-
Notifications
You must be signed in to change notification settings - Fork 8
/
star_simulator.py
222 lines (189 loc) · 7.6 KB
/
star_simulator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from math import radians,degrees,sin,cos,tan,sqrt,atan,pi,exp
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import cv2
def create_M_matrix(ra,de,roll,method=2):
"""[summary]
Args:
ra ([int]): [right ascension of sensor center]
de ([int]): [declination of sensor center]
roll ([int]): [roll angle of star sensor]
method ([int]): [1 for method 1(Calculating each elements),2 for method 2(calculating rotation matrices)]
"""
if method == 1:
a1 = (sin(ra)*cos(roll)) - (cos(ra)*sin(de)*sin(roll))
a2 = -(sin(ra)*sin(roll)) - (cos(ra)*sin(de)*cos(roll))
a3 = -(cos(ra)*cos(de))
b1 = -(cos(ra)*cos(roll)) - (sin(ra)*sin(de)*sin(roll))
b2 = (cos(ra)*sin(roll)) - (sin(ra)*sin(de)*cos(roll))
b3 = -(sin(ra)*cos(de))
c1 = (cos(ra)*sin(roll))
c2 = (cos(ra)*cos(roll))
c3 = -(sin(de))
M = np.array([[a1,a2,a3],[b1,b2,b3],[c1,c2,c3]])
if method == 2:
ra_exp = ra - (pi/2)
de_exp = de + (pi/2)
M1 = np.array([[cos(ra_exp),-sin(ra_exp),0],[sin(ra_exp),cos(ra_exp),0],[0,0,1]])
M2 = np.array([[1,0,0],[0,cos(de_exp),-sin(de_exp)],[0,sin(de_exp),cos(de_exp)]])
M3 = np.array([[cos(roll),-sin(roll),0],[sin(roll),cos(roll),0],[0,0,1]])
first_second = np.matmul(M1,M2)
M = np.matmul(first_second,M3)
return M
def dir_vector_to_star_sensor(ra,de,M_transpose):
"""[Converts direction vector to star sensor coordinates]
Args:
ra ([int]): [right ascension of the object vector]
de ([int]): [desclination of the object vector]
M_transpose ([numpy array]): [rotation matrix from direction vector to star sensor transposed]
"""
print(ra,de,roll)
x_dir_vector = (cos(ra)*cos(de))
y_dir_vector = (sin(ra)*cos(de))
z_dir_vector = (sin(de))
dir_vector_matrix = np.array([[x_dir_vector],[y_dir_vector],[z_dir_vector]])
return M_transpose.dot(dir_vector_matrix)
def draw_star(x,y,magnitude,gaussian,background,ROI=5):
"""[Draws the star in the background image]
Args:
x ([int]): [The x coordinate in the image coordinate system (starting from left to right)]
y ([int]): [The y coordinate in the image coordinate system (starting from top to bottom)]
magnitude ([float]): [The stellar magnitude]
gaussian ([bool]): [True if using the gaussian function, false if using own function]
background ([numpy array]): [background image]
ROI ([int]): [The ROI of each star in pixel radius]
"""
if gaussian:
H = 2000*exp(-magnitude+1)
sigma = 5
for u in range(x-ROI,x+ROI+1):
for v in range(y-ROI,y+ROI+1):
dist = ((u-x)**2)+((v-y)**2)
diff = (dist)/(2*(sigma**2))
exponent_exp = 1/(exp(diff))
raw_intensity = int(round((H/(2*pi*(sigma**2)))*exponent_exp))
if u == x and v == y:
print(raw_intensity)
background[v,u] = raw_intensity
else:
mag = abs(magnitude-7) #1 until 9
radius = int(round((mag/9)*(5)+2))
color = int(round((mag/9)*(155)+100))
cv2.circle(background,(x,y),radius,color,thickness=-1)
return background
def add_noise(low,high,background):
"""[Adds noise to an image]
Args:
low ([int]): [lower threshold of the noise generated]
high ([int]): [maximum pixel value of the noise generated]
background ([numpy array]): [the image that is put noise on]
"""
row,col = np.shape(background)
background = background.astype(int)
noise = np.random.randint(low,high=high,size=(row,col))
noised_img = cv2.addWeighted(noise,0.1,background,0.9,0)
return noised_img
def displayImg(img,cmap=None):
"""[Displays image]
Args:
img ([numpy array]): [the pixel values in the form of numpy array]
cmap ([string], optional): [can be 'gray']. Defaults to None.
