Skip to content

Create robust database schema with vector search capabilities #6

@VolenNakov

Description

@VolenNakov

Design comprehensive database schema with pgvector support for AI-powered similarity search.

Acceptance Criteria:

  • Enhanced listings table with vector fields
  • Image embeddings table with HNSW indexes
  • Categories table with hierarchical structure
  • Listing attributes table for flexible metadata
  • Proper foreign key constraints and indexes

Database Schema Components:

-- Main listings table with vector support
CREATE TABLE listings (
    id SERIAL PRIMARY KEY,
    title VARCHAR(255) NOT NULL,
    description TEXT,
    price DECIMAL(10,2),
    image_vectors vector(512)[],
    text_vector vector(1536),
    -- ... other fields
);

-- Vector similarity indexes
CREATE INDEX idx_listings_image_vectors ON listings 
    USING hnsw (image_vectors vector_cosine_ops);

Files to Create:

  • internal/db/migrations/00006_enable_pgvector.sql
  • internal/db/migrations/00007_create_listings_tables.sql
  • internal/db/migrations/00008_create_image_embeddings.sql
  • internal/db/migrations/00009_create_vector_indexes.sql

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions