To deploy a simple machine learning application, you must first have a terraform-example-foundation v4.0.0 instance set up. The following steps will guide you through the additional configurations required on top of the foundation.
- terraform-example-foundation v4.0.0 deployed until at least step
4-projects
. - You must have role Service Account User (
roles/iam.serviceAccountUser
) on the Terraform Service Accounts created in the foundation Seed Project. The Terraform Service Accounts have the permissions to deploy each step of the foundation. Service Accounts:sa-terraform-bootstrap@<SEED_PROJECT_ID>.iam.gserviceaccount.com
.sa-terraform-env@<SEED_PROJECT_ID>.iam.gserviceaccount.com
sa-terraform-net@<SEED_PROJECT_ID>.iam.gserviceaccount.com
sa-terraform-proj@<SEED_PROJECT_ID>.iam.gserviceaccount.com
Install the following dependencies:
- Google Cloud SDK version 469.0.0 or later.
- Terraform version 1.7.5 or later.
Terraform must have Application Default Credentials configured, to configure it run:
gcloud auth application-default login
For these instructions we assume that:
-
The foundation was deployed using Cloud Build.
-
Every repository, excluding the policies repositories, should be on the
production
branch andterraform init
should be executed in each one. -
The following layout should exists in your local environment since you will need to make changes in these steps. If you do not have this layout, please checkout the source repositories for the foundation steps following this layout.
gcp-bootstrap gcp-environments gcp-networks gcp-org gcp-policies gcp-projects
-
Also checkout the terraform-google-enterprise-genai repository at the same level.
The final layout should look like this:
gcp-bootstrap
gcp-environments
gcp-networks
gcp-org
gcp-policies
gcp-projects
terraform-google-enterprise-genai
the first step is to update the gcloud terraform vet
policies constraints to allow usage of the APIs needed by the Blueprint and add more policies.
The constraints are located in the repository:
gcp-policies
IMPORTANT: Please note that the steps below are assuming you are checked out on terraform-google-enterprise-genai/
.
- Copy
cmek_settings.yaml
from this repository to the policies repository:
cp policy-library/policies/constraints/cmek_settings.yaml ../gcp-policies/policies/constraints/cmek_settings.yaml
- Copy
network_enable_firewall_logs.yaml
from this repository to the policies repository:
cp policy-library/policies/constraints/network_enable_firewall_logs.yaml ../gcp-policies/policies/constraints/network_enable_firewall_logs.yaml
- Copy
require_dnssec.yaml
from this repository to the policies repository:
cp policy-library/policies/constraints/require_dnssec.yaml ../gcp-policies/policies/constraints/require_dnssec.yaml
- On
gcp-policies
changeserviceusage_allow_basic_apis.yaml
and add the following apis:
- "aiplatform.googleapis.com"
- "bigquerymigration.googleapis.com"
- "bigquerystorage.googleapis.com"
- "containerregistry.googleapis.com"
- "dataflow.googleapis.com"
- "dataform.googleapis.com"
- "deploymentmanager.googleapis.com"
- "notebooks.googleapis.com"
- "composer.googleapis.com"
- "containerscanning.googleapis.com"
Add files to tracked on gcp-policies
repository, commit and push the code:
cd ../gcp-policies
git add policies/constraints/*.yaml
git commit -m "Add ML policies constraints"
git push origin $(git branch --show-current)
This step corresponds to modifications made to 1-org
step on foundation.
IMPORTANT: Please note that the steps below are assuming you are checked out on terraform-google-enterprise-genai/
and that gcp-org
repository is checked out on production
branch.
cd ../terraform-google-enterprise-genai
- Copy Machine Learning modules from this repo to
gcp-org
repository.
cp -r 1-org/modules/ml_kms_keyring ../gcp-org/modules
cp -r 1-org/modules/ml-org-policies ../gcp-org/modules
- Create
ml_ops_org_policy.tf
file ongcp-org/envs/shared
path:
cp docs/assets/terraform/1-org/ml_ops_org_policy.tf ../gcp-org/envs/shared
- Create
ml_key_rings.tf
file ongcp-org/envs/shared
path:
cp docs/assets/terraform/1-org/ml_key_rings.tf ../gcp-org/envs/shared
- Edit
gcp-org/envs/shared/remote.tf
and add the following value tolocals
:
projects_step_terraform_service_account_email = data.terraform_remote_state.bootstrap.outputs.projects_step_terraform_service_account_email
- Edit
gcp-org/envs/shared/variables.tf
and add the following variables:
variable "keyring_regions" {
description = "Regions to create keyrings in"
type = list(string)
default = [
"us-central1",
"us-east4"
]
}
variable "keyring_name" {
description = "Name to be used for KMS Keyring"
type = string
default = "ml-org-keyring"
}
- Edit
gcp-org/envs/shared/outputs.tf
and add the following output:
output "key_rings" {
description = "Keyring Names created"
value = module.kms_keyring.key_rings
}
Add files to git on gcp-org
, commit and push code:
cd ../gcp-org
git add .
git commit -m "Add ML org policies and Org-level key"
git push origin production
This step corresponds to modifications made to 2-environment
step on foundation.
Please note that the steps below are assuming you are checked out on terraform-google-enterprise-genai/
.
cd ../terraform-google-enterprise-genai
- Go to
gcp-environments
repository, and check out ondevelopment
branch.
cd ../gcp-environments
git checkout development
- Return to
terraform-google-enterprise-genai
repo.
cd ../terraform-google-enterprise-genai
- Copy Machine Learning modules from this repo to
gcp-environments
repository.
cp -r 2-environments/modules/ml_kms_keyring ../gcp-environments/modules
- Create
ml_key_rings.tf
file ongcp-environments/modules/env_baseline
path:
cp docs/assets/terraform/2-environments/ml_key_rings.tf ../gcp-environments/modules/env_baseline
- Create
ml_logging.tf
file ongcp-environments/modules/env_baseline
path:
cp docs/assets/terraform/2-environments/ml_logging.tf ../gcp-environments/modules/env_baseline
- On
gcp-environments/modules/env_baseline/variables.tf
add the following variables:
variable "keyring_name" {
description = "Name to be used for KMS Keyring"
type = string
default = "ml-env-keyring"
}
variable "keyring_regions" {
description = "Regions to create keyrings in"
type = list(string)
default = [
"us-central1",
"us-east4"
]
}
variable "kms_prevent_destroy" {
description = "Wheter to prevent keyring and keys destruction. Must be set to false if the user wants to disable accidental terraform deletions protection."
type = bool
default = true
}
variable "gcs_bucket_prefix" {
description = "Bucket Prefix"
type = string
default = "bkt"
}
variable "gcs_logging_bucket_location" {
description = "Location of environment logging bucket"
type = string
default = "us-central1"
}
variable "gcs_logging_retention_period" {
description = "Retention configuration for environment logging bucket"
type = object({
is_locked = bool
retention_period_days = number
})
default = null
}
variable "gcs_logging_key_rotation_period" {
description = "Rotation period in seconds to be used for KMS Key"
type = string
default = "7776000s"
}
- On
gcp-environments/modules/env_baseline/variables.tf
add the following field toproject_budget
specification:
logging_budget_amount = optional(number, 1000)
logging_alert_spent_percents = optional(list(number), [1.2])
logging_alert_pubsub_topic = optional(string, null)
logging_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
This will result in a variable similar to the variable specified below:
variable "project_budget" {
description = <<EOT
Budget configuration for projects.
budget_amount: The amount to use as the budget.
alert_spent_percents: A list of percentages of the budget to alert on when threshold is exceeded.
alert_pubsub_topic: The name of the Cloud Pub/Sub topic where budget related messages will be published, in the form of `projects/{project_id}/topics/{topic_id}`.
alert_spend_basis: The type of basis used to determine if spend has passed the threshold. Possible choices are `CURRENT_SPEND` or `FORECASTED_SPEND` (default).
