-
Notifications
You must be signed in to change notification settings - Fork 201
/
Copy pathtest.py
185 lines (145 loc) · 6.89 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
#!/usr/bin/env python
# coding: utf-8
from __future__ import division, print_function, unicode_literals
import argparse
import json
import os
import shutil
import time
import torch
from utils import util
from evaluate import MultiWozEvaluator
from model.model import Model
parser = argparse.ArgumentParser(description='S2S')
parser.add_argument('--no_cuda', type=util.str2bool, nargs='?', const=True, default=True, help='enables CUDA training')
parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)')
parser.add_argument('--no_models', type=int, default=20, help='how many models to evaluate')
parser.add_argument('--original', type=str, default='model/model/', help='Original path.')
parser.add_argument('--dropout', type=float, default=0.0)
parser.add_argument('--use_emb', type=str, default='False')
parser.add_argument('--beam_width', type=int, default=10, help='Beam width used in beamsearch')
parser.add_argument('--write_n_best', type=util.str2bool, nargs='?', const=True, default=False, help='Write n-best list (n=beam_width)')
parser.add_argument('--model_path', type=str, default='model/model/translate.ckpt', help='Path to a specific model checkpoint.')
parser.add_argument('--model_dir', type=str, default='model/')
parser.add_argument('--model_name', type=str, default='translate.ckpt')
parser.add_argument('--valid_output', type=str, default='model/data/val_dials/', help='Validation Decoding output dir path')
parser.add_argument('--decode_output', type=str, default='model/data/test_dials/', help='Decoding output dir path')
args = parser.parse_args()
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.manual_seed(args.seed)
device = torch.device("cuda" if args.cuda else "cpu")
def load_config(args):
config = util.unicode_to_utf8(
json.load(open('%s.json' % args.model_path, 'rb')))
for key, value in args.__args.items():
try:
config[key] = value.value
except:
config[key] = value
return config
def loadModelAndData(num):
# Load dictionaries
with open('data/input_lang.index2word.json') as f:
input_lang_index2word = json.load(f)
with open('data/input_lang.word2index.json') as f:
input_lang_word2index = json.load(f)
with open('data/output_lang.index2word.json') as f:
output_lang_index2word = json.load(f)
with open('data/output_lang.word2index.json') as f:
output_lang_word2index = json.load(f)
# Reload existing checkpoint
model = Model(args, input_lang_index2word, output_lang_index2word, input_lang_word2index, output_lang_word2index)
if args.load_param:
model.loadModel(iter=num)
# Load data
if os.path.exists(args.decode_output):
shutil.rmtree(args.decode_output)
os.makedirs(args.decode_output)
else:
os.makedirs(args.decode_output)
if os.path.exists(args.valid_output):
shutil.rmtree(args.valid_output)
os.makedirs(args.valid_output)
else:
os.makedirs(args.valid_output)
# Load validation file list:
with open('data/val_dials.json') as outfile:
val_dials = json.load(outfile)
# Load test file list:
with open('data/test_dials.json') as outfile:
test_dials = json.load(outfile)
return model, val_dials, test_dials
def decode(num=1):
model, val_dials, test_dials = loadModelAndData(num)
evaluator_valid = MultiWozEvaluator("valid")
evaluator_test = MultiWozEvaluator("test")
start_time = time.time()
for ii in range(2):
if ii == 0:
print(50 * '-' + 'GREEDY')
model.beam_search = False
else:
print(50 * '-' + 'BEAM')
model.beam_search = True
# VALIDATION
val_dials_gen = {}
valid_loss = 0
for name, val_file in val_dials.items():
input_tensor = []; target_tensor = [];bs_tensor = [];db_tensor = []
input_tensor, target_tensor, bs_tensor, db_tensor = util.loadDialogue(model, val_file, input_tensor, target_tensor, bs_tensor, db_tensor)
# create an empty matrix with padding tokens
input_tensor, input_lengths = util.padSequence(input_tensor)
target_tensor, target_lengths = util.padSequence(target_tensor)
bs_tensor = torch.tensor(bs_tensor, dtype=torch.float, device=device)
db_tensor = torch.tensor(db_tensor, dtype=torch.float, device=device)
output_words, loss_sentence = model.predict(input_tensor, input_lengths, target_tensor, target_lengths,
db_tensor, bs_tensor)
valid_loss += 0
val_dials_gen[name] = output_words
print('Current VALID LOSS:', valid_loss)
with open(args.valid_output + 'val_dials_gen.json', 'w') as outfile:
json.dump(val_dials_gen, outfile)
evaluator_valid.evaluateModel(val_dials_gen, val_dials, mode='valid')
# TESTING
test_dials_gen = {}
test_loss = 0
for name, test_file in test_dials.items():
input_tensor = []; target_tensor = [];bs_tensor = [];db_tensor = []
input_tensor, target_tensor, bs_tensor, db_tensor = util.loadDialogue(model, test_file, input_tensor, target_tensor, bs_tensor, db_tensor)
# create an empty matrix with padding tokens
input_tensor, input_lengths = util.padSequence(input_tensor)
target_tensor, target_lengths = util.padSequence(target_tensor)
bs_tensor = torch.tensor(bs_tensor, dtype=torch.float, device=device)
db_tensor = torch.tensor(db_tensor, dtype=torch.float, device=device)
output_words, loss_sentence = model.predict(input_tensor, input_lengths, target_tensor, target_lengths,
db_tensor, bs_tensor)
test_loss += 0
test_dials_gen[name] = output_words
test_loss /= len(test_dials)
print('Current TEST LOSS:', test_loss)
with open(args.decode_output + 'test_dials_gen.json', 'w') as outfile:
json.dump(test_dials_gen, outfile)
evaluator_test.evaluateModel(test_dials_gen, test_dials, mode='test')
print('TIME:', time.time() - start_time)
def decodeWrapper():
# Load config file
with open(args.model_path + '.config') as f:
add_args = json.load(f)
for k, v in add_args.items():
setattr(args, k, v)
args.mode = 'test'
args.load_param = True
args.dropout = 0.0
assert args.dropout == 0.0
# Start going through models
args.original = args.model_path
for ii in range(1, args.no_models + 1):
print(70 * '-' + 'EVALUATING EPOCH %s' % ii)
args.model_path = args.model_path + '-' + str(ii)
try:
decode(ii)
except:
print('cannot decode')
args.model_path = args.original
if __name__ == '__main__':
decodeWrapper()