From 6d93e36a7896cd2aaf3da376e55f444f47fc2102 Mon Sep 17 00:00:00 2001 From: Martin van Rongen Date: Tue, 6 Feb 2024 16:16:58 +0000 Subject: [PATCH] python poisson --- .../execute-results/html.json | 4 +- .../execute-results/html.json | 4 +- .../figure-html/unnamed-chunk-28-1.png | Bin 44151 -> 43945 bytes .../figure-html/unnamed-chunk-29-1.png | Bin 89918 -> 89521 bytes .../figure-html/unnamed-chunk-30-1.png | Bin 0 -> 19811 bytes .../figure-html/unnamed-chunk-31-3.png | Bin 0 -> 67818 bytes .../figure-html/unnamed-chunk-41-1.png | Bin 0 -> 100724 bytes .../figure-html/unnamed-chunk-43-1.png | Bin 0 -> 74417 bytes _site/search.json | 8 +- materials/data/seatbelts.csv | 386 +++++++++--------- .../glm-practical-logistic-proportion.qmd | 17 +- materials/glm-practical-poisson.qmd | 104 ++++- 12 files changed, 312 insertions(+), 211 deletions(-) create mode 100644 _freeze/materials/glm-practical-poisson/figure-html/unnamed-chunk-30-1.png create mode 100644 _freeze/materials/glm-practical-poisson/figure-html/unnamed-chunk-31-3.png create mode 100644 _freeze/materials/glm-practical-poisson/figure-html/unnamed-chunk-41-1.png create mode 100644 _freeze/materials/glm-practical-poisson/figure-html/unnamed-chunk-43-1.png diff --git a/_freeze/materials/glm-practical-logistic-proportion/execute-results/html.json b/_freeze/materials/glm-practical-logistic-proportion/execute-results/html.json index 6622bd8..f285248 100644 --- a/_freeze/materials/glm-practical-logistic-proportion/execute-results/html.json +++ b/_freeze/materials/glm-practical-logistic-proportion/execute-results/html.json @@ -1,8 +1,8 @@ { - "hash": "6fcde4ac55ce6bd3230fc1ec75513c59", + "hash": "173861ccb267f6eb833aef4954211086", "result": { "engine": "knitr", - "markdown": "---\ntitle: \"Proportional response\"\n---\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n\n:::\n\n\n::: {.callout-tip}\n## Learning outcomes\n\n- How do I analyse proportion responses?\n- Be able to create a logistic model to test proportion response variables\n- Be able to plot the data and fitted curve\n- Assess the significance of the fit\n:::\n\n## Libraries and functions\n\n::: {.callout-note collapse=\"true\"}\n## Click to expand\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n### Libraries\n### Functions\n\n## Python\n\n### Libraries\n\n\n::: {.cell}\n\n```{.python .cell-code}\n# A maths library\nimport math\n# A Python data analysis and manipulation tool\nimport pandas as pd\n\n# Python equivalent of `ggplot2`\nfrom plotnine import *\n\n# Statistical models, conducting tests and statistical data exploration\nimport statsmodels.api as sm\n\n# Convenience interface for specifying models using formula strings and DataFrames\nimport statsmodels.formula.api as smf\n\n# Needed for additional probability functionality\nfrom scipy.stats import *\n```\n:::\n\n\n### Functions\n:::\n:::\n\nThe example in this section uses the following data set:\n\n`data/challenger.csv`\n\nThese data, obtained from the [faraway package](https://www.rdocumentation.org/packages/faraway/versions/1.0.7) in R, contain information related to the explosion of the USA Space Shuttle Challenger on 28 January, 1986. An investigation after the disaster traced back to certain joints on one of the two solid booster rockets, each containing O-rings that ensured no exhaust gases could escape from the booster.\n\nThe night before the launch was unusually cold, with temperatures below freezing. The final report suggested that the cold snap during the night made the o-rings stiff, and unable to adjust to changes in pressure. As a result, exhaust gases leaked away from the solid booster rockets, causing one of them to break loose and rupture the main fuel tank, leading to the final explosion.\n\nThe question we're trying to answer in this session is: based on the data from the previous flights, would it have been possible to predict the failure of most o-rings on the Challenger flight?\n\n## Load and visualise the data\n\nFirst we load the data, then we visualise it.\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nchallenger <- read_csv(\"data/challenger.csv\")\n```\n\n::: {.cell-output .cell-output-stderr}\n\n```\nRows: 23 Columns: 2\n── Column specification ────────────────────────────────────────────────────────\nDelimiter: \",\"\ndbl (2): temp, damage\n\nℹ Use `spec()` to retrieve the full column specification for this data.\nℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.\n```\n\n\n:::\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\nchallenger_py = pd.read_csv(\"data/challenger.csv\")\n```\n:::\n\n\n:::\n\nThe data set contains several columns:\n\n1. `temp`, the launch temperature in degrees Fahrenheit\n2. `damage`, the number of o-rings that showed erosion\n\nBefore we have a further look at the data, let's calculate the proportion of damaged o-rings (`prop_damaged`) and the total number of o-rings (`total`) and update our data set.\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nchallenger <-\nchallenger %>%\n mutate(total = 6, # total number of o-rings\n intact = 6 - damage, # number of undamaged o-rings\n prop_damaged = damage / total) # proportion damaged o-rings\n\nchallenger\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n# A tibble: 23 × 5\n temp damage total intact prop_damaged\n \n 1 53 5 6 1 0.833\n 2 57 1 6 5 0.167\n 3 58 1 6 5 0.167\n 4 63 1 6 5 0.167\n 5 66 0 6 6 0 \n 6 67 0 6 6 0 \n 7 67 0 6 6 0 \n 8 67 0 6 6 0 \n 9 68 0 6 6 0 \n10 69 0 6 6 0 \n# ℹ 13 more rows\n```\n\n\n:::\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\nchallenger_py['total'] = 6\nchallenger_py['intact'] = challenger_py['total'] - challenger_py['damage']\nchallenger_py['prop_damaged'] = challenger_py['damage'] / challenger_py['total']\n```\n:::\n\n\n:::\n\nPlotting the proportion of damaged o-rings against the launch temperature shows the following picture:\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nggplot(challenger, aes(x = temp, y = prop_damaged)) +\n geom_point()\n```\n\n::: {.cell-output-display}\n![](glm-practical-logistic-proportion_files/figure-html/unnamed-chunk-8-1.png){width=672}\n:::\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\n(ggplot(challenger_py,\n aes(x = \"temp\",\n y = \"prop_damaged\")) +\n geom_point())\n```\n\n::: {.cell-output-display}\n![](glm-practical-logistic-proportion_files/figure-html/unnamed-chunk-9-1.png){width=614}\n:::\n:::\n\n\n:::\n\nThe point on the left is the data point corresponding to the coldest flight experienced before the disaster, where five damaged o-rings were found. Fortunately, this did not result in a disaster.\n\nHere we'll explore if we could have reasonably predicted the failure of both o-rings on the Challenger flight, where the launch temperature was 31 degrees Fahrenheit.\n\n## Creating a suitable model\n\nWe only have 23 data points in total. So we're building a model on not that much data - we should keep this in mind when we draw our conclusions!\n\nWe are using a logistic regression for a proportion response in this case, since we're interested in the proportion of o-rings that are damaged.\n\nWe can define this as follows:\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nglm_chl <- glm(cbind(damage, intact) ~ temp,\n family = binomial,\n data = challenger)\n```\n:::\n\n\nDefining the relationship for proportion responses is a bit annoying, where you have to give the `glm` model a two-column matrix to specify the response variable.\n\nHere, the first column corresponds to the number of damaged o-rings, whereas the second column refers to the number of intact o-rings. We use the `cbind()` function to bind these two together into a matrix.