EOT
type = object({
base_network_budget_amount = optional(number, 1000)
base_network_alert_spent_percents = optional(list(number), [1.2])
base_network_alert_pubsub_topic = optional(string, null)
base_network_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
restricted_network_budget_amount = optional(number, 1000)
restricted_network_alert_spent_percents = optional(list(number), [1.2])
restricted_network_alert_pubsub_topic = optional(string, null)
restricted_network_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
monitoring_budget_amount = optional(number, 1000)
monitoring_alert_spent_percents = optional(list(number), [1.2])
monitoring_alert_pubsub_topic = optional(string, null)
monitoring_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
secret_budget_amount = optional(number, 1000)
secret_alert_spent_percents = optional(list(number), [1.2])
secret_alert_pubsub_topic = optional(string, null)
secret_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
kms_budget_amount = optional(number, 1000)
kms_alert_spent_percents = optional(list(number), [1.2])
kms_alert_pubsub_topic = optional(string, null)
kms_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
logging_budget_amount = optional(number, 1000)
logging_alert_spent_percents = optional(list(number), [1.2])
logging_alert_pubsub_topic = optional(string, null)
logging_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
})
default = {}
}
- On
gcp-environments/modules/env_baseline/remote.tf
add the following value tolocals
:
projects_step_terraform_service_account_email = data.terraform_remote_state.bootstrap.outputs.projects_step_terraform_service_account_email
- On
gcp-environments/envs/development/outputs.tf
add the following outputs:
output "env_log_project_id" {
description = "Project ID of the environments log project"
value = module.env.env_logs_project_id
}
output "env_log_project_number" {
description = "Project Number of the environments log project"
value = module.env.env_logs_project_number
}
output "env_log_bucket_name" {
description = "Name of environment log bucket"
value = module.env.env_log_bucket_name
}
output "env_kms_project_number" {
description = "Project Number for environment Cloud Key Management Service (KMS)."
value = module.env.env_kms_project_number
}
output "key_rings" {
description = "Keyring Names created"
value = module.env.key_rings
}
- On
gcp-environments/modules/env_baseline/outputs.tf
add the following outputs:
output "key_rings" {
description = "Keyring Names created"
value = module.kms_keyring.key_rings
}
output "env_kms_project_number" {
description = "Project number for environment Cloud Key Management Service (KMS)."
value = module.env_kms.project_number
}
output "env_logs_project_id" {
description = "Project ID for environment logging."
value = module.env_logs.project_id
}
output "env_logs_project_number" {
description = "Project number for environment logging."
value = module.env_logs.project_number
}
output "env_log_bucket_name" {
description = "Name of environment log bucket"
value = google_storage_bucket.log_bucket.name
}
- Commit and push files to git repo.
cd ../gcp-environments
git add .
git commit -m "Create env-level keys and env-level logging"
git push origin development
- Go to
gcp-environments
repository, and check out onnonproduction
branch.
cd ../gcp-environments
git checkout nonproduction
- Return to
terraform-google-enterprise-genai
repo.
cd ../terraform-google-enterprise-genai
- Copy Machine Learning modules from this repo to
gcp-environments
repository.
cp -r 2-environments/modules/ml_kms_keyring ../gcp-environments/modules
- Create
ml_key_rings.tf
file ongcp-environments/modules/env_baseline
path:
cp docs/assets/terraform/2-environments/ml_key_rings.tf ../gcp-environments/modules/env_baseline
- Create
ml_logging.tf
file ongcp-environments/modules/env_baseline
path:
cp docs/assets/terraform/2-environments/ml_logging.tf ../gcp-environments/modules/env_baseline
- On
gcp-environments/modules/env_baseline/variables.tf
add the following variables:
variable "keyring_name" {
description = "Name to be used for KMS Keyring"
type = string
default = "ml-env-keyring"
}
variable "keyring_regions" {
description = "Regions to create keyrings in"
type = list(string)
default = [
"us-central1",
"us-east4"
]
}
variable "kms_prevent_destroy" {
description = "Wheter to prevent keyring and keys destruction. Must be set to false if the user wants to disable accidental terraform deletions protection."
type = bool
default = true
}
variable "gcs_bucket_prefix" {
description = "Bucket Prefix"
type = string
default = "bkt"
}
variable "gcs_logging_bucket_location" {
description = "Location of environment logging bucket"
type = string
default = "us-central1"
}
variable "gcs_logging_retention_period" {
description = "Retention configuration for environment logging bucket"
type = object({
is_locked = bool
retention_period_days = number
})
default = null
}
variable "gcs_logging_key_rotation_period" {
description = "Rotation period in seconds to be used for KMS Key"
type = string
default = "7776000s"
}
- On
gcp-environments/modules/env_baseline/variables.tf
add the following field toproject_budget
specification:
logging_budget_amount = optional(number, 1000)
logging_alert_spent_percents = optional(list(number), [1.2])
logging_alert_pubsub_topic = optional(string, null)
logging_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
This will result in a variable similar to the variable specified below:
variable "project_budget" {
description = <<EOT
Budget configuration for projects.
budget_amount: The amount to use as the budget.
alert_spent_percents: A list of percentages of the budget to alert on when threshold is exceeded.
alert_pubsub_topic: The name of the Cloud Pub/Sub topic where budget related messages will be published, in the form of `projects/{project_id}/topics/{topic_id}`.
alert_spend_basis: The type of basis used to determine if spend has passed the threshold. Possible choices are `CURRENT_SPEND` or `FORECASTED_SPEND` (default).
EOT
type = object({
base_network_budget_amount = optional(number, 1000)
base_network_alert_spent_percents = optional(list(number), [1.2])
base_network_alert_pubsub_topic = optional(string, null)
base_network_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
restricted_network_budget_amount = optional(number, 1000)
restricted_network_alert_spent_percents = optional(list(number), [1.2])
restricted_network_alert_pubsub_topic = optional(string, null)
restricted_network_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
monitoring_budget_amount = optional(number, 1000)
monitoring_alert_spent_percents = optional(list(number), [1.2])
monitoring_alert_pubsub_topic = optional(string, null)
monitoring_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
secret_budget_amount = optional(number, 1000)
secret_alert_spent_percents = optional(list(number), [1.2])
secret_alert_pubsub_topic = optional(string, null)
secret_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
kms_budget_amount = optional(number, 1000)
kms_alert_spent_percents = optional(list(number), [1.2])
kms_alert_pubsub_topic = optional(string, null)
kms_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
logging_budget_amount = optional(number, 1000)
logging_alert_spent_percents = optional(list(number), [1.2])
logging_alert_pubsub_topic = optional(string, null)
logging_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
})
default = {}
}
- On
gcp-environments/modules/env_baseline/remote.tf
add the following value tolocals
:
projects_step_terraform_service_account_email = data.terraform_remote_state.bootstrap.outputs.projects_step_terraform_service_account_email
- On
gcp-environments/envs/nonproduction/outputs.tf
add the following outputs:
output "env_log_project_id" {
description = "Project ID of the environments log project"
value = module.env.env_logs_project_id
}
output "env_log_project_number" {
description = "Project Number of the environments log project"
value = module.env.env_logs_project_number
}
output "env_log_bucket_name" {
description = "Name of environment log bucket"
value = module.env.env_log_bucket_name
}
output "env_kms_project_number" {
description = "Project Number for environment Cloud Key Management Service (KMS)."
value = module.env.env_kms_project_number
}
output "key_rings" {
description = "Keyring Names created"
value = module.env.key_rings
}
- On
gcp-environments/modules/env_baseline/outputs.tf
add the following outputs:
output "key_rings" {
description = "Keyring Names created"
value = module.kms_keyring.key_rings
}
output "env_kms_project_number" {
description = "Project number for environment Cloud Key Management Service (KMS)."
value = module.env_kms.project_number
}
output "env_logs_project_id" {
description = "Project ID for environment logging."
value = module.env_logs.project_id
}
output "env_logs_project_number" {
description = "Project number for environment logging."
value = module.env_logs.project_number
}
output "env_log_bucket_name" {
description = "Name of environment log bucket"
value = google_storage_bucket.log_bucket.name
}
- Commit and push files to git repo.
cd ../gcp-environments
git add .
git commit -m "Create env-level keys and env-level logging"
git push origin nonproduction
- Go to
gcp-environments
repository, and check out onproduction
branch.
cd ../gcp-environments
git checkout production
- Return to
terraform-google-enterprise-genai
repo.
cd ../terraform-google-enterprise-genai
- Copy Machine Learning modules from this repo to
gcp-environments
repository.
cp -r 2-environments/modules/ml_kms_keyring ../gcp-environments/modules
- Create
ml_key_rings.tf
file ongcp-environments/modules/env_baseline
path:
cp docs/assets/terraform/2-environments/ml_key_rings.tf ../gcp-environments/modules/env_baseline
- Create
ml_logging.tf
file ongcp-environments/modules/env_baseline
path:
cp docs/assets/terraform/2-environments/ml_logging.tf ../gcp-environments/modules/env_baseline
- On
gcp-environments/modules/env_baseline/variables.tf
add the following variables:
variable "keyring_name" {
description = "Name to be used for KMS Keyring"
type = string
default = "ml-env-keyring"
}
variable "keyring_regions" {
description = "Regions to create keyrings in"
type = list(string)
default = [
"us-central1",
"us-east4"
]
}
variable "kms_prevent_destroy" {
description = "Wheter to prevent keyring and keys destruction. Must be set to false if the user wants to disable accidental terraform deletions protection."
type = bool
default = true
}
variable "gcs_bucket_prefix" {
description = "Bucket Prefix"
type = string
default = "bkt"
}
variable "gcs_logging_bucket_location" {
description = "Location of environment logging bucket"
type = string
default = "us-central1"
}
variable "gcs_logging_retention_period" {
description = "Retention configuration for environment logging bucket"
type = object({
is_locked = bool
retention_period_days = number
})
default = null
}
variable "gcs_logging_key_rotation_period" {
description = "Rotation period in seconds to be used for KMS Key"
type = string
default = "7776000s"
}
- On
gcp-environments/modules/env_baseline/variables.tf
add the following field toproject_budget
specification:
logging_budget_amount = optional(number, 1000)
logging_alert_spent_percents = optional(list(number), [1.2])
logging_alert_pubsub_topic = optional(string, null)
logging_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
This will result in a variable similar to the variable specified below:
variable "project_budget" {
description = <<EOT
Budget configuration for projects.
budget_amount: The amount to use as the budget.
alert_spent_percents: A list of percentages of the budget to alert on when threshold is exceeded.
alert_pubsub_topic: The name of the Cloud Pub/Sub topic where budget related messages will be published, in the form of `projects/{project_id}/topics/{topic_id}`.
alert_spend_basis: The type of basis used to determine if spend has passed the threshold. Possible choices are `CURRENT_SPEND` or `FORECASTED_SPEND` (default).
