diff --git a/analyze_run.py b/analyze_run.py index e15c5d3..c438770 100644 --- a/analyze_run.py +++ b/analyze_run.py @@ -181,7 +181,7 @@ # apply the NTC thresholding to the t13_dataframe to produce a new dataframe with the positive/negative denotation # and save the file to your working directory -ntc_PerAssay, ntc_thresholds_output, t13_hit_output = thresholdr.raw_thresholder(unique_crRNA_assays, assigned_norms['signal_norm_raw'], t13_dataframe_copy1, CLI_arg[1]) +ntc_thresholds_output, t13_hit_output = thresholdr.raw_thresholder(unique_crRNA_assays, assigned_norms['signal_norm_raw'], t13_dataframe_copy1, CLI_arg[1]) # make copies of t13_hit_output csv for downstream summaries and quality control checks t13_hit_output_copy1 = pd.DataFrame(t13_hit_output).copy() # make a copy of t13_hit_output # used in ndc qual check diff --git a/qual_checks.py b/qual_checks.py index e19e296..a3c4ad1 100644 --- a/qual_checks.py +++ b/qual_checks.py @@ -124,7 +124,7 @@ def coinf_check(self, t13_hit_binary_output): # convert coninf_samples_by_assay into a df for easy output coinf_df = pd.DataFrame.from_dict(coinf_samples_by_assay, orient='index') - coinf_df.drop('Summary') + #coinf_df.drop('Summary') return coinf_df diff --git a/threshold.py b/threshold.py index beeb2e6..4572dab 100644 --- a/threshold.py +++ b/threshold.py @@ -95,6 +95,6 @@ def raw_thresholder(self, unique_crRNA_assays, assigned_only, t13_df, CLI_thresh # Create a new row called 'Summary' at the bottom of the hit output sheet t13_df.loc['Summary'] = t13_df.apply(lambda col: col.value_counts().get('positive', 0)) - return ntc_PerAssay, raw_thresholds_df, t13_df + return raw_thresholds_df, t13_df \ No newline at end of file