|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "6460f518", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Basic BVAS demo using simulated data" |
| 9 | + ] |
| 10 | + }, |
| 11 | + { |
| 12 | + "cell_type": "code", |
| 13 | + "execution_count": 3, |
| 14 | + "id": "8137976b", |
| 15 | + "metadata": {}, |
| 16 | + "outputs": [], |
| 17 | + "source": [ |
| 18 | + "from bvas import simulate_data, BVASSelector" |
| 19 | + ] |
| 20 | + }, |
| 21 | + { |
| 22 | + "cell_type": "markdown", |
| 23 | + "id": "44e25a88", |
| 24 | + "metadata": {}, |
| 25 | + "source": [ |
| 26 | + "### Simulate data" |
| 27 | + ] |
| 28 | + }, |
| 29 | + { |
| 30 | + "cell_type": "code", |
| 31 | + "execution_count": 5, |
| 32 | + "id": "054dd652", |
| 33 | + "metadata": {}, |
| 34 | + "outputs": [], |
| 35 | + "source": [ |
| 36 | + "data = simulate_data(num_alleles=100, duration=26, num_variants=100, num_regions=10,\n", |
| 37 | + " k=0.1, seed=0, sampling_rate=10, strategy='global-median')" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "code", |
| 42 | + "execution_count": 35, |
| 43 | + "id": "8362f2f2", |
| 44 | + "metadata": {}, |
| 45 | + "outputs": [ |
| 46 | + { |
| 47 | + "name": "stdout", |
| 48 | + "output_type": "stream", |
| 49 | + "text": [ |
| 50 | + "Y torch.Size([100])\n", |
| 51 | + "Gamma torch.Size([100, 100])\n", |
| 52 | + "estimated_nu_eff (1,)\n", |
| 53 | + "true_betas torch.Size([100])\n", |
| 54 | + "\n", |
| 55 | + "Estimated effective population size: 490.3\n" |
| 56 | + ] |
| 57 | + } |
| 58 | + ], |
| 59 | + "source": [ |
| 60 | + "# inspect simulated data\n", |
| 61 | + "for k, v in data.items():\n", |
| 62 | + " print(k, v.shape)\n", |
| 63 | + " \n", |
| 64 | + "print(\"\\nEstimated effective population size: {:.1f}\".format(data['estimated_nu_eff'].item()))" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "cell_type": "markdown", |
| 69 | + "id": "6bee4bdc", |
| 70 | + "metadata": {}, |
| 71 | + "source": [ |
| 72 | + "### Instantiate BVASSelector object" |
| 73 | + ] |
| 74 | + }, |
| 75 | + { |
| 76 | + "cell_type": "code", |
| 77 | + "execution_count": 18, |
| 78 | + "id": "bdc84a1f", |
| 79 | + "metadata": {}, |
| 80 | + "outputs": [], |
| 81 | + "source": [ |
| 82 | + "# create names for our 100 alleles (the first 10 alleles are non-neutral in the simulation)\n", |
| 83 | + "mutations = [\"Causal{}\".format(k) for k in range(1, 11)] \n", |
| 84 | + "mutations += [\"Spurious{}\".format(k) for k in range(11, 101)] \n", |
| 85 | + "\n", |
| 86 | + "selector = BVASSelector(data['Y'], \n", |
| 87 | + " data['Gamma'], \n", |
| 88 | + " mutations, \n", |
| 89 | + " S=5.0,\n", |
| 90 | + " tau=100.0)" |
| 91 | + ] |
| 92 | + }, |
| 93 | + { |
| 94 | + "cell_type": "markdown", |
| 95 | + "id": "ccca6ebd", |
| 96 | + "metadata": {}, |
| 97 | + "source": [ |
| 98 | + "### Run BVAS MCMC-based inference" |
| 99 | + ] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "code", |
| 103 | + "execution_count": 19, |
| 104 | + "id": "08f1f267", |
| 105 | + "metadata": {}, |
| 106 | + "outputs": [ |
| 107 | + { |
| 108 | + "data": { |
| 109 | + "application/vnd.jupyter.widget-view+json": { |
| 110 | + "model_id": "b7a31fde7b0d46e4ad1a9a6ef8090a5c", |
| 111 | + "version_major": 2, |
| 112 | + "version_minor": 0 |
| 113 | + }, |
| 114 | + "text/plain": [ |
| 115 | + " 0%| | 0/1500 [00:00<?, ?it/s]" |
| 116 | + ] |
| 117 | + }, |
| 118 | + "metadata": {}, |
| 119 | + "output_type": "display_data" |
| 120 | + } |
| 121 | + ], |
| 122 | + "source": [ |
| 123 | + "selector.run(T=1000, T_burnin=500)" |