\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\n# create a generalised linear model\nmodel = smf.glm(formula = \"damage + intact ~ temp\",\n family = sm.families.Binomial(),\n data = challenger_py)\n# and get the fitted parameters of the model\nglm_chl_py = model.fit()\n```\n:::\n\n\n:::\n\n## Model output\n\nThat's the easy part done! The trickier part is interpreting the output. First of all, we'll get some summary information.\n\n::: {.panel-tabset group=\"language\"}\n## R\n\nNext, we can have a closer look at the results:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nsummary(glm_chl)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n\nCall:\nglm(formula = cbind(damage, intact) ~ temp, family = binomial, \n data = challenger)\n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 11.66299 3.29626 3.538 0.000403 ***\ntemp -0.21623 0.05318 -4.066 4.78e-05 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for binomial family taken to be 1)\n\n Null deviance: 38.898 on 22 degrees of freedom\nResidual deviance: 16.912 on 21 degrees of freedom\nAIC: 33.675\n\nNumber of Fisher Scoring iterations: 6\n```\n\n\n:::\n:::\n\n\nWe can see that the p-values of the `intercept` and `temp` are significant. We can also use the intercept and `temp` coefficients to construct the logistic equation, which we can use to sketch the logistic curve.\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\nprint(glm_chl_py.summary())\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n Generalized Linear Model Regression Results \n================================================================================\nDep. Variable: ['damage', 'intact'] No. Observations: 23\nModel: GLM Df Residuals: 21\nModel Family: Binomial Df Model: 1\nLink Function: Logit Scale: 1.0000\nMethod: IRLS Log-Likelihood: -14.837\nDate: Tue, 06 Feb 2024 Deviance: 16.912\nTime: 15:43:32 Pearson chi2: 28.1\nNo. Iterations: 7 Pseudo R-squ. (CS): 0.6155\nCovariance Type: nonrobust \n==============================================================================\n coef std err z P>|z| [0.025 0.975]\n------------------------------------------------------------------------------\nIntercept 11.6630 3.296 3.538 0.000 5.202 18.124\ntemp -0.2162 0.053 -4.066 0.000 -0.320 -0.112\n==============================================================================\n```\n\n\n:::\n:::\n\n:::\n\n$$E(prop \\ failed\\ orings) = \\frac{\\exp{(11.66 - 0.22 \\times temp)}}{1 + \\exp{(11.66 - 0.22 \\times temp)}}$$\n\nLet's see how well our model would have performed if we would have fed it the data from the ill-fated Challenger launch.\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nggplot(challenger, aes(temp, prop_damaged)) +\n geom_point() +\n geom_smooth(method = \"glm\", se = FALSE, fullrange = TRUE, \n method.args = list(family = binomial)) +\n xlim(25,85)\n```\n\n::: {.cell-output .cell-output-stderr}\n\n```\nWarning in eval(family$initialize): non-integer #successes in a binomial glm!\n```\n\n\n:::\n\n::: {.cell-output-display}\n![](glm-practical-logistic-proportion_files/figure-html/unnamed-chunk-14-1.png){width=672}\n:::\n:::\n\n\n## Python\n\nWe can get the predicted values for the model as follows:\n\n\n::: {.cell}\n\n```{.python .cell-code}\nchallenger_py['predicted_values'] = glm_chl_py.predict()\n\nchallenger_py.head()\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n temp damage total intact prop_damaged predicted_values\n0 53 5 6 1 0.833333 0.550479\n1 57 1 6 5 0.166667 0.340217\n2 58 1 6 5 0.166667 0.293476\n3 63 1 6 5 0.166667 0.123496\n4 66 0 6 6 0.000000 0.068598\n```\n\n\n:::\n:::\n\n\nThis would only give us the predicted values for the data we already have. Instead we want to extrapolate to what would have been predicted for a wider range of temperatures. Here, we use a range of $[25, 85]$ degrees Fahrenheit.\n\n\n::: {.cell}\n\n```{.python .cell-code}\nmodel = pd.DataFrame({'temp': list(range(25, 86))})\n\nmodel[\"pred\"] = glm_chl_py.predict(model)\n\nmodel.head()\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n temp pred\n0 25 0.998087\n1 26 0.997626\n2 27 0.997055\n3 28 0.996347\n4 29 0.995469\n```\n\n\n:::\n:::\n\n::: {.cell}\n\n```{.python .cell-code}\n(ggplot(challenger_py,\n aes(x = \"temp\",\n y = \"prop_damaged\")) +\n geom_point() +\n geom_line(model, aes(x = \"temp\", y = \"pred\"), colour = \"blue\", size = 1))\n```\n\n::: {.cell-output-display}\n![](glm-practical-logistic-proportion_files/figure-html/unnamed-chunk-17-1.png){width=614}\n:::\n:::\n\n\n\n::: {.callout-note collapse=true}\n## Generating predicted values\n\n::: {.panel-tabset group=\"language\"}\n## R\n\nAnother way of doing this it to generate a table with data for a range of temperatures, from 25 to 85 degrees Fahrenheit, in steps of 1. We can then use these data to generate the logistic curve, based on the fitted model.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# create a table with sequential numbers ranging from 25 to 85\nmodel <- tibble(temp = seq(25, 85, by = 1)) %>% \n # add a new column containing the predicted values\n mutate(.pred = predict(glm_chl, newdata = ., type = \"response\"))\n\nggplot(model, aes(temp, .pred)) +\n geom_line()\n```\n\n::: {.cell-output-display}\n![](glm-practical-logistic-proportion_files/figure-html/unnamed-chunk-18-3.png){width=672}\n:::\n:::\n\n::: {.cell}\n\n```{.r .cell-code}\n# plot the curve and the original data\nggplot(model, aes(temp, .pred)) +\n geom_line(colour = \"blue\") +\n geom_point(data = challenger, aes(temp, prop_damaged)) +\n # add a vertical line at the disaster launch temperature\n geom_vline(xintercept = 31, linetype = \"dashed\")\n```\n\n::: {.cell-output-display}\n![](glm-practical-logistic-proportion_files/figure-html/unnamed-chunk-19-1.png){width=672}\n:::\n:::\n\n\nIt seems that there was a high probability of both o-rings failing at that launch temperature. One thing that the graph shows is that there is a lot of uncertainty involved in this model. We can tell, because the fit of the line is very poor at the lower temperature range. There is just very little data to work on, with the data point at 53 F having a large influence on the fit.\n\n## Python\n\nWe already did this above, since this is the most straightforward way of plotting the model in Python.\n\n:::\n:::\n:::\n\n## Exercises\n\n### Predicting failure {#sec-exr_failure}\n\n:::{.callout-exercise}\n\n\n{{< level 2 >}}\n\n\n\nThe data point at 53 degrees Fahrenheit is quite influential for the analysis. Remove this data point and repeat the analysis. Is there still a predicted link between launch temperature and o-ring failure?\n\n::: {.callout-answer collapse=\"true\"}\n\n::: {.panel-tabset group=\"language\"}\n## R\n\nFirst, we need to remove the influential data point:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nchallenger_new <- challenger %>% filter(temp != 53)\n```\n:::\n\n\nWe can create a new generalised linear model, based on these data:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nglm_chl_new <- glm(cbind(damage, intact) ~ temp,\n family = binomial,\n data = challenger_new)\n```\n:::\n\n\nWe can get the model parameters as follows:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nsummary(glm_chl_new)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n\nCall:\nglm(formula = cbind(damage, intact) ~ temp, family = binomial, \n data = challenger_new)\n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 5.68223 4.43138 1.282 0.1997 \ntemp -0.12817 0.06697 -1.914 0.0556 .