EOT
type = object({
base_network_budget_amount = optional(number, 1000)
base_network_alert_spent_percents = optional(list(number), [1.2])
base_network_alert_pubsub_topic = optional(string, null)
base_network_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
restricted_network_budget_amount = optional(number, 1000)
restricted_network_alert_spent_percents = optional(list(number), [1.2])
restricted_network_alert_pubsub_topic = optional(string, null)
restricted_network_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
monitoring_budget_amount = optional(number, 1000)
monitoring_alert_spent_percents = optional(list(number), [1.2])
monitoring_alert_pubsub_topic = optional(string, null)
monitoring_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
secret_budget_amount = optional(number, 1000)
secret_alert_spent_percents = optional(list(number), [1.2])
secret_alert_pubsub_topic = optional(string, null)
secret_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
kms_budget_amount = optional(number, 1000)
kms_alert_spent_percents = optional(list(number), [1.2])
kms_alert_pubsub_topic = optional(string, null)
kms_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
logging_budget_amount = optional(number, 1000)
logging_alert_spent_percents = optional(list(number), [1.2])
logging_alert_pubsub_topic = optional(string, null)
logging_budget_alert_spend_basis = optional(string, "FORECASTED_SPEND")
})
default = {}
}
- On
gcp-environments/modules/env_baseline/remote.tf
add the following value tolocals
:
projects_step_terraform_service_account_email = data.terraform_remote_state.bootstrap.outputs.projects_step_terraform_service_account_email
- On
gcp-environments/envs/production/outputs.tf
add the following outputs:
output "env_log_project_id" {
description = "Project ID of the environments log project"
value = module.env.env_logs_project_id
}
output "env_log_project_number" {
description = "Project Number of the environments log project"
value = module.env.env_logs_project_number
}
output "env_log_bucket_name" {
description = "Name of environment log bucket"
value = module.env.env_log_bucket_name
}
output "env_kms_project_number" {
description = "Project Number for environment Cloud Key Management Service (KMS)."
value = module.env.env_kms_project_number
}
output "key_rings" {
description = "Keyring Names created"
value = module.env.key_rings
}
- On
gcp-environments/modules/env_baseline/outputs.tf
add the following outputs:
output "key_rings" {
description = "Keyring Names created"
value = module.kms_keyring.key_rings
}
output "env_kms_project_number" {
description = "Project number for environment Cloud Key Management Service (KMS)."
value = module.env_kms.project_number
}
output "env_logs_project_id" {
description = "Project ID for environment logging."
value = module.env_logs.project_id
}
output "env_logs_project_number" {
description = "Project number for environment logging."
value = module.env_logs.project_number
}
output "env_log_bucket_name" {
description = "Name of environment log bucket"
value = google_storage_bucket.log_bucket.name
}
- Commit and push files to git repo.
cd ../gcp-environments
git add .
git commit -m "Create env-level keys and env-level logging"
git push origin production
A logging project will be created in every environment (development
, non-production
, production
) when running this code. This project contains a storage bucket for the purposes of project logging within its respective environment. This requires the [email protected]
group permissions for the storage bucket. Since foundations has more restricted security measures, a domain restriction constraint is enforced. This restraint will prevent the google cloud-storage-analytics group to be added to any permissions. In order for this terraform code to execute without error, manual intervention must be made to ensure everything applies without issue.
You must disable the contraint, assign the permission on the bucket and then apply the contraint again. This step-by-step presents you with two different options (Option 1
and Option 2
) and only one of them should be executed.
The first and the recommended option is making the changes by using gcloud
cli, as described in Option 1
.
Option 2
is an alternative to gcloud
cli and relies on Google Cloud Console.
You will be doing this procedure for each environment (development
, non-production
& production
)
-
Configure the following variable below with the value of
gcp-environments
repository path.export GCP_ENVIRONMENTS_PATH=INSERT_YOUR_PATH_HERE
Make sure your git is checked out to the development branch by running
git checkout development
onGCP_ENVIRONMENTS_PATH
.(cd $GCP_ENVIRONMENTS_PATH && git checkout development)
-
Retrieve the bucket name and project id from terraform outputs.
export ENV_LOG_BUCKET_NAME=$(terraform -chdir="$GCP_ENVIRONMENTS_PATH/envs/development" output -raw env_log_bucket_name) export ENV_LOG_PROJECT_ID=$(terraform -chdir="$GCP_ENVIRONMENTS_PATH/envs/development" output -raw env_log_project_id)
-
Validate the variable values.
echo env_log_project_id=$ENV_LOG_PROJECT_ID echo env_log_bucket_name=$ENV_LOG_BUCKET_NAME
-
Reset your org policy for the logging project by running the following command.
gcloud org-policies reset iam.allowedPolicyMemberDomains --project=$ENV_LOG_PROJECT_ID
-
Assign
roles/storage.objectCreator
role to[email protected]
group.gcloud storage buckets add-iam-policy-binding gs://$ENV_LOG_BUCKET_NAME --member="group:[email protected]" --role="roles/storage.objectCreator"
Note: you might receive an error telling you that this is against an organization policy, this can happen because of the propagation time from the change made to the organization policy (propagation time is tipically 2 minutes, but can take 7 minutes or longer). If this happens, wait some minutes and try again
-
Delete the change made on the first step to the organization policy, this will make the project inherit parent policies.
gcloud org-policies delete iam.allowedPolicyMemberDomains --project=$ENV_LOG_PROJECT_ID
-
Configure the following variable below with the value of
gcp-environments
repository path.export GCP_ENVIRONMENTS_PATH=INSERT_YOUR_PATH_HERE
Make sure your git is checked out to the
non-production
branch by runninggit checkout nonproduction
onGCP_ENVIRONMENTS_PATH
.(cd $GCP_ENVIRONMENTS_PATH && git checkout nonproduction)
-
Retrieve the bucket name and project id from terraform outputs.
export ENV_LOG_BUCKET_NAME=$(terraform -chdir="$GCP_ENVIRONMENTS_PATH/envs/nonproduction" output -raw env_log_bucket_name) export ENV_LOG_PROJECT_ID=$(terraform -chdir="$GCP_ENVIRONMENTS_PATH/envs/nonproduction" output -raw env_log_project_id)
-
Validate the variable values.
echo env_log_project_id=$ENV_LOG_PROJECT_ID echo env_log_bucket_name=$ENV_LOG_BUCKET_NAME
-
Reset your org policy for the logging project by running the following command.
gcloud org-policies reset iam.allowedPolicyMemberDomains --project=$ENV_LOG_PROJECT_ID
-
Assign
roles/storage.objectCreator
role to[email protected]
group.gcloud storage buckets add-iam-policy-binding gs://$ENV_LOG_BUCKET_NAME --member="group:[email protected]" --role="roles/storage.objectCreator"
Note: you might receive an error telling you that this is against an organization policy, this can happen because of the propagation time from the change made to the organization policy (propagation time is tipically 2 minutes, but can take 7 minutes or longer). If this happens, wait some minutes and try again
-
Delete the change made on the first step to the organization policy, this will make the project inherit parent policies.
gcloud org-policies delete iam.allowedPolicyMemberDomains --project=$ENV_LOG_PROJECT_ID
-
Configure the following variable below with the value of
gcp-environments
repository path.export GCP_ENVIRONMENTS_PATH=INSERT_YOUR_PATH_HERE
Make sure your git is checked out to the
production
branch by runninggit checkout production
onGCP_ENVIRONMENTS_PATH
.(cd $GCP_ENVIRONMENTS_PATH && git checkout production)
-
Retrieve the bucket name and project id from terraform outputs.