"""
fig = plt.figure(figsize=(12,10))
ax = fig.add_subplot(111)
ax.imshow(img,cmap)
plt.show()
#Right ascension, declination and roll input prompt from user
ra0 = input("Enter the right ascension angle in degrees:\n")
de0 = input("Enter the declination angle in degrees:\n")
roll0 = input("Enter the roll angle in degrees:\n")
ra = radians(float(ra0))
de = radians(float(de0))
roll = radians(float(roll0))
#length/pixel
myu = 1.12*(10**-6)
#Focal length prompt from user
f = 0.00304
#Star sensor pixel
l = 3280
w = 2464
print("Resolution length: {}".format(l))
print("Resolution width: {}".format(w))
#Star sensor FOV
FOVy = degrees(2*atan((myu*w/2)/f))
FOVx = degrees(2*atan((myu*l/2)/f))
print("FOV y: {}".format(FOVy))
print("FOV x: {}".format(FOVx))
#STEP 1: CONVERSION OF CELESTIAL COORDINATE SYSTEM TO STAR SENSOR COORDINATE SYSTEM
M = create_M_matrix(ra,de,roll)
print("*"*80)
print(f"Matrix M:\n {M}")
#Check if matrix is orthogonal
M_inverse = np.round(np.linalg.inv(M),decimals=5)
M_transpose = np.round(np.matrix.transpose(M),decimals=5)
print(f"Transpose: {M_transpose}")
orthogonal_check = []
for row in range(3):
for column in range(3):
element_check = M_inverse[row,column] == M_transpose[row,column]
orthogonal_check.append(element_check)
if all(orthogonal_check):
print("Matrix M is orthogonal...\nMoving on to next calculation\n")
else:
print("WARNING: Matrix M is not orthogonal")
#Search for image-able stars
print("Reading in CSV file...\n")
col_list = ["Star ID","RA","DE","Magnitude"]
star_catalogue = pd.read_csv('filtered_catalogue/Below_6.0_SAO.csv',usecols=col_list)
R = (sqrt((radians(FOVx)**2)+(radians(FOVy)**2))/2)
alpha_start = (ra - (R/cos(de)))
alpha_end = (ra + (R/cos(de)))
delta_start = (de - R)
delta_end = (de + R)
star_within_ra_range = (alpha_start <= star_catalogue['RA']) & (star_catalogue['RA'] <= alpha_end)
star_within_de_range = (delta_start <= star_catalogue['DE']) & (star_catalogue['DE'] <= delta_end)
star_in_ra = star_catalogue[star_within_ra_range]
star_in_de = star_catalogue[star_within_de_range]
star_in_de = star_in_de[['Star ID']].copy()
stars_within_FOV = pd.merge(star_in_ra,star_in_de,on="Star ID")
#Converting to star sensor coordinate system
ra_i = list(stars_within_FOV['RA'])
de_i = list(stars_within_FOV['DE'])
star_sensor_coordinates = []
for i in range(len(ra_i)):
coordinates = dir_vector_to_star_sensor(ra_i[i],de_i[i],M_transpose=M_transpose)
star_sensor_coordinates.append(coordinates)
#STEP 2: CONVERSION OF STAR SENSOR COORDINATE SYSTEM TO IMAGE COORDINATE SYSTEM
star_loc = []
for coord in star_sensor_coordinates:
x = f*(coord[0]/coord[2])
y = f*(coord[1]/coord[2])
star_loc.append((x,y))
pixel_per_length = 1/myu
magnitude_mv = list(stars_within_FOV['Magnitude'])
filtered_magnitude = []
#Rescaling to pixel sizes
pixel_coordinates = []
delete_indices = []
for i,(x1,y1) in enumerate(star_loc):
x1 = float(x1)
y1 = float(y1)
x1pixel = round(pixel_per_length*x1)
y1pixel = round(pixel_per_length*y1)
if abs(x1pixel) > l/2 or abs(y1pixel) > w/2:
delete_indices.append(i)
continue
pixel_coordinates.append((x1pixel,y1pixel))
filtered_magnitude.append(magnitude_mv[i])
background = np.zeros((w,l))
for i in range(len(filtered_magnitude)):
x = round(l/2 + pixel_coordinates[i][0])
y = round(w/2 - pixel_coordinates[i][1])
background = draw_star(x,y,filtered_magnitude[i],False,background)
#Adding noise
background = add_noise(0,50,background=background)
displayImg(background,cmap='gray')
file_name = f"ra{ra0}_de{de0}_roll{roll0}.jpg"
# cv2.imwrite("sample_images/"+file_name,background)
# cv2.imwrite(file_name,background)