\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for binomial family taken to be 1)\n\n Null deviance: 16.375 on 21 degrees of freedom\nResidual deviance: 12.633 on 20 degrees of freedom\nAIC: 27.572\n\nNumber of Fisher Scoring iterations: 5\n```\n\n\n:::\n:::\n\n::: {.cell}\n\n```{.r .cell-code}\nggplot(challenger_new, aes(temp, prop_damaged)) +\n geom_point() +\n geom_smooth(method = \"glm\", se = FALSE, fullrange = TRUE, \n method.args = list(family = binomial)) +\n xlim(25,85) +\n # add a vertical line at 53 F temperature\n geom_vline(xintercept = 53, linetype = \"dashed\")\n```\n\n::: {.cell-output .cell-output-stderr}\n\n```\nWarning in eval(family$initialize): non-integer #successes in a binomial glm!\n```\n\n\n:::\n\n::: {.cell-output-display}\n![](glm-practical-logistic-proportion_files/figure-html/unnamed-chunk-23-1.png){width=672}\n:::\n:::\n\n\nThe prediction proportion of damaged o-rings is markedly less than what was observed.\n\nBefore we can make any firm conclusions, though, we need to check our model:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n1- pchisq(12.633,20)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0.8925695\n```\n\n\n:::\n:::\n\n\nWe get quite a high score (around 0.9) for this, which tells us that our goodness of fit is pretty rubbish – our points are not very close to our curve, overall.\n\nIs the model any better than the null though?\n\n\n::: {.cell}\n\n```{.r .cell-code}\n1 - pchisq(16.375 - 12.633, 1)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0.0530609\n```\n\n\n:::\n\n```{.r .cell-code}\nanova(glm_chl_new, test = 'Chisq')\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\nAnalysis of Deviance Table\n\nModel: binomial, link: logit\n\nResponse: cbind(damage, intact)\n\nTerms added sequentially (first to last)\n\n Df Deviance Resid. Df Resid. Dev Pr(>Chi) \nNULL 21 16.375 \ntemp 1 3.7421 20 12.633 0.05306 .\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n```\n\n\n:::\n:::\n\n\nHowever, the model is not significantly better than the null in this case, with a p-value here of just over 0.05 for both of these tests (they give a similar result since, yet again, we have just the one predictor variable).\n\n## Python\n\nFirst, we need to remove the influential data point:\n\n\n\n::: {.cell}\n\n```{.python .cell-code}\nchallenger_new_py = challenger_py.query(\"temp != 53\")\n```\n:::\n\n\nWe can create a new generalised linear model, based on these data:\n\n\n::: {.cell}\n\n```{.python .cell-code}\n# create a generalised linear model\nmodel = smf.glm(formula = \"damage + intact ~ temp\",\n family = sm.families.Binomial(),\n data = challenger_new_py)\n# and get the fitted parameters of the model\nglm_chl_new_py = model.fit()\n```\n:::\n\n\nWe can get the model parameters as follows:\n\n\n::: {.cell}\n\n```{.python .cell-code}\nprint(glm_chl_new_py.summary())\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n Generalized Linear Model Regression Results \n================================================================================\nDep. Variable: ['damage', 'intact'] No. Observations: 22\nModel: GLM Df Residuals: 20\nModel Family: Binomial Df Model: 1\nLink Function: Logit Scale: 1.0000\nMethod: IRLS Log-Likelihood: -11.786\nDate: Tue, 06 Feb 2024 Deviance: 12.633\nTime: 15:43:35 Pearson chi2: 16.6\nNo. Iterations: 6 Pseudo R-squ. (CS): 0.1564\nCovariance Type: nonrobust \n==============================================================================\n coef std err z P>|z| [0.025 0.975]\n------------------------------------------------------------------------------\nIntercept 5.6822 4.431 1.282 0.200 -3.003 14.368\ntemp -0.1282 0.067 -1.914 0.056 -0.259 0.003\n==============================================================================\n```\n\n\n:::\n:::\n\n\nGenerate new model data:\n\n\n::: {.cell}\n\n```{.python .cell-code}\nmodel = pd.DataFrame({'temp': list(range(25, 86))})\n\nmodel[\"pred\"] = glm_chl_new_py.predict(model)\n\nmodel.head()\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n temp pred\n0 25 0.922585\n1 26 0.912920\n2 27 0.902177\n3 28 0.890269\n4 29 0.877107\n```\n\n\n:::\n:::\n\n::: {.cell}\n\n```{.python .cell-code}\n(ggplot(challenger_new_py,\n aes(x = \"temp\",\n y = \"prop_damaged\")) +\n geom_point() +\n geom_line(model, aes(x = \"temp\", y = \"pred\"), colour = \"blue\", size = 1) +\n # add a vertical line at 53 F temperature\n geom_vline(xintercept = 53, linetype = \"dashed\"))\n```\n\n::: {.cell-output-display}\n![](glm-practical-logistic-proportion_files/figure-html/unnamed-chunk-30-1.png){width=614}\n:::\n:::\n\n\nThe prediction proportion of damaged o-rings is markedly less than what was observed.\n\nBefore we can make any firm conclusions, though, we need to check our model:\n\n\n::: {.cell}\n\n```{.python .cell-code}\nchi2.sf(12.633, 20)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n0.8925694610786307\n```\n\n\n:::\n:::\n\n\nWe get quite a high score (around 0.9) for this, which tells us that our goodness of fit is pretty rubbish – our points are not very close to our curve, overall.\n\nIs the model any better than the null though?\n\n\n::: {.cell}\n\n```{.python .cell-code}\nchi2.sf(16.375 - 12.633, 23 - 22)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n0.053060897703157646\n```\n\n\n:::\n:::\n\n\nHowever, the model is not significantly better than the null in this case, with a p-value here of just over 0.05 for both of these tests (they give a similar result since, yet again, we have just the one predictor variable).\n:::\n\nSo, could NASA have predicted what happened? This model is not significantly different from the null, i.e., temperature is not a significant predictor. Note that it’s only marginally non-significant, and we do have a high goodness-of-fit value.\n\nIt is possible that if more data points were available that followed a similar trend, the story might be different). Even if we did use our non-significant model to make a prediction, it doesn’t give us a value anywhere near 5 failures for a temperature of 53 degrees Fahrenheit. So overall, based on the model we’ve fitted with these data, there was no indication that a temperature just a few degrees cooler than previous missions could have been so disastrous for the Challenger.\n:::\n:::\n\n## Summary\n\n::: {.callout-tip}\n#### Key points\n\n- We can use a logistic model for proportion response variables\n\n:::\n", + "markdown": "---\ntitle: \"Proportional response\"\n---\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n\n:::\n\n\n::: {.callout-tip}\n## Learning outcomes\n\n- How do I analyse proportion responses?\n- Be able to create a logistic model to test proportion response variables\n- Be able to plot the data and fitted curve\n- Assess the significance of the fit\n:::\n\n## Libraries and functions\n\n::: {.callout-note collapse=\"true\"}\n## Click to expand\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n### Libraries\n### Functions\n\n## Python\n\n### Libraries\n\n\n::: {.cell}\n\n```{.python .cell-code}\n# A maths library\nimport math\n# A Python data analysis and manipulation tool\nimport pandas as pd\n\n# Python equivalent of `ggplot2`\nfrom plotnine import *\n\n# Statistical models, conducting tests and statistical data exploration\nimport statsmodels.api as sm\n\n# Convenience interface for specifying models using formula strings and DataFrames\nimport statsmodels.formula.api as smf\n\n# Needed for additional probability functionality\nfrom scipy.stats import *\n```\n:::\n\n\n### Functions\n:::\n:::\n\nThe example in this section uses the following data set:\n\n`data/challenger.csv`\n\nThese data, obtained from the [faraway package](https://www.rdocumentation.org/packages/faraway/versions/1.0.7) in R, contain information related to the explosion of the USA Space Shuttle Challenger on 28 January, 1986. An investigation after the disaster traced back to certain joints on one of the two solid booster rockets, each containing O-rings that ensured no exhaust gases could escape from the booster.