export ENV_LOG_BUCKET_NAME=$(terraform -chdir="$GCP_ENVIRONMENTS_PATH/envs/production" output -raw env_log_bucket_name) export ENV_LOG_PROJECT_ID=$(terraform -chdir="$GCP_ENVIRONMENTS_PATH/envs/production" output -raw env_log_project_id)
-
Validate the variable values.
echo env_log_project_id=$ENV_LOG_PROJECT_ID echo env_log_bucket_name=$ENV_LOG_BUCKET_NAME
-
Reset your org policy for the logging project by running the following command.
gcloud org-policies reset iam.allowedPolicyMemberDomains --project=$ENV_LOG_PROJECT_ID
-
Assign
roles/storage.objectCreator
role to[email protected]
group.gcloud storage buckets add-iam-policy-binding gs://$ENV_LOG_BUCKET_NAME --member="group:[email protected]" --role="roles/storage.objectCreator"
Note: you might receive an error telling you that this is against an organization policy, this can happen because of the propagation time from the change made to the organization policy (propagation time is tipically 2 minutes, but can take 7 minutes or longer). If this happens, wait some minutes and try again
-
Delete the change made on the first step to the organization policy, this will make the project inherit parent policies.
gcloud org-policies delete iam.allowedPolicyMemberDomains --project=$ENV_LOG_PROJECT_ID
Proceed with these steps only if Option 1
is not chosen.
-
On
ml_logging.tf
locate the following lines and uncomment them:resource "google_storage_bucket_iam_member" "bucket_logging" { bucket = google_storage_bucket.log_bucket.name role = "roles/storage.objectCreator" member = "group:[email protected]" }
-
Under
IAM & Admin
, selectOrganization Policies
. Search for "Domain Restricted Sharing". -
Select 'Manage Policy'. This directs you to the Domain Restricted Sharing Edit Policy page. It will be set at 'Inherit parent's policy'. Change this to 'Google-managed default'.
-
Follow the instructions on checking out
development
,non-production
&production
branches. Once environments terraform code has successfully applied, edit the policy again and select 'Inherit parent's policy' and ClickSET POLICY
.
After making these modifications, you can follow the README.md procedure for 2-environment
step on foundation, make sure you change the organization policy after running the steps on foundation.
3-network: Configure private DNS zone for Vertex Workbench Instances, Enable NAT and Attach projects to perimeter
This step corresponds to modifications made to 3-networks-dual-svpc
step on foundation.
Please note that the steps below are assuming you are checked out on terraform-google-enterprise-genai/
.
cd ../terraform-google-enterprise-genai
- Go to
gcp-networks
repository, and check out ondevelopment
branch.
cd ../gcp-networks
git checkout development
- Return to
terraform-google-enterprise-genai
repo.
cd ../terraform-google-enterprise-genai
- Copy DNS notebook network module from this repo to
gcp-networks
repository.
cp -r 3-networks-dual-svpc/modules/ml_dns_notebooks ../gcp-networks/modules
- Create a file named
ml_dns_notebooks.tf
on pathgcp-networks/modules/base_env
:
cp docs/assets/terraform/3-networks-dual-svpc/ml_dns_notebooks.tf ../gcp-networks/modules/base_env
Commit and push files to git repo.
cd ../gcp-networks
git add .
git commit -m "Create DNS notebook configuration"
git push origin development
Create gcp-networks/modules/base_env/data.tf
file with the following content:
/**
* Copyright 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
data "google_netblock_ip_ranges" "legacy_health_checkers" {
range_type = "legacy-health-checkers"
}
data "google_netblock_ip_ranges" "health_checkers" {
range_type = "health-checkers"
}
// Cloud IAP's TCP forwarding netblock
data "google_netblock_ip_ranges" "iap_forwarders" {
range_type = "iap-forwarders"
}
On gcp-networks/modules/restricted_shared_vpc/variables.tf
add the following variables:
variable "perimeter_projects" {
description = "A list of project numbers to be added to the service perimeter"
type = list(number)
default = []
}
variable "allow_all_egress_ranges" {
description = "List of network ranges to which all egress traffic will be allowed"
default = null
}
variable "allow_all_ingress_ranges" {
description = "List of network ranges from which all ingress traffic will be allowed"
default = null
}
On gcp-networks/modules/base_env/remote.tf
:
-
Add the env remote state, by adding the following terraform code to the file:
data "terraform_remote_state" "env" { backend = "gcs" config = { bucket = var.remote_state_bucket prefix = "terraform/environments/${var.env}" } }
-
Edit
locals
and add the following fields:logging_env_project_number = data.terraform_remote_state.env.outputs.env_log_project_number kms_env_project_number = data.terraform_remote_state.env.outputs.env_kms_project_number
-
The final result will contain existing locals and the added ones, it should look similar to the code below:
locals { restricted_project_id = data.terraform_remote_state.org.outputs.shared_vpc_projects[var.env].restricted_shared_vpc_project_id restricted_project_number = data.terraform_remote_state.org.outputs.shared_vpc_projects[var.env].restricted_shared_vpc_project_number base_project_id = data.terraform_remote_state.org.outputs.shared_vpc_projects[var.env].base_shared_vpc_project_id interconnect_project_number = data.terraform_remote_state.org.outputs.interconnect_project_number dns_hub_project_id = data.terraform_remote_state.org.outputs.dns_hub_project_id organization_service_account = data.terraform_remote_state.bootstrap.outputs.organization_step_terraform_service_account_email networks_service_account = data.terraform_remote_state.bootstrap.outputs.networks_step_terraform_service_account_email projects_service_account = data.terraform_remote_state.bootstrap.outputs.projects_step_terraform_service_account_email logging_env_project_number = data.terraform_remote_state.env.outputs.env_log_project_number kms_env_project_number = data.terraform_remote_state.env.outputs.env_kms_project_number }
On gcp-networks/modules/restricted_shared_vpc/service_control.tf
, modify the terraform module called regular_service_perimeter and add the following module field to resources
:
distinct(concat([var.project_number], var.perimeter_projects))
This shall result in a module similar to the code below:
module "regular_service_perimeter" {
source = "terraform-google-modules/vpc-service-controls/google//modules/regular_service_perimeter"
version = "~> 4.0"
policy = var.access_context_manager_policy_id
perimeter_name = local.perimeter_name
description = "Default VPC Service Controls perimeter"
resources = distinct(concat([var.project_number], var.perimeter_projects))
access_levels = [module.access_level_members.name]
restricted_services = var.restricted_services
vpc_accessible_services = ["RESTRICTED-SERVICES"]
ingress_policies = var.ingress_policies
egress_policies = var.egress_policies
depends_on = [
time_sleep.wait_vpc_sc_propagation
]
}
On gcp-networks/modules/restricted_shared_vpc/firewall.tf
add the following firewall rules by adding the terraform code below to the file:
resource "google_compute_firewall" "allow_all_egress" {
count = var.allow_all_egress_ranges != null ? 1 : 0
name = "fw-${var.environment_code}-shared-base-1000-e-a-all-all-all"
network = module.main.network_name
project = var.project_id
direction = "EGRESS"
priority = 1000
dynamic "log_config" {
for_each = var.firewall_enable_logging == true ? [{
metadata = "INCLUDE_ALL_METADATA"
}] : []
content {
metadata = log_config.value.metadata
}
}
allow {
protocol = "all"
}
destination_ranges = var.allow_all_egress_ranges
}
resource "google_compute_firewall" "allow_all_ingress" {
count = var.allow_all_ingress_ranges != null ? 1 : 0
name = "fw-${var.environment_code}-shared-base-1000-i-a-all"
network = module.main.network_name
project = var.project_id
direction = "INGRESS"
priority = 1000
dynamic "log_config" {
for_each = var.firewall_enable_logging == true ? [{
metadata = "INCLUDE_ALL_METADATA"
}] : []
content {
metadata = log_config.value.metadata
}
}
allow {
protocol = "all"
}
source_ranges = var.allow_all_ingress_ranges
}
On gcp-networks/modules/base_env/main.tf
edit the terraform module named restricted_shared_vpc and add the following fields to it:
allow_all_ingress_ranges = concat(data.google_netblock_ip_ranges.health_checkers.cidr_blocks_ipv4, data.google_netblock_ip_ranges.legacy_health_checkers.cidr_blocks_ipv4, data.google_netblock_ip_ranges.iap_forwarders.cidr_blocks_ipv4)
allow_all_egress_ranges = ["0.0.0.0/0"]
nat_enabled = true
nat_num_addresses_region1 = 1
nat_num_addresses_region2 = 1
perimeter_projects = [local.logging_env_project_number, local.kms_env_project_number]
Commit all changes and push to the current branch.
