-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
590 lines (481 loc) · 20.4 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
import os
import time
import pickle
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib
import datetime
from datetime import datetime
from contextlib import contextmanager, redirect_stdout
from functools import partial
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import StandardScaler
from sklearn.preprocessing import MinMaxScaler
from datetime import timedelta
import matplotlib.pyplot as plt
def save_variable(file_name, variable):
pickle.dump(variable, open(file_name + ".pickle", "wb"))
def load_variable(filename):
with open(filename + ".pickle", "rb") as f:
return pickle.load(f)
def zero_is_discord(df_site):
"""Flag all 0 readings as outliers. Only for electricity meter"""
df_hourly_is_discord = pd.DataFrame(index=df_site.index)
all_bdg = df_site.columns
columns = [f"is_discord_{x}" for x in all_bdg]
# replace NaN with 0
df_site = df_site.replace(0, np.nan)
# hand waving specialization (caution) of discords for all bdgs
for col, bdg in zip(columns, all_bdg):
df_hourly_is_discord[col] = np.where(df_site[bdg] == 0, 1, 0)
return df_hourly_is_discord
def get_data_chunks(dataframe, folds=12):
"""
Function that splits the current dataframe into "k" folds of data where
1 chunk is seen as train set and k-1 folds as test set.
Initially it is assume the "k" represents the number of months since the
time window of "dataframe" is one year.
This function also performs min-max scaling to the data.
Keyword arguments:
dataframe -- DataFrame with 24 features as hourly readings and "n" buildings
with a DateIndex
folds -- Int specifiying the number of folds required
Returns:
train_k_folds -- list with "k" elements where each elements is the respective
train dataframe for the current fold
test_k_folds -- list with "k" elements where each elements is the respective
test dataframe for the current fold
"""
df = dataframe.iloc[:, 0:-1].copy()
scaler = MinMaxScaler()
scaler.fit(df)
df_scaled = pd.DataFrame(scaler.transform(df), index=df.index)
df_scaled["building_id"] = dataframe["building_id"]
train_k_folds = []
test_k_folds = []
for k in range(1, folds + 1):
if folds == 12:
train_k = df_scaled[df_scaled.index.month == k]
test_k = df_scaled[df_scaled.index.month != k]
elif folds == 6 or folds == 4 or folds == 3 or folds == 2 :
months = list(range(1+(k-1)*int(12/folds), k*int(12/folds) + 1))
train_k = df_scaled[df_scaled.index.month.isin(months)]
test_k = df_scaled[~df_scaled.index.month.isin(months)]
else:
print("Sorry, that number hasn't been implemented yet")
return
# months should not overlap, intersection has to be an empty set
assert set.intersection(set(train_k.index.month), set(test_k.index.month)) == set()
train_k_folds.append(train_k)
test_k_folds.append(test_k)
return train_k_folds, test_k_folds, scaler
def create_daily_plots_for_single_bldg(self,
bldg_id,
df_bldg_meter,
df_ks_test_results,
list_days):
'''
'''
matplotlib.use('TkAgg')
print(f'Started plotting for building {bldg_id}')
# define standard scaler
std_scaler = StandardScaler()
df_curr_building = df_bldg_meter.copy()
#list_all_days = pd.to_datetime(df_ks_test_results['timestamp']).dt.date
save_path = f'img/daily_plots/bldg_{str(bldg_id).zfill(4)}'
os.makedirs(save_path, exist_ok=True)
for single_day in list_days:
curr_row_ks_test_df = df_ks_test_results[ (df_ks_test_results['timestamp'] == single_day.strftime('%Y-%m-%d'))
& (df_ks_test_results['building_id'] == bldg_id)].index[0]
current_D_val = df_ks_test_results.loc[curr_row_ks_test_df, 'D']
current_D_val = round(current_D_val, 6)
current_p_val = df_ks_test_results.loc[curr_row_ks_test_df, 'p']
current_p_val = round(current_p_val, 6)
### PREPARE PLOTTING DATA
df_curr_building_curr_day = df_curr_building[
