Enable FIFO
WriteReg(MPUREG_FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 512 bytes in MPU-9150)
delay(40); // accumulate 40 samples in 40 milliseconds = 480 bytes
// At end of sample accumulation, turn off FIFO sensor read
WriteReg(MPUREG_FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO
ReadRegs(MPUREG_FIFO_COUNTH, data, 2); // read FIFO sample count
fifo_count = ((uint16_t)data[0] << 8) | data[1];
packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging
for (ii = 0; ii < packet_count; ii++) {
int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0};
ReadRegs(MPUREG_FIFO_R_W, data, 12); // read data for averaging
accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO
accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ;
accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ;
gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ;
gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ;
gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ;
accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases
accel_bias[1] += (int32_t) accel_temp[1];
accel_bias[2] += (int32_t) accel_temp[2];
gyro_bias[0] += (int32_t) gyro_temp[0];
gyro_bias[1] += (int32_t) gyro_temp[1];
gyro_bias[2] += (int32_t) gyro_temp[2];
}
accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases
accel_bias[1] /= (int32_t) packet_count;
accel_bias[2] /= (int32_t) packet_count;
gyro_bias[0] /= (int32_t) packet_count;
gyro_bias[1] /= (int32_t) packet_count;
gyro_bias[2] /= (int32_t) packet_count;
if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation
else {accel_bias[2] += (int32_t) accelsensitivity;}
// Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup
data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format
data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases
data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF;
data[3] = (-gyro_bias[1]/4) & 0xFF;
data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF;
data[5] = (-gyro_bias[2]/4) & 0xFF;
// Push gyro biases to hardware registers
WriteReg(MPUREG_XG_OFFS_USRH, data[0]);
WriteReg(MPUREG_XG_OFFS_USRL, data[1]);
WriteReg(MPUREG_YG_OFFS_USRH, data[2]);
WriteReg(MPUREG_YG_OFFS_USRL, data[3]);
WriteReg(MPUREG_ZG_OFFS_USRH, data[4]);
WriteReg(MPUREG_ZG_OFFS_USRL, data[5]);
// Output scaled gyro biases for display in the main program
dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity;
dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity;
dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity;
// Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain
// factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold
// non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature
// compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that
// the accelerometer biases calculated above must be divided by 8.
int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases
ReadRegs(MPUREG_XA_OFFSET_H, data, 2); // Read factory accelerometer trim values
accel_bias_reg[0] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
ReadRegs(MPUREG_YA_OFFSET_H, data, 2);
accel_bias_reg[1] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
ReadRegs(MPUREG_ZA_OFFSET_H, data, 2);
accel_bias_reg[2] = (int32_t) (((int16_t)data[0] << 8) | data[1]);
uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers
uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis
for(ii = 0; ii < 3; ii++) {
if((accel_bias_reg[ii] & mask)) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit
}
// Construct total accelerometer bias, including calculated average accelerometer bias from above
accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale)
accel_bias_reg[1] -= (accel_bias[1]/8);
accel_bias_reg[2] -= (accel_bias[2]/8);
data[0] = (accel_bias_reg[0] >> 8) & 0xFF;
data[1] = (accel_bias_reg[0]) & 0xFF;
data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers
data[2] = (accel_bias_reg[1] >> 8) & 0xFF;
data[3] = (accel_bias_reg[1]) & 0xFF;
data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers
data[4] = (accel_bias_reg[2] >> 8) & 0xFF;
data[5] = (accel_bias_reg[2]) & 0xFF;
data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers
// Apparently this is not working for the acceleration biases in the MPU-9250
// Are we handling the temperature correction bit properly?
// Push accelerometer biases to hardware registers
WriteReg(MPUREG_XA_OFFSET_H, data[0]);
WriteReg(MPUREG_XA_OFFSET_L, data[1]);
WriteReg(MPUREG_YA_OFFSET_H, data[2]);
WriteReg(MPUREG_YA_OFFSET_L, data[3]);
WriteReg(MPUREG_ZA_OFFSET_H, data[4]);
WriteReg(MPUREG_ZA_OFFSET_L, data[5]);
// Output scaled accelerometer biases for display in the main program
dest2[0] = (float)accel_bias[0]/(float)accelsensitivity;
dest2[1] = (float)accel_bias[1]/(float)accelsensitivity;
dest2[2] = (float)accel_bias[2]/(float)accelsensitivity;
}
void MPU9250::select() {
//Set CS low to start transmission (interrupts conversion)
SPI.beginTransaction(SPISettings(my_clock, MSBFIRST, SPI_MODE3));
#ifdef CORE_TEENSY
digitalWriteFast(my_cs, LOW);
#else
digitalWrite(my_cs, LOW);
#endif
}
void MPU9250::deselect() {
//Set CS high to stop transmission (restarts conversion)
#ifdef CORE_TEENSY
digitalWriteFast(my_cs, HIGH);
#else
digitalWrite(my_cs, HIGH);
#endif
SPI.endTransaction();
}