git add .
git commit -m "Create custom fw rules, enable nat, configure dns and service perimeter"
git push origin development
- Go to
gcp-networks
repository, and check out onnonproduction
branch.
cd ../gcp-networks
git checkout nonproduction
- Return to
terraform-google-enterprise-genai
repo.
cd ../terraform-google-enterprise-genai
- Copy DNS notebook network module from this repo to
gcp-networks
repository.
cp -r 3-networks-dual-svpc/modules/ml_dns_notebooks ../gcp-networks/modules
- Create a file named
ml_dns_notebooks.tf
on pathgcp-networks/modules/base_env
:
cp docs/assets/terraform/3-networks-dual-svpc/ml_dns_notebooks.tf ../gcp-networks/modules/base_env
Commit and push files to git repo.
cd ../gcp-networks
git add .
git commit -m "Create DNS notebook configuration"
git push origin nonproduction
Enabling NAT, Attaching projects to Service Perimeter and Creating custom firewall rules (non-production)
Create gcp-networks/modules/base_env/data.tf
file with the following content:
/**
* Copyright 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
data "google_netblock_ip_ranges" "legacy_health_checkers" {
range_type = "legacy-health-checkers"
}
data "google_netblock_ip_ranges" "health_checkers" {
range_type = "health-checkers"
}
// Cloud IAP's TCP forwarding netblock
data "google_netblock_ip_ranges" "iap_forwarders" {
range_type = "iap-forwarders"
}
On gcp-networks/modules/restricted_shared_vpc/variables.tf
add the following variables:
variable "perimeter_projects" {
description = "A list of project numbers to be added to the service perimeter"
type = list(number)
default = []
}
variable "allow_all_egress_ranges" {
description = "List of network ranges to which all egress traffic will be allowed"
default = null
}
variable "allow_all_ingress_ranges" {
description = "List of network ranges from which all ingress traffic will be allowed"
default = null
}
On gcp-networks/modules/base_env/remote.tf
:
-
Add the env remote state, by adding the following terraform code to the file:
data "terraform_remote_state" "env" { backend = "gcs" config = { bucket = var.remote_state_bucket prefix = "terraform/environments/${var.env}" } }
-
Edit
locals
and add the following fields:logging_env_project_number = data.terraform_remote_state.env.outputs.env_log_project_number kms_env_project_number = data.terraform_remote_state.env.outputs.env_kms_project_number
-
The final result will contain existing locals and the added ones, it should look similar to the code below:
locals { restricted_project_id = data.terraform_remote_state.org.outputs.shared_vpc_projects[var.env].restricted_shared_vpc_project_id restricted_project_number = data.terraform_remote_state.org.outputs.shared_vpc_projects[var.env].restricted_shared_vpc_project_number base_project_id = data.terraform_remote_state.org.outputs.shared_vpc_projects[var.env].base_shared_vpc_project_id interconnect_project_number = data.terraform_remote_state.org.outputs.interconnect_project_number dns_hub_project_id = data.terraform_remote_state.org.outputs.dns_hub_project_id organization_service_account = data.terraform_remote_state.bootstrap.outputs.organization_step_terraform_service_account_email networks_service_account = data.terraform_remote_state.bootstrap.outputs.networks_step_terraform_service_account_email projects_service_account = data.terraform_remote_state.bootstrap.outputs.projects_step_terraform_service_account_email logging_env_project_number = data.terraform_remote_state.env.outputs.env_log_project_number kms_env_project_number = data.terraform_remote_state.env.outputs.env_kms_project_number }
On gcp-networks/modules/restricted_shared_vpc/service_control.tf
, modify the terraform module called regular_service_perimeter and add the following module field to resources
:
distinct(concat([var.project_number], var.perimeter_projects))
This shall result in a module similar to the code below:
module "regular_service_perimeter" {
source = "terraform-google-modules/vpc-service-controls/google//modules/regular_service_perimeter"
version = "~> 4.0"
policy = var.access_context_manager_policy_id
perimeter_name = local.perimeter_name
description = "Default VPC Service Controls perimeter"
resources = distinct(concat([var.project_number], var.perimeter_projects))
access_levels = [module.access_level_members.name]
restricted_services = var.restricted_services
vpc_accessible_services = ["RESTRICTED-SERVICES"]
ingress_policies = var.ingress_policies
egress_policies = var.egress_policies
depends_on = [
time_sleep.wait_vpc_sc_propagation
]
}
On gcp-networks/modules/restricted_shared_vpc/firewall.tf
add the following firewall rules by adding the terraform code below to the file:
resource "google_compute_firewall" "allow_all_egress" {
count = var.allow_all_egress_ranges != null ? 1 : 0
name = "fw-${var.environment_code}-shared-base-1000-e-a-all-all-all"
network = module.main.network_name
project = var.project_id
direction = "EGRESS"
priority = 1000
dynamic "log_config" {
for_each = var.firewall_enable_logging == true ? [{
metadata = "INCLUDE_ALL_METADATA"
}] : []
content {
metadata = log_config.value.metadata
}
}
allow {
protocol = "all"
}
destination_ranges = var.allow_all_egress_ranges
}
resource "google_compute_firewall" "allow_all_ingress" {
count = var.allow_all_ingress_ranges != null ? 1 : 0
name = "fw-${var.environment_code}-shared-base-1000-i-a-all"
network = module.main.network_name
project = var.project_id
direction = "INGRESS"
priority = 1000
dynamic "log_config" {
for_each = var.firewall_enable_logging == true ? [{
metadata = "INCLUDE_ALL_METADATA"
}] : []
content {
metadata = log_config.value.metadata
}
}
allow {
protocol = "all"
}
source_ranges = var.allow_all_ingress_ranges
}
On gcp-networks/modules/base_env/main.tf
edit the terraform module named restricted_shared_vpc and add the following fields to it:
allow_all_ingress_ranges = concat(data.google_netblock_ip_ranges.health_checkers.cidr_blocks_ipv4, data.google_netblock_ip_ranges.legacy_health_checkers.cidr_blocks_ipv4, data.google_netblock_ip_ranges.iap_forwarders.cidr_blocks_ipv4)
allow_all_egress_ranges = ["0.0.0.0/0"]
nat_enabled = true
nat_num_addresses_region1 = 1
nat_num_addresses_region2 = 1
perimeter_projects = [local.logging_env_project_number, local.kms_env_project_number]
Commit all changes and push to the current branch.
git add .
git commit -m "Create custom fw rules, enable nat, configure dns and service perimeter"
git push origin nonproduction
- Go to
gcp-networks
repository, and check out onproduction
branch.
cd ../gcp-networks
git checkout production
- Return to
terraform-google-enterprise-genai
repo.
cd ../terraform-google-enterprise-genai
- Copy DNS notebook network module from this repo to
gcp-networks
repository.
cp -r 3-networks-dual-svpc/modules/ml_dns_notebooks ../gcp-networks/modules
- Create a file named
ml_dns_notebooks.tf
on pathgcp-networks/modules/base_env
:
cp docs/assets/terraform/3-networks-dual-svpc/ml_dns_notebooks.tf ../gcp-networks/modules/base_env
Commit and push files to git repo.
cd ../gcp-networks
git add .