\n\nThe night before the launch was unusually cold, with temperatures below freezing. The final report suggested that the cold snap during the night made the o-rings stiff, and unable to adjust to changes in pressure. As a result, exhaust gases leaked away from the solid booster rockets, causing one of them to break loose and rupture the main fuel tank, leading to the final explosion.\n\nThe question we're trying to answer in this session is: based on the data from the previous flights, would it have been possible to predict the failure of most o-rings on the Challenger flight?\n\n## Load and visualise the data\n\nFirst we load the data, then we visualise it.\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nchallenger <- read_csv(\"data/challenger.csv\")\n```\n\n::: {.cell-output .cell-output-stderr}\n\n```\nRows: 23 Columns: 2\n── Column specification ────────────────────────────────────────────────────────\nDelimiter: \",\"\ndbl (2): temp, damage\n\nℹ Use `spec()` to retrieve the full column specification for this data.\nℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.\n```\n\n\n:::\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\nchallenger_py = pd.read_csv(\"data/challenger.csv\")\n```\n:::\n\n\n:::\n\nThe data set contains several columns:\n\n1. `temp`, the launch temperature in degrees Fahrenheit\n2. `damage`, the number of o-rings that showed erosion\n\nBefore we have a further look at the data, let's calculate the proportion of damaged o-rings (`prop_damaged`) and the total number of o-rings (`total`) and update our data set.\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nchallenger <-\nchallenger %>%\n mutate(total = 6, # total number of o-rings\n intact = 6 - damage, # number of undamaged o-rings\n prop_damaged = damage / total) # proportion damaged o-rings\n\nchallenger\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n# A tibble: 23 × 5\n temp damage total intact prop_damaged\n \n 1 53 5 6 1 0.833\n 2 57 1 6 5 0.167\n 3 58 1 6 5 0.167\n 4 63 1 6 5 0.167\n 5 66 0 6 6 0 \n 6 67 0 6 6 0 \n 7 67 0 6 6 0 \n 8 67 0 6 6 0 \n 9 68 0 6 6 0 \n10 69 0 6 6 0 \n# ℹ 13 more rows\n```\n\n\n:::\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\nchallenger_py['total'] = 6\nchallenger_py['intact'] = challenger_py['total'] - challenger_py['damage']\nchallenger_py['prop_damaged'] = challenger_py['damage'] / challenger_py['total']\n```\n:::\n\n\n:::\n\nPlotting the proportion of damaged o-rings against the launch temperature shows the following picture:\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nggplot(challenger, aes(x = temp, y = prop_damaged)) +\n geom_point()\n```\n\n::: {.cell-output-display}\n![](glm-practical-logistic-proportion_files/figure-html/unnamed-chunk-8-1.png){width=672}\n:::\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\n(ggplot(challenger_py,\n aes(x = \"temp\",\n y = \"prop_damaged\")) +\n geom_point())\n```\n\n::: {.cell-output-display}\n![](glm-practical-logistic-proportion_files/figure-html/unnamed-chunk-9-1.png){width=614}\n:::\n:::\n\n\n:::\n\nThe point on the left is the data point corresponding to the coldest flight experienced before the disaster, where five damaged o-rings were found. Fortunately, this did not result in a disaster.\n\nHere we'll explore if we could have reasonably predicted the failure of both o-rings on the Challenger flight, where the launch temperature was 31 degrees Fahrenheit.\n\n## Creating a suitable model\n\nWe only have 23 data points in total. So we're building a model on not that much data - we should keep this in mind when we draw our conclusions!\n\nWe are using a logistic regression for a proportion response in this case, since we're interested in the proportion of o-rings that are damaged.\n\nWe can define this as follows:\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nglm_chl <- glm(cbind(damage, intact) ~ temp,\n family = binomial,\n data = challenger)\n```\n:::\n\n\nDefining the relationship for proportion responses is a bit annoying, where you have to give the `glm` model a two-column matrix to specify the response variable.\n\nHere, the first column corresponds to the number of damaged o-rings, whereas the second column refers to the number of intact o-rings. We use the `cbind()` function to bind these two together into a matrix.\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\n# create a generalised linear model\nmodel = smf.glm(formula = \"damage + intact ~ temp\",\n family = sm.families.Binomial(),\n data = challenger_py)\n# and get the fitted parameters of the model\nglm_chl_py = model.fit()\n```\n:::\n\n\n:::\n\n## Model output\n\nThat's the easy part done! The trickier part is interpreting the output. First of all, we'll get some summary information.\n\n::: {.panel-tabset group=\"language\"}\n## R\n\nNext, we can have a closer look at the results:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nsummary(glm_chl)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n\nCall:\nglm(formula = cbind(damage, intact) ~ temp, family = binomial, \n data = challenger)\n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 11.66299 3.29626 3.538 0.000403 ***\ntemp -0.21623 0.05318 -4.066 4.78e-05 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for binomial family taken to be 1)\n\n Null deviance: 38.898 on 22 degrees of freedom\nResidual deviance: 16.912 on 21 degrees of freedom\nAIC: 33.675\n\nNumber of Fisher Scoring iterations: 6\n```\n\n\n:::\n:::\n\n\nWe can see that the p-values of the `intercept` and `temp` are significant. We can also use the intercept and `temp` coefficients to construct the logistic equation, which we can use to sketch the logistic curve.\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\nprint(glm_chl_py.summary())\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n Generalized Linear Model Regression Results \n================================================================================\nDep. Variable: ['damage', 'intact'] No. Observations: 23\nModel: GLM Df Residuals: 21\nModel Family: Binomial Df Model: 1\nLink Function: Logit Scale: 1.0000\nMethod: IRLS Log-Likelihood: -14.837\nDate: Tue, 06 Feb 2024 Deviance: 16.912\nTime: 16:12:12 Pearson chi2: 28.1\nNo. Iterations: 7 Pseudo R-squ. (CS): 0.6155\nCovariance Type: nonrobust \n==============================================================================\n coef std err z P>|z| [0.025 0.975]\n------------------------------------------------------------------------------\nIntercept 11.6630 3.296 3.538 0.000 5.202 18.124\ntemp -0.2162 0.053 -4.066 0.000 -0.320 -0.112\n==============================================================================\n```\n\n\n:::\n:::\n\n:::\n\n$$E(prop \\ failed\\ orings) = \\frac{\\exp{(11.66 - 0.22 \\times temp)}}{1 + \\exp{(11.66 - 0.22 \\times temp)}}$$\n\nLet's see how well our model would have performed if we would have fed it the data from the ill-fated Challenger launch.\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nggplot(challenger, aes(temp, prop_damaged)) +\n geom_point() +\n geom_smooth(method = \"glm\", se = FALSE, fullrange = TRUE, \n method.args = list(family = binomial)) +\n xlim(25,85)\n```\n\n::: {.cell-output .cell-output-stderr}\n\n```\nWarning in eval(family$initialize): non-integer #successes in a binomial glm!