-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathspear.py
60 lines (44 loc) · 1.41 KB
/
spear.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
from data_io import DataIO
import pandas as pd
import ramp as rp
import joblib
from os.path import join as path_join
import numpy as np
from itertools import islice
import sklearn
dio = DataIO("Settings_submission.json")
store = pd.HDFStore(dio.train_file, "r")
submit = False
if submit:
train_id = "train_w_answers"
test_id = "test"
store_path = dio.cache_dir + "_submit"
else:
train_id = "train_train"
test_id = "train_test"
store_path = dio.cache_dir + "1"
training_data = store[train_id]
writer = training_data.writer
context = rp.DataContext(
store=store_path,
data=training_data
)
configs = joblib.load(path_join(dio.cache_dir, "all_scores_all_vse"))
# config_id = 84
config_id = 30
config_log = configs[config_id][0]
#print str(config_log)
my_cv = list(islice(sklearn.cross_validation.LeavePLabelOut(writer, p=75), 10)) # 10 splits
def main(job_id, params):
print "Job id:", str(job_id)
n_trees = params["ntrees"][0]
max_features = params["max_f"][0]
criterion = params["criterion"][0]
config_log.model.estimator.set_params(n_estimators=n_trees)
config_log.model.estimator.set_params(max_features=max_features)
config_log.model.estimator.set_params(criterion=criterion)
#print config_log
print params
scores = rp.models.cv(config_log, context, folds=my_cv, repeat=2,
print_results=True)
return np.array(scores['logloss']).mean()