git commit -m "Create DNS notebook configuration"
git push origin production
Enabling NAT, Attaching projects to Service Perimeter and Creating custom firewall rules (production)
Create gcp-networks/modules/base_env/data.tf
file with the following content:
/**
* Copyright 2024 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
data "google_netblock_ip_ranges" "legacy_health_checkers" {
range_type = "legacy-health-checkers"
}
data "google_netblock_ip_ranges" "health_checkers" {
range_type = "health-checkers"
}
// Cloud IAP's TCP forwarding netblock
data "google_netblock_ip_ranges" "iap_forwarders" {
range_type = "iap-forwarders"
}
On gcp-networks/modules/restricted_shared_vpc/variables.tf
add the following variables:
variable "perimeter_projects" {
description = "A list of project numbers to be added to the service perimeter"
type = list(number)
default = []
}
variable "allow_all_egress_ranges" {
description = "List of network ranges to which all egress traffic will be allowed"
default = null
}
variable "allow_all_ingress_ranges" {
description = "List of network ranges from which all ingress traffic will be allowed"
default = null
}
On gcp-networks/modules/base_env/remote.tf
:
-
Add the env remote state, by adding the following terraform code to the file:
data "terraform_remote_state" "env" { backend = "gcs" config = { bucket = var.remote_state_bucket prefix = "terraform/environments/${var.env}" } }
-
Edit
locals
and add the following fields:logging_env_project_number = data.terraform_remote_state.env.outputs.env_log_project_number kms_env_project_number = data.terraform_remote_state.env.outputs.env_kms_project_number
-
The final result will contain existing locals and the added ones, it should look similar to the code below:
locals { restricted_project_id = data.terraform_remote_state.org.outputs.shared_vpc_projects[var.env].restricted_shared_vpc_project_id restricted_project_number = data.terraform_remote_state.org.outputs.shared_vpc_projects[var.env].restricted_shared_vpc_project_number base_project_id = data.terraform_remote_state.org.outputs.shared_vpc_projects[var.env].base_shared_vpc_project_id interconnect_project_number = data.terraform_remote_state.org.outputs.interconnect_project_number dns_hub_project_id = data.terraform_remote_state.org.outputs.dns_hub_project_id organization_service_account = data.terraform_remote_state.bootstrap.outputs.organization_step_terraform_service_account_email networks_service_account = data.terraform_remote_state.bootstrap.outputs.networks_step_terraform_service_account_email projects_service_account = data.terraform_remote_state.bootstrap.outputs.projects_step_terraform_service_account_email logging_env_project_number = data.terraform_remote_state.env.outputs.env_log_project_number kms_env_project_number = data.terraform_remote_state.env.outputs.env_kms_project_number }
On gcp-networks/modules/restricted_shared_vpc/service_control.tf
, modify the terraform module called regular_service_perimeter and add the following module field to resources
:
distinct(concat([var.project_number], var.perimeter_projects))
This shall result in a module similar to the code below:
module "regular_service_perimeter" {
source = "terraform-google-modules/vpc-service-controls/google//modules/regular_service_perimeter"
version = "~> 4.0"
policy = var.access_context_manager_policy_id
perimeter_name = local.perimeter_name
description = "Default VPC Service Controls perimeter"
resources = distinct(concat([var.project_number], var.perimeter_projects))
access_levels = [module.access_level_members.name]
restricted_services = var.restricted_services
vpc_accessible_services = ["RESTRICTED-SERVICES"]
ingress_policies = var.ingress_policies
egress_policies = var.egress_policies
depends_on = [
time_sleep.wait_vpc_sc_propagation
]
}
On gcp-networks/modules/restricted_shared_vpc/firewall.tf
add the following firewall rules by adding the terraform code below to the file:
resource "google_compute_firewall" "allow_all_egress" {
count = var.allow_all_egress_ranges != null ? 1 : 0
name = "fw-${var.environment_code}-shared-base-1000-e-a-all-all-all"
network = module.main.network_name
project = var.project_id
direction = "EGRESS"
priority = 1000
dynamic "log_config" {
for_each = var.firewall_enable_logging == true ? [{
metadata = "INCLUDE_ALL_METADATA"
}] : []
content {
metadata = log_config.value.metadata
}
}
allow {
protocol = "all"
}
destination_ranges = var.allow_all_egress_ranges
}
resource "google_compute_firewall" "allow_all_ingress" {
count = var.allow_all_ingress_ranges != null ? 1 : 0
name = "fw-${var.environment_code}-shared-base-1000-i-a-all"
network = module.main.network_name
project = var.project_id
direction = "INGRESS"
priority = 1000
dynamic "log_config" {
for_each = var.firewall_enable_logging == true ? [{
metadata = "INCLUDE_ALL_METADATA"
}] : []
content {
metadata = log_config.value.metadata
}
}
allow {
protocol = "all"
}
source_ranges = var.allow_all_ingress_ranges
}
On gcp-networks/modules/base_env/main.tf
edit the terraform module named restricted_shared_vpc and add the following fields to it:
allow_all_ingress_ranges = concat(data.google_netblock_ip_ranges.health_checkers.cidr_blocks_ipv4, data.google_netblock_ip_ranges.legacy_health_checkers.cidr_blocks_ipv4, data.google_netblock_ip_ranges.iap_forwarders.cidr_blocks_ipv4)
allow_all_egress_ranges = ["0.0.0.0/0"]
nat_enabled = true
nat_num_addresses_region1 = 1
nat_num_addresses_region2 = 1
perimeter_projects = [local.logging_env_project_number, local.kms_env_project_number]
Commit all changes and push to the current branch.
git add .
git commit -m "Create custom fw rules, enable nat, configure dns and service perimeter"
git push origin production
This step corresponds to modifications made to 4-projects
step on foundation.
Please note that the steps below are assuming you are checked out on terraform-google-enterprise-genai/
.
cd ../terraform-google-enterprise-genai
In this tutorial, we are using ml_business_unit
as an example.
You need to manually plan and apply only once the ml_business_unit/shared
.
- Go to
gcp-projects
repository and checkout toplan
branch.
cd ../gcp-projects
git checkout plan
- Return to GenAI repository.
cd ../terraform-google-enterprise-genai
- Copy
ml_business_unit
to thegcp-projects
repository.
cp -r docs/assets/terraform/4-projects/ml_business_unit ../gcp-projects
- Add modules to the
gcp-projects
repository.
cp -r docs/assets/terraform/4-projects/modules/* ../gcp-projects/modules
- Add
tfvars
to thegcp-projects
repository.
cp -r docs/assets/terraform/4-projects/*.example.tfvars ../gcp-projects
- Go to
gcp-projects
repository.
cd ../gcp-projects
- Update project backend by retrieving it's value from
0-bootstrap
and applying it tobackend.tf
.
export PROJECT_BACKEND=$(terraform -chdir="../gcp-bootstrap/envs/shared" output -raw projects_gcs_bucket_tfstate)
for file in $(find . -name backend.tf); do sed -i "s/UPDATE_PROJECTS_BACKEND/$PROJECT_BACKEND/" $file; done
- Retrieve projects step service account e-mail.
export GOOGLE_IMPERSONATE_SERVICE_ACCOUNT=$(terraform -chdir="../gcp-bootstrap/envs/shared" output -raw projects_step_terraform_service_account_email)
echo ${GOOGLE_IMPERSONATE_SERVICE_ACCOUNT}
- Retrieve cloud build project id.
export CLOUD_BUILD_PROJECT_ID=$(terraform -chdir="../gcp-bootstrap/envs/shared" output -raw cloudbuild_project_id)
echo ${CLOUD_BUILD_PROJECT_ID}
- Rename
auto.example.tfvars
toauto.tfvars
.
mv common.auto.example.tfvars common.auto.tfvars
mv shared.auto.example.tfvars shared.auto.tfvars
mv development.auto.example.tfvars development.auto.tfvars
mv non-production.auto.example.tfvars non-production.auto.tfvars
mv production.auto.example.tfvars production.auto.tfvars
- Update REMOTE_STATE_BUCKET value.
export remote_state_bucket=$(terraform -chdir="../gcp-bootstrap/envs/shared" output -raw gcs_bucket_tfstate)
echo "remote_state_bucket = ${remote_state_bucket}"
sed -i'' -e "s/REMOTE_STATE_BUCKET/${remote_state_bucket}/" ./common.auto.tfvars
- Commit the changes.
git add .
git commit -m "Create ML Business Unit"
- Log into gcloud using service account impersonation and then set your configuration:
gcloud auth application-default login --impersonate-service-account=${GOOGLE_IMPERSONATE_SERVICE_ACCOUNT}
- Run
init
andplan
and review output for environment shared.
./tf-wrapper.sh init shared
./tf-wrapper.sh plan shared
- Run
validate
and check for violations.
./tf-wrapper.sh validate shared $(pwd)/../gcp-policies ${CLOUD_BUILD_PROJECT_ID}
- Run
apply
shared.
./tf-wrapper.sh apply shared
This will create the artifacts and service catalog projects under common
folder and configure the Machine Learning business unit infra pipeline.
Push plan branch to remote.
git push origin plan
This will create the machine learning development environment. A Machine Learning project will be hosted under a folder.
- Go to
gcp-projects
repository and checkout toplan
branch.
cd ../gcp-projects
git checkout development
- Return to GenAI repository.
cd ../terraform-google-enterprise-genai
- Copy
ml_business_unit
to thegcp-projects
repository.
cp -r docs/assets/terraform/4-projects/ml_business_unit ../gcp-projects
- Add modules to the
gcp-projects
repository.
cp -r docs/assets/terraform/4-projects/modules/* ../gcp-projects/modules
- Add
tfvars
to thegcp-projects
repository.
cp -r docs/assets/terraform/4-projects/*.example.tfvars ../gcp-projects
- Go to
gcp-projects
repository.
cd ../gcp-projects
- Rename
auto.example.tfvars
toauto.tfvars
.
mv common.auto.example.tfvars common.auto.tfvars
mv shared.auto.example.tfvars shared.auto.tfvars
mv development.auto.example.tfvars development.auto.tfvars
mv non-production.auto.example.tfvars non-production.auto.tfvars
mv production.auto.example.tfvars production.auto.tfvars
- Update REMOTE_STATE_BUCKET value.
export remote_state_bucket=$(terraform -chdir="../gcp-bootstrap/envs/shared" output -raw gcs_bucket_tfstate)
echo "remote_state_bucket = ${remote_state_bucket}"
sed -i'' -e "s/REMOTE_STATE_BUCKET/${remote_state_bucket}/" ./common.auto.tfvars
- Update project backend by retrieving it's value from
0-bootstrap
and applying it tobackend.tf
.
export PROJECT_BACKEND=$(terraform -chdir="../gcp-bootstrap/envs/shared" output -raw projects_gcs_bucket_tfstate)
for file in $(find . -name backend.tf); do sed -i "s/UPDATE_PROJECTS_BACKEND/$PROJECT_BACKEND/" $file; done
- Commit and push.
git add .
git commit -m "Initialize ML environment"
git push origin development
This will create the machine learning nonproduction environment. A Machine Learning project will be hosted under a folder.