\n```\n\n\n:::\n\n::: {.cell-output-display}\n![](glm-practical-logistic-proportion_files/figure-html/unnamed-chunk-14-1.png){width=672}\n:::\n:::\n\n\n## Python\n\nWe can get the predicted values for the model as follows:\n\n\n::: {.cell}\n\n```{.python .cell-code}\nchallenger_py['predicted_values'] = glm_chl_py.predict()\n\nchallenger_py.head()\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n temp damage total intact prop_damaged predicted_values\n0 53 5 6 1 0.833333 0.550479\n1 57 1 6 5 0.166667 0.340217\n2 58 1 6 5 0.166667 0.293476\n3 63 1 6 5 0.166667 0.123496\n4 66 0 6 6 0.000000 0.068598\n```\n\n\n:::\n:::\n\n\nThis would only give us the predicted values for the data we already have. Instead we want to extrapolate to what would have been predicted for a wider range of temperatures. Here, we use a range of $[25, 85]$ degrees Fahrenheit.\n\n\n::: {.cell}\n\n```{.python .cell-code}\nmodel = pd.DataFrame({'temp': list(range(25, 86))})\n\nmodel[\"pred\"] = glm_chl_py.predict(model)\n\nmodel.head()\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n temp pred\n0 25 0.998087\n1 26 0.997626\n2 27 0.997055\n3 28 0.996347\n4 29 0.995469\n```\n\n\n:::\n:::\n\n::: {.cell}\n\n```{.python .cell-code}\n(ggplot(challenger_py,\n aes(x = \"temp\",\n y = \"prop_damaged\")) +\n geom_point() +\n geom_line(model, aes(x = \"temp\", y = \"pred\"), colour = \"blue\", size = 1))\n```\n\n::: {.cell-output-display}\n![](glm-practical-logistic-proportion_files/figure-html/unnamed-chunk-17-1.png){width=614}\n:::\n:::\n\n\n\n::: {.callout-note collapse=true}\n## Generating predicted values\n\n::: {.panel-tabset group=\"language\"}\n## R\n\nAnother way of doing this it to generate a table with data for a range of temperatures, from 25 to 85 degrees Fahrenheit, in steps of 1. We can then use these data to generate the logistic curve, based on the fitted model.\n\n\n::: {.cell}\n\n```{.r .cell-code}\n# create a table with sequential numbers ranging from 25 to 85\nmodel <- tibble(temp = seq(25, 85, by = 1)) %>% \n # add a new column containing the predicted values\n mutate(.pred = predict(glm_chl, newdata = ., type = \"response\"))\n\nggplot(model, aes(temp, .pred)) +\n geom_line()\n```\n\n::: {.cell-output-display}\n![](glm-practical-logistic-proportion_files/figure-html/unnamed-chunk-18-3.png){width=672}\n:::\n:::\n\n::: {.cell}\n\n```{.r .cell-code}\n# plot the curve and the original data\nggplot(model, aes(temp, .pred)) +\n geom_line(colour = \"blue\") +\n geom_point(data = challenger, aes(temp, prop_damaged)) +\n # add a vertical line at the disaster launch temperature\n geom_vline(xintercept = 31, linetype = \"dashed\")\n```\n\n::: {.cell-output-display}\n![](glm-practical-logistic-proportion_files/figure-html/unnamed-chunk-19-1.png){width=672}\n:::\n:::\n\n\nIt seems that there was a high probability of both o-rings failing at that launch temperature. One thing that the graph shows is that there is a lot of uncertainty involved in this model. We can tell, because the fit of the line is very poor at the lower temperature range. There is just very little data to work on, with the data point at 53 F having a large influence on the fit.\n\n## Python\n\nWe already did this above, since this is the most straightforward way of plotting the model in Python.\n\n:::\n:::\n:::\n\n## Exercises\n\n### Predicting failure {#sec-exr_failure}\n\n:::{.callout-exercise}\n\n\n{{< level 2 >}}\n\n\n\nThe data point at 53 degrees Fahrenheit is quite influential for the analysis. Remove this data point and repeat the analysis. Is there still a predicted link between launch temperature and o-ring failure?\n\n::: {.callout-answer collapse=\"true\"}\n\n::: {.panel-tabset group=\"language\"}\n## R\n\nFirst, we need to remove the influential data point:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nchallenger_new <- challenger %>% filter(temp != 53)\n```\n:::\n\n\nWe can create a new generalised linear model, based on these data:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nglm_chl_new <- glm(cbind(damage, intact) ~ temp,\n family = binomial,\n data = challenger_new)\n```\n:::\n\n\nWe can get the model parameters as follows:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nsummary(glm_chl_new)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n\nCall:\nglm(formula = cbind(damage, intact) ~ temp, family = binomial, \n data = challenger_new)\n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 5.68223 4.43138 1.282 0.1997 \ntemp -0.12817 0.06697 -1.914 0.0556 .\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for binomial family taken to be 1)\n\n Null deviance: 16.375 on 21 degrees of freedom\nResidual deviance: 12.633 on 20 degrees of freedom\nAIC: 27.572\n\nNumber of Fisher Scoring iterations: 5\n```\n\n\n:::\n:::\n\n::: {.cell}\n\n```{.r .cell-code}\nggplot(challenger_new, aes(temp, prop_damaged)) +\n geom_point() +\n geom_smooth(method = \"glm\", se = FALSE, fullrange = TRUE, \n method.args = list(family = binomial)) +\n xlim(25,85) +\n # add a vertical line at 53 F temperature\n geom_vline(xintercept = 53, linetype = \"dashed\")\n```\n\n::: {.cell-output .cell-output-stderr}\n\n```\nWarning in eval(family$initialize): non-integer #successes in a binomial glm!\n```\n\n\n:::\n\n::: {.cell-output-display}\n![](glm-practical-logistic-proportion_files/figure-html/unnamed-chunk-23-1.png){width=672}\n:::\n:::\n\n\nThe prediction proportion of damaged o-rings is markedly less than what was observed.\n\nBefore we can make any firm conclusions, though, we need to check our model:\n\n\n::: {.cell}\n\n```{.r .cell-code}\n1- pchisq(12.633,20)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0.8925695\n```\n\n\n:::\n:::\n\n\nWe get quite a high score (around 0.9) for this, which tells us that our goodness of fit is pretty rubbish – our points are not very close to our curve, overall.\n\nIs the model any better than the null though?\n\n\n::: {.cell}\n\n```{.r .cell-code}\n1 - pchisq(16.375 - 12.633, 21 - 20)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0.0530609\n```\n\n\n:::\n\n```{.r .cell-code}\nanova(glm_chl_new, test = 'Chisq')\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\nAnalysis of Deviance Table\n\nModel: binomial, link: logit\n\nResponse: cbind(damage, intact)\n\nTerms added sequentially (first to last)\n\n Df Deviance Resid. Df Resid. Dev Pr(>Chi) \nNULL 21 16.375 \ntemp 1 3.7421 20 12.633 0.05306 .\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n```\n\n\n:::\n:::\n\n\nHowever, the model is not significantly better than the null in this case, with a p-value here of just over 0.05 for both of these tests (they give a similar result since, yet again, we have just the one predictor variable).