(df_curr_building['timestamp'] >= single_day.strftime('%Y-%m-%d'))
& (df_curr_building['timestamp'] < (single_day + timedelta(days=1)).strftime('%Y-%m-%d'))].copy()
if df_curr_building_curr_day.empty:
continue
df_curr_building_curr_day['norm_meter_reading'] = \
std_scaler.fit_transform(df_curr_building_curr_day[['meter_reading']])
### START PLOTTING
fig,ax=plt.subplots()
fig.patch.set_facecolor('white')
df_curr_building_curr_day.plot(y='meter_reading',
x='timestamp',
ax=ax,
kind='line',
figsize=(20,5),
legend=False,
title=('Raw / Normalised load profile '
f'of bldg {bldg_id} '
f'on day {single_day}'),
color="red")
ax.set_ylabel('Raw load profile', fontsize=12, color="red")
ax2=ax.twinx()
df_curr_building_curr_day.plot(y='norm_meter_reading',
x='timestamp',
ax=ax2,
kind='line',
figsize=(18,5),
legend=False,
color='blue')
ax2.set_ylabel('Normalised load profile', fontsize=12, color='blue')
complete_path = f'{save_path}/{single_day.strftime("%Y-%m-%d")}_D-{current_D_val}_p-{current_p_val}.png'
fig.savefig(complete_path,
format='png',
dpi=50)
plt.close('all')
df_ks_test_results.loc[curr_row_ks_test_df, 'plot_path'] = complete_path
def forecasting_barplot(
dict_algo,
metric='rmsle',
plot_name='forecasting',
x_labels=['ALDI', 'ALDI++'],
figsize=(16,32),
ylim=(2,3),
fontsize=40
):
"""Plot the chosen forecasting RMSE based on different discord detectors"""
fig, ax = plt.subplots(figsize=figsize)
sns.barplot(
x=list(dict_algo.keys()),
y=list(dict_algo.values()),
orient='v', ax=ax
)
ax.set_ylabel("RMSLE", fontsize=fontsize)
ax.set_xlabel("Discord detectors", fontsize=fontsize)
ax.set_xticklabels(x_labels)
ax.tick_params(length=20, direction="inout", labelsize=fontsize)
plt.ylim(ylim)
plt.hlines(
xmin=0 - 0.5,
xmax=len(list(dict_algo.keys()))-0.5,
y=list(dict_algo.values())[0],
colors='r',
linewidth=3 # vertical line at position 0
)
plt.tight_layout()
fig.savefig(f'img/barplot_comparison-{plot_name}.png', format='PNG')
def forecasting_bubble(
dict_algo,
plot_name='forecasting',
y_labels=['ALDI', 'ALDI++'],
figsize=(16,32),
xlim=(2,3),
fontsize=40
):
"""Plot the chosen forecasting RMSE based on different discord detectors"""
# prepare dataframe
df_discord_detectors = pd.DataFrame.from_dict(dict_algo, orient='index')
fig, _ = plt.subplots(1, 1, figsize=figsize)
ax = sns.scatterplot(
data=df_discord_detectors,
x="rmsle",
y=df_discord_detectors.index,
size="time",
alpha=1,
sizes={
1: 20,
8: 80,
32: 320,
40: 400,
480: 4800,
},
size_order=[8, 40, 480],
clip_on=False
)
ax.set_xlabel("RMSLE", fontsize=fontsize)
ax.set_ylabel("Discords labeled by", fontsize=fontsize)
ax.set_yticklabels(y_labels)
ax.tick_params(length=20, direction="inout", labelsize=fontsize)
ax.legend(
title="Computation \n time (min)",
title_fontsize=fontsize-3,
fontsize=fontsize-3,
frameon=False,
bbox_to_anchor=(1, 0.85),
ncol=1,
)
ax.margins(y=0.1)
plt.grid()
# ax.set(frame_on=False)
plt.xlim(xlim)
plt.tight_layout()
fig.savefig(f'img/bubbleplot_comparison-{plot_name}.png', format='PNG')
###############################################################################
# functions from here on are taken from:
# https://github.com/buds-lab/ashrae-great-energy-predictor-3-solution-analysis/blob/master/solutions/rank-1/ashrae/utils.py
@contextmanager
def timer(name):
print(f"{datetime.now()} - [{name}] ...")
t0 = time.time()
yield
print(f"{datetime.now()} - [{name}] done in {time.time() - t0:.0f} s\n")
def reduce_mem_usage(df, skip_cols=[], verbose=False):
"""Reduce memory usage in a pandas dataframe
Based on this great kernel:
https://www.kaggle.com/arjanso/reducing-dataframe-memory-size-by-65
"""
start_mem_usg = df.memory_usage().sum() / 1024 ** 2
print("Memory usage of properties dataframe is :", start_mem_usg, " MB")
NAlist = [] # Keeps track of columns that have missing values filled in.
