-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathload.py
160 lines (128 loc) · 4.94 KB
/
load.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
from __future__ import print_function
from __future__ import division
from __future__ import absolute_import
import numpy as np
import os
import random
import scipy.io as sio
import tqdm
import linecache
STEP = 512
def data_generator(batch_size, preproc, x, y):
num_examples = len(x)
examples = zip(x, y)
examples = sorted(examples, key=lambda x: x[0].shape[0])
end = num_examples - batch_size + 1
batches = [examples[i:i+batch_size]
for i in range(0, end, batch_size)]
random.shuffle(batches)
while True:
for batch in batches:
x, y = zip(*batch)
yield preproc.process(x, y)
def data_generator_no_shuffle(batch_size, preproc, x, y):
num_examples = len(x)
examples = zip(x, y)
examples = sorted(examples, key=lambda x: x[0].shape[0])
end = num_examples - batch_size + 1
batches = [examples[i:i+batch_size]
for i in range(0, end, batch_size)]
while True:
for batch in batches:
x, y = zip(*batch)
yield preproc.process(x, y)
class Preproc:
def __init__(self, ecg, labels):
self.labels = ("AF", "I-AVB", "LBBB", "Normal", "PAC", "PVC", "RBBB", "STD", "STE")
# self.class_weight = self.calculate_weight(labels)
self.choose_label = range(len(self.labels))
self.choose_leads = [0]
def process(self, x, y):
# single lead
return self.process_x(x)[:, self.choose_leads, :], self.process_y(y)[:, self.choose_label]
# # all leads
# return self.process_x(x), self.process_y(y)[:, self.choose_label]
def process_x(self, x):
x_cropped = crop(x)
x_array = np.asarray(x_cropped, dtype=np.float32)
return x_array
def process_y(self, y):
y_vector = np.full((len(y), len(self.labels)), 0)
for i, label in enumerate(y):
for j, ref in enumerate(self.labels):
if ref in label:
y_vector[i, j] = 1
return y_vector
def calculate_weight(self, labels):
y_vectors = self.process_y(labels)
class_weight = []
total = y_vectors.shape[0]
for i in range(9):
pos = np.sum(y_vectors[:, i])
neg = total - pos
weight_for_0 = (1 / neg) * (total) / 2.0
weight_for_1 = (1 / pos) * (total) / 2.0
class_weight_i = {0: weight_for_0, 1: weight_for_1}
class_weight.append(class_weight_i)
return class_weight
def get_weight(self):
return self.class_weight[self.choose_label]
def get_all_weight(self):
return self.class_weight
def crop(x):
min_len = min(i.shape[1] for i in x)
cropped = ()
for e, i in enumerate(x):
cropped += (i[:, :min_len],)
return cropped
def pad(x, val=0, dtype=np.float32):
max_len = max(i.shape[1] for i in x)
padded = np.full((12, max_len), val, dtype=dtype).squeeze()
for e, i in enumerate(x):
padded[e, :len(i)] = i
return padded
def compute_mean_std(x):
x = np.hstack(x)
return (np.mean(x, axis=1).astype(np.float32),
np.std(x, axis=1).astype(np.float32))
def load_dataset(directory, lead=0):
labels = []
ecgs = []
for root, dirs, files in os.walk(directory, topdown=False):
for name in tqdm.tqdm(files):
if os.path.splitext(name)[1] == ".mat":
patient = os.path.splitext(name)[0]
ecg_file = os.path.join(root, name)
label_file = os.path.join(root, patient+".hea")
if lead:
ecg = np.reshape(load_ecg(ecg_file)[lead-1, :], (1, -1))
ecg_mean = np.mean(ecg).astype(np.float32)
ecg_std = (np.std(ecg)+0.001).astype(np.float32)
ecg = (ecg - ecg_mean) / ecg_std
else:
ecg = load_ecg(ecg_file)
ecg_mean = np.mean(ecg, axis=1).astype(np.float32)
ecg_std = (np.std(ecg, axis=1)+0.001).astype(np.float32)
means_expanded = np.outer(ecg_mean, np.ones(ecg.shape[1]))
std_expanded = np.outer(ecg_std, np.ones(ecg.shape[1]))
ecg = (ecg - means_expanded) / std_expanded
label = linecache.getline(label_file, 16)[5:-1]
ecgs.append(ecg)
labels.append(label)
return ecgs, labels
def load_ecg(record):
if os.path.splitext(record)[1] == ".npy":
ecg = np.load(record)
elif os.path.splitext(record)[1] == ".mat":
ecg = sio.loadmat(record)['val'].squeeze()
# trunc_samp = STEP * min([int(ecg.shape[1] / STEP), 8])
trunc_samp = STEP * int(ecg.shape[1] / STEP)
return ecg[:, :trunc_samp]
if __name__ == "__main__":
data_directory = "data/debug"
train = load_dataset(data_directory, False)
preproc = Preproc(*train)
gen = data_generator(8, preproc, *train)
for x, y in gen:
print(x.shape, y.shape)
break