\n\n## Python\n\nFirst, we need to remove the influential data point:\n\n\n\n::: {.cell}\n\n```{.python .cell-code}\nchallenger_new_py = challenger_py.query(\"temp != 53\")\n```\n:::\n\n\nWe can create a new generalised linear model, based on these data:\n\n\n::: {.cell}\n\n```{.python .cell-code}\n# create a generalised linear model\nmodel = smf.glm(formula = \"damage + intact ~ temp\",\n family = sm.families.Binomial(),\n data = challenger_new_py)\n# and get the fitted parameters of the model\nglm_chl_new_py = model.fit()\n```\n:::\n\n\nWe can get the model parameters as follows:\n\n\n::: {.cell}\n\n```{.python .cell-code}\nprint(glm_chl_new_py.summary())\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n Generalized Linear Model Regression Results \n================================================================================\nDep. Variable: ['damage', 'intact'] No. Observations: 22\nModel: GLM Df Residuals: 20\nModel Family: Binomial Df Model: 1\nLink Function: Logit Scale: 1.0000\nMethod: IRLS Log-Likelihood: -11.786\nDate: Tue, 06 Feb 2024 Deviance: 12.633\nTime: 16:12:15 Pearson chi2: 16.6\nNo. Iterations: 6 Pseudo R-squ. (CS): 0.1564\nCovariance Type: nonrobust \n==============================================================================\n coef std err z P>|z| [0.025 0.975]\n------------------------------------------------------------------------------\nIntercept 5.6822 4.431 1.282 0.200 -3.003 14.368\ntemp -0.1282 0.067 -1.914 0.056 -0.259 0.003\n==============================================================================\n```\n\n\n:::\n:::\n\n\nGenerate new model data:\n\n\n::: {.cell}\n\n```{.python .cell-code}\nmodel = pd.DataFrame({'temp': list(range(25, 86))})\n\nmodel[\"pred\"] = glm_chl_new_py.predict(model)\n\nmodel.head()\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n temp pred\n0 25 0.922585\n1 26 0.912920\n2 27 0.902177\n3 28 0.890269\n4 29 0.877107\n```\n\n\n:::\n:::\n\n::: {.cell}\n\n```{.python .cell-code}\n(ggplot(challenger_new_py,\n aes(x = \"temp\",\n y = \"prop_damaged\")) +\n geom_point() +\n geom_line(model, aes(x = \"temp\", y = \"pred\"), colour = \"blue\", size = 1) +\n # add a vertical line at 53 F temperature\n geom_vline(xintercept = 53, linetype = \"dashed\"))\n```\n\n::: {.cell-output-display}\n![](glm-practical-logistic-proportion_files/figure-html/unnamed-chunk-30-1.png){width=614}\n:::\n:::\n\n\nThe prediction proportion of damaged o-rings is markedly less than what was observed.\n\nBefore we can make any firm conclusions, though, we need to check our model:\n\n\n::: {.cell}\n\n```{.python .cell-code}\nchi2.sf(12.633, 20)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n0.8925694610786307\n```\n\n\n:::\n:::\n\n\nWe get quite a high score (around 0.9) for this, which tells us that our goodness of fit is pretty rubbish – our points are not very close to our curve, overall.\n\nIs the model any better than the null though?\n\nFirst we need to define the null model:\n\n\n::: {.cell}\n\n```{.python .cell-code}\n# create a linear model\nmodel = smf.glm(formula = \"damage + intact ~ 1\",\n family = sm.families.Binomial(),\n data = challenger_new_py)\n# and get the fitted parameters of the model\nglm_chl_new_null_py = model.fit()\n\nprint(glm_chl_new_null_py.summary())\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n Generalized Linear Model Regression Results \n================================================================================\nDep. Variable: ['damage', 'intact'] No. Observations: 22\nModel: GLM Df Residuals: 21\nModel Family: Binomial Df Model: 0\nLink Function: Logit Scale: 1.0000\nMethod: IRLS Log-Likelihood: -13.657\nDate: Tue, 06 Feb 2024 Deviance: 16.375\nTime: 16:12:16 Pearson chi2: 16.8\nNo. Iterations: 6 Pseudo R-squ. (CS): -2.220e-16\nCovariance Type: nonrobust \n==============================================================================\n coef std err z P>|z| [0.025 0.975]\n------------------------------------------------------------------------------\nIntercept -3.0445 0.418 -7.286 0.000 -3.864 -2.226\n==============================================================================\n```\n\n\n:::\n:::\n\n::: {.cell}\n\n```{.python .cell-code}\nchi2.sf(16.375 - 12.633, 21 - 20)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n0.053060897703157646\n```\n\n\n:::\n:::\n\n\nHowever, the model is not significantly better than the null in this case, with a p-value here of just over 0.05 for both of these tests (they give a similar result since, yet again, we have just the one predictor variable).\n:::\n\nSo, could NASA have predicted what happened? This model is not significantly different from the null, i.e., temperature is not a significant predictor. Note that it’s only marginally non-significant, and we do have a high goodness-of-fit value.\n\nIt is possible that if more data points were available that followed a similar trend, the story might be different). Even if we did use our non-significant model to make a prediction, it doesn’t give us a value anywhere near 5 failures for a temperature of 53 degrees Fahrenheit. So overall, based on the model we’ve fitted with these data, there was no indication that a temperature just a few degrees cooler than previous missions could have been so disastrous for the Challenger.\n:::\n:::\n\n## Summary\n\n::: {.callout-tip}\n#### Key points\n\n- We can use a logistic model for proportion response variables\n\n:::\n", "supporting": [ "glm-practical-logistic-proportion_files" ], diff --git a/_freeze/materials/glm-practical-poisson/execute-results/html.json b/_freeze/materials/glm-practical-poisson/execute-results/html.json index e459571..5a4ad40 100644 --- a/_freeze/materials/glm-practical-poisson/execute-results/html.json +++ b/_freeze/materials/glm-practical-poisson/execute-results/html.json @@ -1,8 +1,8 @@ { - "hash": "fc1b580e26839e30f21b8ad25b20203a", + "hash": "a7944edaa2f705428f83c869d555dfd3", "result": { "engine": "knitr", - "markdown": "---\ntitle: \"Count data\"\n---\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n\n:::\n\n\n::: {.callout-tip}\n## Learning outcomes\n\n**Questions**\n\n- How do we analyse count data?\n\n**Objectives**\n\n- Be able to perform a poisson regression on count data\n:::\n\n## Libraries and functions\n\n::: {.callout-note collapse=\"true\"}\n## Click to expand\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n### Libraries\n### Functions\n\n## Python\n\n### Libraries\n\n\n::: {.cell}\n\n```{.python .cell-code}\n# A maths library\nimport math\n# A Python data analysis and manipulation tool\nimport pandas as pd\n\n# Python equivalent of `ggplot2`\nfrom plotnine import *\n\n# Statistical models, conducting tests and statistical data exploration\nimport statsmodels.api as sm\n\n# Convenience interface for specifying models using formula strings and DataFrames\nimport statsmodels.formula.api as smf\n\n# Needed for additional probability functionality\nfrom scipy.stats import *\n```\n:::\n\n\n### Functions\n\n:::\n:::\n\nThe examples in this section use the following data sets:\n\n`data/islands.csv`\n\nThis is a data set comprising 35 observations of two variables (one dependent and one predictor). This records the number of species recorded on different small islands along with the area (km2) of the islands. The variables are `species` and `area`.\n\nThe second data set is on seat belts.\n\nThe `seatbelts` data set is a multiple time-series data set that was commissioned by the Department of Transport in 1984 to measure differences in deaths before and after front seat belt legislation was introduced on 31st January 1983. It provides monthly total numerical data on a number of incidents including those related to death and injury in Road Traffic Accidents (RTA's). The data set starts in January 1969 and observations run until December 1984.\n\nYou can find the file in `data/seatbelts.csv`\n\n## Load and visualise the data\n\nFirst we load the data, then we visualise it.\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nislands <- read_csv(\"data/islands.csv\")\n```\n:::\n\n\nLet's have a glimpse at the data:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nislands\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n# A tibble: 35 × 2\n species area\n \n 1 114 12.1\n 2 130 13.4\n 3 113 13.7\n 4 109 14.5\n 5 118 16.8\n 6 136 19.0\n 7 149 19.6\n 8 162 20.6\n 9 145 20.9\n10 148 21.0\n# ℹ 25 more rows\n```\n\n\n:::\n:::\n\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\nislands_py = pd.read_csv(\"data/islands.csv\")\n```\n:::\n\n\nLet's have a glimpse at the data:\n\n\n::: {.cell}\n\n```{.python .cell-code}\nislands_py.head()\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n species area\n0 114 12.076133\n1 130 13.405439\n2 113 13.723525\n3 109 14.540359\n4 118 16.792122\n```\n\n\n:::\n:::\n\n\n:::\n\nLooking at the data, we can see that there are two columns: `species`, which contains the number of species recorded on each island and `area`, which contains the surface area of the island in square kilometers.