for col in np.setdiff1d(df.columns, skip_cols):
if df[col].dtype != object: # Exclude strings
# print column type
if verbose:
print("******************************")
print("Column: ", col)
print("dtype before: ", df[col].dtype)
# make variables for Int, max and min
IsInt = False
mx = df[col].max()
mn = df[col].min()
if verbose:
print("min for this col: ", mn)
print("max for this col: ", mx)
# Integer does not support NA, therefore, NA needs to be filled
if not np.isfinite(df[col]).all():
NAlist.append(col)
df[col].fillna(mn - 1, inplace=True)
# test if column can be converted to an integer
asint = df[col].fillna(0).astype(np.int64)
result = df[col] - asint
result = result.sum()
if result > -0.01 and result < 0.01:
IsInt = True
# Make Integer/unsigned Integer datatypes
if IsInt:
if mn >= 0:
if mx < 255:
df[col] = df[col].astype(np.uint8)
elif mx < 65535:
df[col] = df[col].astype(np.uint16)
elif mx < 4294967295:
df[col] = df[col].astype(np.uint32)
else:
df[col] = df[col].astype(np.uint64)
else:
if mn > np.iinfo(np.int8).min and mx < np.iinfo(np.int8).max:
df[col] = df[col].astype(np.int8)
elif mn > np.iinfo(np.int16).min and mx < np.iinfo(np.int16).max:
df[col] = df[col].astype(np.int16)
elif mn > np.iinfo(np.int32).min and mx < np.iinfo(np.int32).max:
df[col] = df[col].astype(np.int32)
elif mn > np.iinfo(np.int64).min and mx < np.iinfo(np.int64).max:
df[col] = df[col].astype(np.int64)
# Make float datatypes 32 bit
else:
df[col] = df[col].astype(np.float32)
if verbose:
print("dtype after: ", df[col].dtype)
print("******************************")
# Print final result
if verbose:
print("___MEMORY USAGE AFTER COMPLETION:___")
mem_usg = df.memory_usage().sum() / 1024 ** 2
print("Memory usage is: ", mem_usg, " MB")
print("This is ", 100 * mem_usg / start_mem_usg, "% of the initial size")
return df, NAlist
def load_data(
data_name,
algorithm="baseline",
data_location="data",
discord_location="data/outliers",
discord_file="bad_meter_readings.csv",
output_location="data/preprocessed",
):
"""Loads and formats data"""
# raw
if data_name == "train":
return pd.read_csv(f"{data_location}/train.csv")
if data_name == "test":
return pd.read_csv(f"{data_location}/test.csv")
if data_name == "input":
return load_data("train", data_location=data_location), load_data(
"test", data_location=data_location
)
# clean
if data_name == "train_clean":
return pd.read_pickle(f"{output_location}/train_clean_{algorithm}.pkl")
if data_name == "test_clean":
return pd.read_pickle(f"{output_location}/test_clean_{algorithm}.pkl")
if data_name == "clean":
return (
load_data(
"train_clean", output_location=output_location, algorithm=algorithm
),
load_data(
"test_clean", output_location=output_location, algorithm=algorithm
),
)
# # debug 1000
# if data_name == "train_clean_debug_1000":
# return pd.read_pickle("data/preprocessed/train_clean_debug_1000.pkl")
# if data_name == "test_clean_debug_1000":
# return pd.read_pickle("data/preprocessed/test_clean_debug_1000.pkl")
# if data_name == "clean_debug_1000":
# return load_data("train_clean_debug_1000"), load_data("test_clean_debug_1000")
# if data_name == "leak_debug_1000":
# return pd.read_pickle("data/preprocessed/leak_debug_1000.pkl")
# # debug 10000
# if data_name == "train_clean_debug_10000":
# return pd.read_pickle("data/preprocessed/train_clean_debug_10000.pkl")
# if data_name == "test_clean_debug_10000":
# return pd.read_pickle("data/preprocessed/test_clean_debug_10000.pkl")
# if data_name == "clean_debug_10000":
# return load_data("train_clean_debug_10000"), load_data("test_clean_debug_10000")
# if data_name == "leak_debug_10000":
# return pd.read_pickle("data/preprocessed/leak_debug_10000.pkl")
# raw weather
if data_name == "train_weather":
return pd.read_csv(f"{data_location}/weather_train.csv")
if data_name == "test_weather":
return pd.read_csv(f"{data_location}/weather_test.csv")
if data_name == "weather":
return load_data("train_weather", data_location=data_location), load_data(
"test_weather", data_location=data_location
)
# discord/outliers (rows to drop)
if data_name == "discord":
return pd.read_csv(f"{discord_location}/{discord_file}")
# meta
if data_name == "meta":
return pd.read_csv(f"{data_location}/building_metadata.csv")
# submissions
if data_name == "sample_submission":
return pd.read_csv(f"{data_location}/sample_submission.csv")
class Logger(object):
"""Save a string line(s) to a file."""
def __init__(self, file_path, mode="w", verbose=False):
self.file_path = file_path
self.verbose = verbose
open(file_path, mode=mode)
def append(self, line, print_line=None):
if print_line or self.verbose:
print(line)
with open(self.file_path, "a") as f:
with redirect_stdout(f):
print(line)
def make_dir(dir_name):
"""Create a directory if it doesn"t already exist"""
if not os.path.exists(dir_name):
os.makedirs(dir_name)
def get_validation_months(n_months):
validation_months_list = [
np.arange(i + 1, i + 2 + n_months - 1)
for shift in range(n_months)
for i in range(shift, 12 + shift, n_months)
]
validation_months_list = [(x - 1) % 12 + 1 for x in validation_months_list]
return validation_months_list
def get_daily_resolution(df_hourly_data, agg_method="logic_or"):
"""
The method takes a dataframe with an hourly resolution and
transforms it into a dataframe with a daily resolution. All data
points of a day are aggregated with an aggregation function.