- Go to
gcp-projects
repository and checkout toplan
branch.
cd ../gcp-projects
git checkout nonproduction
- Return to GenAI repository.
cd ../terraform-google-enterprise-genai
- Copy
ml_business_unit
to thegcp-projects
repository.
cp -r docs/assets/terraform/4-projects/ml_business_unit ../gcp-projects
- Add modules to the
gcp-projects
repository.
cp -r docs/assets/terraform/4-projects/modules/* ../gcp-projects/modules
- Add
tfvars
to thegcp-projects
repository.
cp -r docs/assets/terraform/4-projects/*.example.tfvars ../gcp-projects
- Go to
gcp-projects
repository.
cd ../gcp-projects
- Rename
auto.example.tfvars
toauto.tfvars
.
mv common.auto.example.tfvars common.auto.tfvars
mv shared.auto.example.tfvars shared.auto.tfvars
mv development.auto.example.tfvars development.auto.tfvars
mv non-production.auto.example.tfvars non-production.auto.tfvars
mv production.auto.example.tfvars production.auto.tfvars
- Update REMOTE_STATE_BUCKET value.
export remote_state_bucket=$(terraform -chdir="../gcp-bootstrap/envs/shared" output -raw gcs_bucket_tfstate)
echo "remote_state_bucket = ${remote_state_bucket}"
sed -i'' -e "s/REMOTE_STATE_BUCKET/${remote_state_bucket}/" ./common.auto.tfvars
- Update project backend by retrieving it's value from
0-bootstrap
and applying it tobackend.tf
.
export PROJECT_BACKEND=$(terraform -chdir="../gcp-bootstrap/envs/shared" output -raw projects_gcs_bucket_tfstate)
for file in $(find . -name backend.tf); do sed -i "s/UPDATE_PROJECTS_BACKEND/$PROJECT_BACKEND/" $file; done
- Commit and push.
git add .
git commit -m "Initialize ML environment"
git push origin nonproduction
This will create the machine learning production environment. A Machine Learning project will be hosted under a folder.
- Go to
gcp-projects
repository and checkout toplan
branch.
cd ../gcp-projects
git checkout production
- Return to GenAI repository.
cd ../terraform-google-enterprise-genai
- Copy
ml_business_unit
to thegcp-projects
repository.
cp -r docs/assets/terraform/4-projects/ml_business_unit ../gcp-projects
- Remove shared directory on
ml_business_unit
on thegcp-projects
repository.
rm -rf ../gcp-projects/ml_business_unit/shared
- Add modules to the
gcp-projects
repository.
cp -r docs/assets/terraform/4-projects/modules/* ../gcp-projects/modules
- Add
tfvars
to thegcp-projects
repository.
cp -r docs/assets/terraform/4-projects/*.example.tfvars ../gcp-projects
- Go to
gcp-projects
repository.
cd ../gcp-projects
- Rename
auto.example.tfvars
toauto.tfvars
.
mv common.auto.example.tfvars common.auto.tfvars
mv shared.auto.example.tfvars shared.auto.tfvars
mv development.auto.example.tfvars development.auto.tfvars
mv non-production.auto.example.tfvars non-production.auto.tfvars
mv production.auto.example.tfvars production.auto.tfvars
- Update REMOTE_STATE_BUCKET value.
export remote_state_bucket=$(terraform -chdir="../gcp-bootstrap/envs/shared" output -raw gcs_bucket_tfstate)
echo "remote_state_bucket = ${remote_state_bucket}"
sed -i'' -e "s/REMOTE_STATE_BUCKET/${remote_state_bucket}/" ./common.auto.tfvars
- Update project backend by retrieving it's value from
0-bootstrap
and applying it tobackend.tf
.
export PROJECT_BACKEND=$(terraform -chdir="../gcp-bootstrap/envs/shared" output -raw projects_gcs_bucket_tfstate)
for file in $(find . -name backend.tf); do sed -i "s/UPDATE_PROJECTS_BACKEND/$PROJECT_BACKEND/" $file; done
- Commit and push.
git add .
git commit -m "Initialize ML environment"
git push origin production
The first step is to update the gcloud terraform vet
policies constraints to allow usage of the APIs needed by the Blueprint and add more policies.
The constraints are located in the repository:
gcp-policies-app-infra
IMPORTANT: Please note that the steps below are assuming you are checked out on the same level as terraform-google-enterprise-genai/
and the other repos (gcp-bootstrap
, gcp-org
, gcp-projects
...).
-
Clone the
gcp-policies-app-infra
repo based on the Terraform output from the4-projects
step. Clone the repo at the same level of theterraform-google-enterprise-genai
folder, the following instructions assume this layout. Runterraform output cloudbuild_project_id
in the4-projects
folder to get the Cloud Build Project ID.export INFRA_PIPELINE_PROJECT_ID=$(terraform -chdir="gcp-projects/ml_business_unit/shared/" output -raw cloudbuild_project_id) echo ${INFRA_PIPELINE_PROJECT_ID} gcloud source repos clone gcp-policies gcp-policies-app-infra --project=${INFRA_PIPELINE_PROJECT_ID}
Note:
gcp-policies
repo has the same name as the repo created in step1-org
. In order to prevent a collision, the previous command will clone this repo in the foldergcp-policies-app-infra
. -
Navigate into the repo and copy contents of policy-library to new repo. All subsequent steps assume you are running them from the gcp-policies-app-infra directory. If you run them from another directory, adjust your copy paths accordingly.
cd gcp-policies-app-infra/ git checkout -b main cp -RT ../terraform-google-enterprise-genai/policy-library/ .
-
Commit changes and push your main branch to the new repo.
git add . git commit -m 'Initialize policy library repo' git push --set-upstream origin main
-
Navigate out of the repo.
cd ..
The purpose of this step is to deploy out an artifact registry to store custom docker images. A Cloud Build pipeline is also deployed out. At the time of this writing, it is configured to attach itself to a Cloud Source Repository. The Cloud Build pipeline is responsible for building out a custom image that may be used in Machine Learning Workflows. If you are in a situation where company policy requires no outside repositories to be accessed, custom images can be used to keep access to any image internally.
Since every workflow will have access to these images, it is deployed in the common
folder, and keeping with the foundations structure, is listed as shared
under this Business Unit. It will only need to be deployed once.
The Pipeline is connected to a Google Cloud Source Repository with a simple structure:
├── README.md
└── images
├── tf2-cpu.2-13:0.1
│ └── Dockerfile
└── tf2-gpu.2-13:0.1
└── Dockerfile
For the purposes of this example, the pipeline is configured to monitor the main
branch of this repository.
Each folder under images
has the full name and tag of the image that must be built. Once a change to the main
branch is pushed, the pipeline will analyse which files have changed and build that image out and place it in the artifact repository. For example, if there is a change to the Dockerfile in the tf2-cpu-13:0.1
folder, or if the folder itself has been renamed, it will build out an image and tag it based on the folder name that the Dockerfile has been housed in.