| 124 | + ] |
| 125 | + }, |
| 126 | + { |
| 127 | + "cell_type": "markdown", |
| 128 | + "id": "0c6ada0e", |
| 129 | + "metadata": {}, |
| 130 | + "source": [ |
| 131 | + "### Inspect results\n", |
| 132 | + "\n", |
| 133 | + "- We find that 8 of the 10 true causal alleles are assigned large PIPs\n", |
| 134 | + "- We find that 2 of the 10 true causal alleles are missed (i.e. those with small effect sizes, namely Causal1 and Causal6)\n", |
| 135 | + "- We find that no spurious alleles are assigned large PIPs\n", |
| 136 | + "- We see that the beta estimates are regularized somewhat towards zero" |
| 137 | + ] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "code", |
| 141 | + "execution_count": 36, |
| 142 | + "id": "68e34a56", |
| 143 | + "metadata": {}, |
| 144 | + "outputs": [ |
| 145 | + { |
| 146 | + "name": "stdout", |
| 147 | + "output_type": "stream", |
| 148 | + "text": [ |
| 149 | + " PIP Beta BetaStd Rank\n", |
| 150 | + "Causal4 0.999999 0.051166 0.006216 1\n", |
| 151 | + "Causal5 0.999999 0.066024 0.006334 2\n", |
| 152 | + "Causal10 0.999999 -0.068597 0.008873 3\n", |
| 153 | + "Causal9 0.999999 -0.065844 0.010435 4\n", |
| 154 | + "Causal3 0.999903 0.039212 0.006989 5\n", |
| 155 | + "Causal8 0.881331 -0.026670 0.013342 6\n", |
| 156 | + "Causal7 0.250416 -0.005248 0.010489 7\n", |
| 157 | + "Causal2 0.133008 0.003241 0.008441 8\n", |
| 158 | + "Spurious89 0.023355 -0.000385 0.002696 9\n", |
| 159 | + "Spurious24 0.018575 0.000173 0.001668 10\n", |
| 160 | + "Spurious70 0.016120 0.000370 0.002402 11\n", |
| 161 | + "Spurious80 0.013704 0.000187 0.001622 12\n", |
| 162 | + "Spurious21 0.011855 0.000109 0.001287 13\n", |
| 163 | + "Spurious16 0.009838 -0.000098 0.001316 14\n", |
| 164 | + "Spurious44 0.009189 -0.000078 0.001053 15\n" |
| 165 | + ] |
| 166 | + } |
| 167 | + ], |
| 168 | + "source": [ |
| 169 | + "print(selector.summary.iloc[:15][['PIP', 'Beta', 'BetaStd', 'Rank']])" |
| 170 | + ] |
| 171 | + }, |
| 172 | + { |
| 173 | + "cell_type": "code", |
| 174 | + "execution_count": 32, |
| 175 | + "id": "3753108b", |
| 176 | + "metadata": {}, |
| 177 | + "outputs": [ |
| 178 | + { |
| 179 | + "name": "stdout", |
| 180 | + "output_type": "stream", |
| 181 | + "text": [ |
| 182 | + "[Causal1]\t0.01\n", |
| 183 | + "[Causal2]\t0.02\n", |
| 184 | + "[Causal3]\t0.04\n", |
| 185 | + "[Causal4]\t0.06\n", |
| 186 | + "[Causal5]\t0.08\n", |
| 187 | + "[Causal6]\t-0.01\n", |
| 188 | + "[Causal7]\t-0.02\n", |
| 189 | + "[Causal8]\t-0.04\n", |
| 190 | + "[Causal9]\t-0.06\n", |
| 191 | + "[Causal10]\t-0.08\n" |
| 192 | + ] |
| 193 | + } |
| 194 | + ], |
| 195 | + "source": [ |
| 196 | + "# print true betas for the causal coefficients\n", |
| 197 | + "for mutation, beta in zip(mutations[:10], data['true_betas'][:10]):\n", |
| 198 | + " print(\"[{}]\\t{:.2f}\".format(mutation, beta.item()))" |
| 199 | + ] |
| 200 | + } |
| 201 | + ], |
| 202 | + "metadata": { |
| 203 | + "kernelspec": { |
| 204 | + "display_name": "Python 3", |
| 205 | + "language": "python", |
| 206 | + "name": "python3" |
| 207 | + }, |
| 208 | + "language_info": { |
| 209 | + "codemirror_mode": { |
| 210 | + "name": "ipython", |
| 211 | + "version": 3 |
| 212 | + }, |
| 213 | + "file_extension": ".py", |
| 214 | + "mimetype": "text/x-python", |
| 215 | + "name": "python", |
| 216 | + "nbconvert_exporter": "python", |
| 217 | + "pygments_lexer": "ipython3", |
| 218 | + "version": "3.8.2" |
| 219 | + } |
| 220 | + }, |
| 221 | + "nbformat": 4, |
| 222 | + "nbformat_minor": 5 |
| 223 | +} |
0 commit comments