\n\nWe can plot the data:\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nggplot(islands, aes(x = area, y = species)) +\n geom_point()\n```\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-8-1.png){width=672}\n:::\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\n(ggplot(islands_py, aes(x = \"area\", y = \"species\")) +\n geom_point())\n```\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-9-1.png){width=614}\n:::\n:::\n\n:::\n\nIt looks as though `area` may have an effect on the number of species that we observe on each island. We note that the response variable is count data and so we try to construct a Poisson regression.\n\n## Constructing a model\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nglm_isl <- glm(species ~ area,\n data = islands, family = \"poisson\")\n```\n:::\n\n\nand we look at the model summary:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nsummary(glm_isl)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n\nCall:\nglm(formula = species ~ area, family = \"poisson\", data = islands)\n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 4.241129 0.041322 102.64 <2e-16 ***\narea 0.035613 0.001247 28.55 <2e-16 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for poisson family taken to be 1)\n\n Null deviance: 856.899 on 34 degrees of freedom\nResidual deviance: 30.437 on 33 degrees of freedom\nAIC: 282.66\n\nNumber of Fisher Scoring iterations: 3\n```\n\n\n:::\n:::\n\n\nThe output is strikingly similar to the logistic regression models (who’d have guessed, eh?) and the main numbers to extract from the output are the two numbers underneath `Estimate.Std` in the `Coefficients` table:\n\n```\n(Intercept) 4.241129\narea 0.035613\n```\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\n# create a generalised linear model\nmodel = smf.glm(formula = \"species ~ area\",\n family = sm.families.Poisson(),\n data = islands_py)\n# and get the fitted parameters of the model\nglm_isl_py = model.fit()\n```\n:::\n\n\nLet's look at the model output:\n\n\n::: {.cell}\n\n```{.python .cell-code}\nprint(glm_isl_py.summary())\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n Generalized Linear Model Regression Results \n==============================================================================\nDep. Variable: species No. Observations: 35\nModel: GLM Df Residuals: 33\nModel Family: Poisson Df Model: 1\nLink Function: Log Scale: 1.0000\nMethod: IRLS Log-Likelihood: -139.33\nDate: Tue, 06 Feb 2024 Deviance: 30.437\nTime: 14:14:58 Pearson chi2: 30.3\nNo. Iterations: 4 Pseudo R-squ. (CS): 1.000\nCovariance Type: nonrobust \n==============================================================================\n coef std err z P>|z| [0.025 0.975]\n------------------------------------------------------------------------------\nIntercept 4.2411 0.041 102.636 0.000 4.160 4.322\narea 0.0356 0.001 28.551 0.000 0.033 0.038\n==============================================================================\n```\n\n\n:::\n:::\n\n\n:::\n\nThese are the coefficients of the Poisson model equation and need to be placed in the following formula in order to estimate the expected number of species as a function of island size:\n\n$$ E(species) = \\exp(4.24 + 0.036 \\times area) $$\n\nInterpreting this requires a bit of thought (not much, but a bit).\nThe intercept coefficient, `4.24`, is related to the number of species we would expect on an island of zero area (this is statistics, not real life. You’d do well to remember that before you worry too much about what that even means). But in order to turn this number into something meaningful we have to exponentiate it. Since `exp(4.24) ≈ 70`, we can say that the baseline number of species the model expects on any island is 70. This isn’t actually the interesting bit though.\n\nThe coefficient of `area` is the fun bit. For starters we can see that it is a positive number which does mean that increasing `area` leads to increasing numbers of `species`. Good so far.\n\nBut what does the value `0.036` actually mean? Well, if we exponentiate it as well, we get `exp(0.036) ≈ 1.04`. This means that for every increase in `area` of 1 km^2 (the original units of the area variable), the number of species on the island is multiplied by `1.04`. So, an island of area 1 km^2 will have `1.04 x 70 ≈ 72` species.\n\nSo, in order to interpret Poisson coefficients, you have to exponentiate them.\n\n## Plotting the Poisson regression\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nggplot(islands, aes(area, species)) +\n geom_point() +\n geom_smooth(method = \"glm\", se = FALSE, fullrange = TRUE, \n method.args = list(family = poisson)) +\n xlim(10,50)\n```\n\n::: {.cell-output .cell-output-stderr}\n\n```\n`geom_smooth()` using formula = 'y ~ x'\n```\n\n\n:::\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-14-1.png){width=672}\n:::\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\nmodel = pd.DataFrame({'area': list(range(10, 50))})\n\nmodel[\"pred\"] = glm_isl_py.predict(model)\n\nmodel.head()\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n area pred\n0 10 99.212463\n1 11 102.809432\n2 12 106.536811\n3 13 110.399326\n4 14 114.401877\n```\n\n\n:::\n:::\n\n::: {.cell}\n\n```{.python .cell-code}\n(ggplot(islands_py,\n aes(x = \"area\",\n y = \"species\")) +\n geom_point() +\n geom_line(model, aes(x = \"area\", y = \"pred\"), colour = \"blue\", size = 1))\n```\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-16-1.png){width=614}\n:::\n:::\n\n:::\n\n## Assumptions\n\nAs we mentioned earlier, Poisson regressions require that the variance of the data at any point is the same as the mean of the data at that point. We checked that earlier by looking at the residual deviance values.\n\nWe can look for influential points using the Cook’s distance plot:\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nplot(glm_isl , which=4)\n```\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-17-3.png){width=672}\n:::\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\n# extract the Cook's distances\nglm_isl_py_resid = pd.DataFrame(glm_isl_py.\n get_influence().\n summary_frame()[\"cooks_d\"])\n\n# add row index \nglm_isl_py_resid['obs'] = glm_isl_py_resid.reset_index().index\n```\n:::\n\n\nWe can use these to create the plot:\n\n\n::: {.cell}\n\n```{.python .cell-code}\n(ggplot(glm_isl_py_resid,\n aes(x = \"obs\",\n y = \"cooks_d\")) +\n geom_segment(aes(x = \"obs\", y = \"cooks_d\", xend = \"obs\", yend = 0)) +\n geom_point())\n```\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-19-1.png){width=614}\n:::\n:::\n\n\n:::\n\nNone of our points have particularly large Cook’s distances and so life is rosy.\n\n## Assessing significance\n\nWe can ask the same three questions we asked before.\n\n1. Is the model well-specified?\n2. Is the overall model better than the null model?\n3. Are any of the individual predictors significant?\n\nAgain, in this case, questions 2 and 3 are effectively asking the same thing because we still only have a single predictor variable.\n\nTo assess if the model is any good we’ll again use the residual deviance and the residual degrees of freedom.