https://docs.influxdata.com/influxdb/v2.0/write-data/developer-tools/csv/
https://docs.influxdata.com/influxdb/v2.0/reference/syntax/annotated-csv/
A table may have the following rows and columns.
- Annotation rows: describe column properties.
- Header row: defines column labels (one header row per table).
- Record row: describes data in the table (one record per row).
Encoding of a table with and without a header row.
result,table,_start,_stop,_time,region,host,_value
my-result,0,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:00Z,east,A,15.43
my-result,0,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:20Z,east,B,59.25
my-result,0,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:40Z,east,C,52.62
In addition to the data columns, a table may include the following columns:
- Annotation column: Only used in annotation rows. Always the first column. Displays the name of an annotation. Value can be empty or a supported annotation. You’ll notice a space for this column for the entire length of the table, so rows appear to start with
,
. - Result column: Contains the name of the result specified by the query.
- Table column: Contains a unique ID for each table in a result.
If a file or data stream contains multiple tables or results, the following requirements must be met:
- A table column indicates which table a row belongs to.
- All rows in a table are contiguous.
- An empty row delimits a new table boundary in the following cases:
- Between tables in the same result that do not share a common table schema.
- Between concatenated CSV files.
- Each new table boundary starts with new annotation and header rows.
Encoding of two tables in the same result with the same schema (header row) and different schema.
result,table,_start,_stop,_time,region,host,_value
my-result,0,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:00Z,east,A,15.43
my-result,0,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:20Z,east,B,59.25
my-result,0,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:40Z,east,C,52.62
my-result,1,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:00Z,west,A,62.73
my-result,1,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:20Z,west,B,12.83
my-result,1,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:40Z,west,C,51.62
Flux requires all annotation and header rows in annotated CSV. The example below illustrates how to use the csv.from()
function to read annotated CSV in Flux:
import "csv"
csvData = "#datatype,string,long,dateTime:RFC3339,dateTime:RFC3339,dateTime:RFC3339,string,string,double
#group,false,false,false,false,false,false,false,false
#default,,,,,,,,
,result,table,_start,_stop,_time,region,host,_value
,,0,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:00Z,east,A,15.43
,,0,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:20Z,east,B,59.25
,,0,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:40Z,east,C,52.62
,,1,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:00Z,west,A,62.73
,,1,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:20Z,west,B,12.83
,,1,2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:40Z,west,C,51.62
"
csv.from(csv: csvData)
import "csv"
csvData = "
_start,_stop,_time,region,host,_value
2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:00Z,east,A,15.43
2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:20Z,east,B,59.25
2018-05-08T20:50:00Z,2018-05-08T20:51:00Z,2018-05-08T20:50:40Z,east,C,52.62
"
csv.from(
csv: csvData,
mode: "raw"
)