Once pushed, the pipeline build logs can be accessed by navigating to the artifacts project name created in step-4:
terraform -chdir="gcp-projects/ml_business_unit/shared/" output -raw common_artifacts_project_id
-
Clone the
ml-artifact-publish
repo.gcloud source repos clone ml-artifact-publish --project=${INFRA_PIPELINE_PROJECT_ID}
-
Navigate into the repo, change to non-main branch and copy contents of GenAI to the new repo. Subsequent steps assume you are running them from the
ml-artifact-publish
directory.cd ml-artifact-publish/ git checkout -b plan cp -RT ../terraform-google-enterprise-genai/5-app-infra/projects/artifact-publish/ . cp -R ../terraform-google-enterprise-genai/5-app-infra/modules/ ./modules cp ../terraform-google-enterprise-genai/build/cloudbuild-tf-* . cp ../terraform-google-enterprise-genai/build/tf-wrapper.sh . chmod 755 ./tf-wrapper.sh
-
Rename
common.auto.example.tfvars
tocommon.auto.tfvars
.mv common.auto.example.tfvars common.auto.tfvars
-
Update the file with values from your environment and 0-bootstrap. See any of the business unit 1 envs folders README.md files for additional information on the values in the
common.auto.tfvars
file.export remote_state_bucket=$(terraform -chdir="../gcp-bootstrap/envs/shared" output -raw projects_gcs_bucket_tfstate) echo "remote_state_bucket = ${remote_state_bucket}" sed -i "s/REMOTE_STATE_BUCKET/${remote_state_bucket}/" ./common.auto.tfvars
-
Update
backend.tf
with your bucket from the infra pipeline output.export backend_bucket=$(terraform -chdir="../gcp-projects/ml_business_unit/shared/" output -json state_buckets | jq '."ml-artifact-publish"' --raw-output) echo "backend_bucket = ${backend_bucket}" for i in `find -name 'backend.tf'`; do sed -i "s/UPDATE_APP_INFRA_BUCKET/${backend_bucket}/" $i; done
-
Commit changes.
git add . git commit -m 'Initialize repo'
-
Push your plan branch to trigger a plan for all environments. Because the plan branch is not a named environment branch, pushing your plan branch triggers terraform plan but not terraform apply. Review the plan output in your Cloud Build project
https://console.cloud.google.com/cloud-build/builds;region=DEFAULT_REGION?project=YOUR_INFRA_PIPELINE_PROJECT_ID
.git push --set-upstream origin plan
-
Merge changes to shared. Because this is a named environment branch, pushing to this branch triggers both terraform plan and terraform apply. Review the apply output in your Cloud Build project
https://console.cloud.google.com/cloud-build/builds;region=DEFAULT_REGION?project=YOUR_INFRA_PIPELINE_PROJECT_ID
. Before proceeding further, make sure that the build applied successfully.git checkout -b production git push origin production
-
cd
out of theml-artifacts-publish
repository.cd ..
The series of steps below will trigger the custom artifacts pipeline.
-
Grab the Artifact Project ID
export ARTIFACT_PROJECT_ID=$(terraform -chdir="gcp-projects/ml_business_unit/shared" output -raw common_artifacts_project_id) echo ${ARTIFACT_PROJECT_ID}
-
Clone the freshly minted Cloud Source Repository that was created for this project.
gcloud source repos clone publish-artifacts --project=${ARTIFACT_PROJECT_ID}
-
Enter the repo folder and copy over the example files from the folder on GenAI repository.
cd publish-artifacts git checkout -b main git commit -m "Initialize Repository" --allow-empty cp -RT ../terraform-google-enterprise-genai/5-app-infra/source_repos/artifact-publish/ .
-
Commit changes and push your main branch to the new repo.
git add . git commit -m 'Build Images' git push --set-upstream origin main
-
cd
out of thepublish-artifacts
repository.cd ..
This step has two main purposes:
-
To deploy a pipeline and a bucket which is linked to a Google Cloud Repository that houses terraform modules for the use in Service Catalog. Although Service Catalog itself must be manually deployed, the modules which will be used can still be automated.
-
To deploy infrastructure for operational environments (ie.
non-production
&production
.)
The resoning behind utilizing one repository with two deployment methodologies is due to how close interactive (development
) and operational environments are.
The repository has the structure (truncated for brevity):
ml_business_unit
├── development
├── non-production
├── production
modules
├── bucket
│ ├── README.md
│ ├── data.tf
│ ├── main.tf
│ ├── outputs.tf
│ ├── provider.tf
│ └── variables.tf
├── composer
│ ├── README.md
│ ├── data.tf
│ ├── iam.roles.tf
│ ├── iam.users.tf
│ ├── locals.tf
│ ├── main.tf
│ ├── outputs.tf
│ ├── provider.tf
│ ├── terraform.tfvars.example
│ ├── variables.tf
│ └── vpc.tf
├── cryptography
│ ├── README.md
│ ├── crypto_key
│ │ ├── main.tf
│ │ ├── outputs.tf
│ │ └── variables.tf
│ └── key_ring
│ ├── main.tf
│ ├── outputs.tf
│ └── variables.tf
Each folder under modules
represents a terraform module.
When there is a change in any of the terraform module folders, the pipeline will find whichever module has been changed since the last push, tar.gz
that file and place it in a bucket for Service Catalog to access.
This pipeline is listening to the main
branch of this repository for changes in order for the modules to be uploaded to service catalog.
The pipeline also listens for changes made to plan
, development
, non-production
& production
branches, this is used for deploying infrastructure to each project.
-
Clone the
ml-service-catalog
repo.gcloud source repos clone ml-service-catalog --project=${INFRA_PIPELINE_PROJECT_ID}
-
Navigate into the repo, change to non-main branch and copy contents of foundation to new repo. All subsequent steps assume you are running them from the ml-service-catalog directory. If you run them from another directory, adjust your copy paths accordingly.
cd ml-service-catalog git checkout -b plan cp -RT ../terraform-google-enterprise-genai/5-app-infra/projects/service-catalog/ . cp -R ../terraform-google-enterprise-genai/5-app-infra/modules/ ./modules cp ../terraform-google-enterprise-genai/build/cloudbuild-tf-* . cp ../terraform-google-enterprise-genai/build/tf-wrapper.sh . chmod 755 ./tf-wrapper.sh
-
Rename
common.auto.example.tfvars
tocommon.auto.tfvars
.mv common.auto.example.tfvars common.auto.tfvars
-
Update the file with values from your environment and 0-bootstrap. See any of the business unit 1 envs folders README.md files for additional information on the values in the
common.auto.tfvars
file.export remote_state_bucket=$(terraform -chdir="../gcp-bootstrap/envs/shared" output -raw projects_gcs_bucket_tfstate) echo "remote_state_bucket = ${remote_state_bucket}" sed -i "s/REMOTE_STATE_BUCKET/${remote_state_bucket}/" ./common.auto.tfvars
-
Update the
log_bucket
variable with the value of thelogs_export_storage_bucket_name
.export log_bucket=$(terraform -chdir="../gcp-org/envs/shared" output -raw logs_export_storage_bucket_name) echo "log_bucket = ${log_bucket}" sed -i "s/REPLACE_LOG_BUCKET/${log_bucket}/" ./common.auto.tfvars
-
Update
backend.tf
with your bucket from the infra pipeline output.export backend_bucket=$(terraform -chdir="../gcp-projects/ml_business_unit/shared/" output -json state_buckets | jq '."ml-service-catalog"' --raw-output) echo "backend_bucket = ${backend_bucket}" for i in `find -name 'backend.tf'`; do sed -i "s/UPDATE_APP_INFRA_BUCKET/${backend_bucket}/" $i; done
-
Commit changes.
git add . git commit -m 'Initialize repo'
-
Push your plan branch to trigger a plan for all environments. Because the plan branch is not a named environment branch, pushing your plan branch triggers terraform plan but not terraform apply. Review the plan output in your Cloud Build project
https://console.cloud.google.com/cloud-build/builds;region=DEFAULT_REGION?project=YOUR_INFRA_PIPELINE_PROJECT_ID
.git push --set-upstream origin plan
-
Merge changes to production. Because this is a named environment branch, pushing to this branch triggers both terraform plan and terraform apply. Review the apply output in your Cloud Build project
https://console.cloud.google.com/cloud-build/builds;region=DEFAULT_REGION?project=YOUR_INFRA_PIPELINE_PROJECT_ID
. Before proceeding further, make sure that the build applied successfully.git checkout -b production git push origin production
-
cd
out of theml-service-catalog
repository.cd ..
The series of steps below will trigger the custom Service Catalog Pipeline.
-
Grab the Service Catalogs ID
export SERVICE_CATALOG_PROJECT_ID=$(terraform -chdir="gcp-projects/ml_business_unit/shared" output -raw service_catalog_project_id) echo ${SERVICE_CATALOG_PROJECT_ID}
-
Clone the freshly minted Cloud Source Repository that was created for this project.
gcloud source repos clone service-catalog --project=${SERVICE_CATALOG_PROJECT_ID}
-
Enter the repo folder and copy over the service catalogs files from
5-app-infra/source_repos/service-catalog
folder.cd service-catalog/ cp -RT ../terraform-google-enterprise-genai/5-app-infra/source_repos/service-catalog/ . git add img git commit -m "Add img directory"
-
Commit changes and push main branch to the new repo.
git add modules git commit -m 'Initialize Service Catalog Build Repo' git push --set-upstream origin main
-
cd
out of theservice_catalog
repository.cd ..
-
Navigate to the project that was output from
${SERVICE_CATALOG_PROJECT_ID}
in Google's Cloud Console to view the first run of images being built.