-
Notifications
You must be signed in to change notification settings - Fork 1.6k
/
Copy pathImageSegmentation.java
158 lines (143 loc) · 6.67 KB
/
ImageSegmentation.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
/*
* JavaCV version of OpenCV imageSegmentation.cpp
* https://github.com/opencv/opencv/blob/master/samples/cpp/tutorial_code/ImgTrans/imageSegmentation.cpp
*
* The OpenCV example image is available at the following address
* https://github.com/opencv/opencv/blob/master/samples/data/cards.png
*
* Paolo Bolettieri <[email protected]>
*/
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import org.bytedeco.javacpp.indexer.FloatIndexer;
import org.bytedeco.javacpp.indexer.IntIndexer;
import org.bytedeco.javacpp.indexer.UByteIndexer;
import org.bytedeco.javacv.CanvasFrame;
import org.bytedeco.javacv.OpenCVFrameConverter;
import org.bytedeco.opencv.opencv_core.*;
import org.bytedeco.opencv.opencv_imgproc.*;
import static org.bytedeco.opencv.global.opencv_core.*;
import static org.bytedeco.opencv.global.opencv_imgcodecs.*;
import static org.bytedeco.opencv.global.opencv_imgproc.*;
public class ImageSegmentation {
private static final int[] WHITE = {255, 255, 255};
private static final int[] BLACK = {0, 0, 0};
public static void main(String[] args) {
// Load the image
Mat src = imread(args[0]);
// Check if everything was fine
if (src.data().isNull())
return;
// Show source image
imshow("Source Image", src);
// Change the background from white to black, since that will help later to extract
// better results during the use of Distance Transform
UByteIndexer srcIndexer = src.createIndexer();
for (int x = 0; x < srcIndexer.rows(); x++) {
for (int y = 0; y < srcIndexer.cols(); y++) {
int[] values = new int[3];
srcIndexer.get(x, y, values);
if (Arrays.equals(values, WHITE)) {
srcIndexer.put(x, y, BLACK);
}
}
}
// Show output image
imshow("Black Background Image", src);
// Create a kernel that we will use for accuting/sharpening our image
Mat kernel = Mat.ones(3, 3, CV_32F).asMat();
FloatIndexer kernelIndexer = kernel.createIndexer();
kernelIndexer.put(1, 1, -8); // an approximation of second derivative, a quite strong kernel
// do the laplacian filtering as it is
// well, we need to convert everything in something more deeper then CV_8U
// because the kernel has some negative values,
// and we can expect in general to have a Laplacian image with negative values
// BUT a 8bits unsigned int (the one we are working with) can contain values from 0 to 255
// so the possible negative number will be truncated
Mat imgLaplacian = new Mat();
Mat sharp = src; // copy source image to another temporary one
filter2D(sharp, imgLaplacian, CV_32F, kernel);
src.convertTo(sharp, CV_32F);
Mat imgResult = subtract(sharp, imgLaplacian).asMat();
// convert back to 8bits gray scale
imgResult.convertTo(imgResult, CV_8UC3);
imgLaplacian.convertTo(imgLaplacian, CV_8UC3);
// imshow( "Laplace Filtered Image", imgLaplacian );
imshow("New Sharped Image", imgResult);
src = imgResult; // copy back
// Create binary image from source image
Mat bw = new Mat();
cvtColor(src, bw, CV_BGR2GRAY);
threshold(bw, bw, 40, 255, CV_THRESH_BINARY | CV_THRESH_OTSU);
imshow("Binary Image", bw);
// Perform the distance transform algorithm
Mat dist = new Mat();
distanceTransform(bw, dist, CV_DIST_L2, 3);
// Normalize the distance image for range = {0.0, 1.0}
// so we can visualize and threshold it
normalize(dist, dist, 0, 1., NORM_MINMAX, -1, null);
imshow("Distance Transform Image", dist);
// Threshold to obtain the peaks
// This will be the markers for the foreground objects
threshold(dist, dist, .4, 1., CV_THRESH_BINARY);
// Dilate a bit the dist image
Mat kernel1 = Mat.ones(3, 3, CV_8UC1).asMat();
dilate(dist, dist, kernel1);
imshow("Peaks", dist);
// Create the CV_8U version of the distance image
// It is needed for findContours()
Mat dist_8u = new Mat();
dist.convertTo(dist_8u, CV_8U);
// Find total markers
MatVector contours = new MatVector();
findContours(dist_8u, contours, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
// Create the marker image for the watershed algorithm
Mat markers = Mat.zeros(dist.size(), CV_32SC1).asMat();
// Draw the foreground markers
for (int i = 0; i < contours.size(); i++)
drawContours(markers, contours, i, Scalar.all((i) + 1));
// Draw the background marker
circle(markers, new Point(5, 5), 3, RGB(255, 255, 255));
imshow("Markers", multiply(markers, 10000).asMat());
// Perform the watershed algorithm
watershed(src, markers);
Mat mark = Mat.zeros(markers.size(), CV_8UC1).asMat();
markers.convertTo(mark, CV_8UC1);
bitwise_not(mark, mark);
// imshow("Markers_v2", mark); // uncomment this if you want to see how the mark
// image looks like at that point
// Generate random colors
List<int[]> colors = new ArrayList<int[]>();
for (int i = 0; i < contours.size(); i++) {
int b = theRNG().uniform(0, 255);
int g = theRNG().uniform(0, 255);
int r = theRNG().uniform(0, 255);
int[] color = { b, g, r };
colors.add(color);
}
// Create the result image
Mat dst = Mat.zeros(markers.size(), CV_8UC3).asMat();
// Fill labeled objects with random colors
IntIndexer markersIndexer = markers.createIndexer();
UByteIndexer dstIndexer = dst.createIndexer();
for (int i = 0; i < markersIndexer.rows(); i++) {
for (int j = 0; j < markersIndexer.cols(); j++) {
int index = markersIndexer.get(i, j);
if (index > 0 && index <= contours.size())
dstIndexer.put(i, j, colors.get(index - 1));
else
dstIndexer.put(i, j, BLACK);
}
}
// Visualize the final image
imshow("Final Result", dst);
}
//I wrote a custom imshow method for problems using the OpenCV original one
private static void imshow(String txt, Mat img) {
CanvasFrame canvasFrame = new CanvasFrame(txt);
canvasFrame.setDefaultCloseOperation(javax.swing.JFrame.EXIT_ON_CLOSE);
canvasFrame.setCanvasSize(img.cols(), img.rows());
canvasFrame.showImage(new OpenCVFrameConverter.ToMat().convert(img));
}
}