Parameters
-----------
df_hourly_data: pandas.DataFrame, required
Dataframe with is_discord information (coded in 0: non-discord
and 1: discord) per building with hourly resolution. The index
consists of hourly timestamps. The columns identify the
individual buildings with the following scheme
'is_discord_{bldg_id}'.
agg_method: str, optional
String describing the function to be used to aggregate the
24 values per day. Default is a logic_OR, i.e. if one hour of a
day is marked as discord, the whole day is considered as
Discord.
Returns
-----------
df_daily_data: pandas.DataFrame
Dataframe with is_discord information (coded in 0: non-discord
and 1: discord) per building with daily resolution. The index
consists of daily timestamps. The columns identify the
individual buildings with the following scheme
'is_discord_{bldg_id}'.
"""
# STEP 1 - CALCULATE DAILY SUMS
df_step_1 = df_hourly_data.groupby(df_hourly_data.index.date).sum()
# STEP 2 - MARKING DISCORD
discord_cond = {
"logic_or": (df_step_1 >= 1),
"logic_and": (df_step_1 == 24),
"majority": (df_step_1 >= 12),
"majority_plus": (df_step_1 >= 15),
}
assert agg_method in discord_cond.keys()
discord_agg_func = discord_cond.get(agg_method)
df_step_2 = df_step_1.where(~discord_agg_func, other=1)
# STEP 3 - MARKING NON-DISCORD
non_discord_cond = {
"fill_zero": (df_step_2 != 1),
}
non_discord_agg_func = non_discord_cond.get("fill_zero")
df_step_3 = df_step_2.where(~non_discord_agg_func, other=0)
# STEP 4 - FINALIZATION
df_daily_data = df_step_3.astype("int8")
return df_daily_data
def rmsle(x, y):
x = np.log1p(x)
y = np.log1p(y)
return np.sqrt(mean_squared_error(x, y))
class GeneralizedMeanBlender:
"""Combines multiple predictions using generalized mean"""
def __init__(self, p_range=(0, 1), random_state=42):
"""
Args:
p_range: Range of the power in the generalized mean. Defalut is (0,2).
random_state: Seed for the random number generator.
Returns: GeneralizedMeanBlender object
"""
self.p_range = p_range
self.random_state = random_state
self.p = None
self.c = None
self.weights = None
def _objective(self, trial, X, y):
# create hyperparameters
p = trial.suggest_uniform(f"p", *self.p_range)
c = trial.suggest_uniform(f"c", 0.95, 1.05)
weights = [trial.suggest_uniform(f"w{i}", 0, 1) for i in range(X.shape[1])]
# blend predictions
blend_preds, total_weight = 0, 0
if p == 0:
for j, w in enumerate(weights):
blend_preds += w * np.log1p(X[:, j])
total_weight += w
blend_preds = c * np.expm1(blend_preds / total_weight)
else:
for j, w in enumerate(weights):
blend_preds += w * X[:, j] ** p
total_weight += w
blend_preds = c * (blend_preds / total_weight) ** (1 / p)
# calculate mean squared error
return np.sqrt(mean_squared_error(y, blend_preds))
def fit(self, X, y, n_trials=10):
# optimize objective
obj = partial(self._objective, X=X, y=y)
sampler = optuna.samplers.TPESampler(seed=self.random_state)
study = optuna.create_study(sampler=sampler)
study.optimize(obj, n_trials=n_trials)
# extract best weights
if self.p is None:
self.p = [v for k, v in study.best_params.items() if "p" in k][0]
self.c = [v for k, v in study.best_params.items() if "c" in k][0]
self.weights = np.array([v for k, v in study.best_params.items() if "w" in k])
self.weights /= self.weights.sum()
def transform(self, X):
assert (
self.weights is not None and self.p is not None
), "Must call fit method before transform"
if self.p == 0:
return self.c * np.expm1(np.dot(np.log1p(X), self.weights))
else:
return self.c * np.dot(X ** self.p, self.weights) ** (1 / self.p)
def fit_transform(self, X, y, **kwargs):
self.fit(X, y, **kwargs)
return self.transform(X)