\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\n1 - pchisq(30.437, 33)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0.5953482\n```\n\n\n:::\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\nchi2.sf(30.437, 33)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n0.5953481872979622\n```\n\n\n:::\n:::\n\n\n:::\n\nThis gives a probability of `0.60`. This suggests that this model is actually a reasonably decent one and that the data are pretty well supported by the model. For Poisson models this has an extra interpretation. This can be used to assess whether we have significant over-dispersion in our data.\n\nFor a Poisson model to be appropriate we need that the variance of the data to be exactly the same as the mean of the data. Visually, this would correspond to the data spreading out more for higher predicted values of `species.` However, we don’t want the data to spread out too much. If that happens then a Poisson model wouldn’t be appropriate.\n\nThe easy way to check this is to look at the ratio of the residual deviance to the residual degrees of freedom (in this case `0.922`). For a Poisson model to be valid, this ratio should be about 1. If the ratio is significantly bigger than 1 then we say that we have over-dispersion in the model and we wouldn’t be able to trust any of the significance testing that we are about to do using a Poisson regression.\n\nThankfully the probability we have just created (`0.60`) is exactly the right one we need to look at to assess whether we have significant over-dispersion in our model.\n\nSecondly, to assess whether the overall model, with all of the terms, is better than the null model we’ll look at the difference in deviances and the difference in degrees of freedom:\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\n1 - pchisq(856.899 - 30.437, 34 - 33)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0\n```\n\n\n:::\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\nchi2.sf(856.899 - 30.437, 34 - 33)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n9.524927068555617e-182\n```\n\n\n:::\n:::\n\n:::\n\nThis gives a reported p-value of pretty much zero, which is pretty damn small. So, yes, this model is better than nothing at all and species does appear to change with some of our predictors\n\nFinally, we’ll construct an analysis of deviance table to look at the individual terms:\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nanova(glm_isl , test = \"Chisq\")\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\nAnalysis of Deviance Table\n\nModel: poisson, link: log\n\nResponse: species\n\nTerms added sequentially (first to last)\n\n Df Deviance Resid. Df Resid. Dev Pr(>Chi) \nNULL 34 856.90 \narea 1 826.46 33 30.44 < 2.2e-16 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n```\n\n\n:::\n:::\n\n\nThe p-value in this table is just as small as we’d expect given our previous result (`<2.2e-16` is pretty close to 0), and we have the nice consistent result that `area` definitely has an effect on `species`.\n\n## Python\n\nAs mentioned before, this is not quite possible in Python.\n:::\n\n## Exercises\n\n### Seat belts {#sec-exr_seatbelts}\n\n:::{.callout-exercise}\n\n\n{{< level 2 >}}\n\n\n\nFor this exercise we'll be using the data from `data/seatbelts.csv`.\n\nI'd like you to do the following:\n\n1. Load the data\n2. Visualise the data and create a poisson regression model\n3. Plot the regression model on top of the data\n4. Assess if the model is a decent predictor for the number of fatalities\n\n::: {.callout-answer collapse=\"true\"}\n\n#### Load and visualise the data\n\nFirst we load the data, then we visualise it.\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nseatbelts <- read_csv(\"data/seatbelts.csv\")\n```\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\nseatbelts_py = pd.read_csv(\"data/seatbelts.csv\")\n```\n:::\n\n\nLet's have a glimpse at the data:\n\n\n::: {.cell}\n\n```{.python .cell-code}\nseatbelts_py.head()\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n drivers_killed drivers front rear ... van_killed law year month\n0 107 1687 867 269 ... 12 0 1969 Jan\n1 97 1508 825 265 ... 6 0 1969 Feb\n2 102 1507 806 319 ... 12 0 1969 Mar\n3 87 1385 814 407 ... 8 0 1969 Apr\n4 119 1632 991 454 ... 10 0 1969 May\n\n[5 rows x 10 columns]\n```\n\n\n:::\n:::\n\n:::\n\nThe data tracks the number of drivers killed in road traffic accidents, before and after the seat belt law was introduced. The information on whether the law was in place is encoded in the `law` column as `0` (law not in place) or `1` (law in place).\n\nThere are many more observations when the law was *not* in place, so we need to keep this in mind when we're interpreting the data.\n\nFirst we have a look at the data comparing no law vs law:\n\n::: {.panel-tabset group=\"language\"}\n## R\n\nWe have to convert the `law` column to a factor, otherwise R will see it as numerical.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nseatbelts %>% \n ggplot(aes(as_factor(law), drivers_killed)) +\n geom_boxplot()\n```\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-28-1.png){width=672}\n:::\n:::\n\n\nThe data are recorded by month and year, so we can also display the number of drivers killed by year:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nseatbelts %>% \n ggplot(aes(year, drivers_killed)) +\n geom_point()\n```\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-29-1.png){width=672}\n:::\n:::\n\n\n:::\n\nThe data look a bit weird. There is quite some variation within years (keeping in mind that the data are aggregated monthly). The data also seems to wave around a bit... with some vague peaks (e.g. 1972 - 1973) and some troughs (e.g. around 1976).\n\nSo my initial thought is that these data are going to be a bit tricky to interpret. But that's OK.\n\n#### Constructing a model\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nglm_stb <- glm(drivers_killed ~ year,\n data = seatbelts, family = \"poisson\")\n```\n:::\n\n\nand we look at the model summary:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nsummary(glm_stb)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n\nCall:\nglm(formula = drivers_killed ~ year, family = \"poisson\", data = seatbelts)\n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 37.168958 2.796636 13.29 <2e-16 ***\nyear -0.016373 0.001415 -11.57 <2e-16 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for poisson family taken to be 1)\n\n Null deviance: 984.50 on 191 degrees of freedom\nResidual deviance: 850.41 on 190 degrees of freedom\nAIC: 2127.2\n\nNumber of Fisher Scoring iterations: 4\n```\n\n\n:::\n:::\n\n\n```\n(Intercept) 37.168958\nyear 0.016373\n```\n:::\n\nThese are the coefficients of the Poisson model equation and need to be placed in the following formula in order to estimate the expected number of species as a function of island size:\n\n$$ E(drivers\\_killed) = \\exp(37.17 + 0.164 \\times year) $$\n\n#### Assessing significance\n\nIs the model well-specified?\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\n1 - pchisq(850.41, 190)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0\n```\n\n\n:::\n:::\n\n\nThis value indicates that the model is actually pretty good. Remember, it is between $[0, 1]$ and the closer to zero, the better the model.\n:::\n\nHow about the overall fit?\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\n1 - pchisq(984.50 - 850.41, 191 - 190)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0\n```\n\n\n:::\n:::\n\n\nAgain, this indicates that the model is markedly better than the null model.\n\n:::\n\n#### Plotting the regression\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nggplot(seatbelts, aes(year, drivers_killed)) +\n geom_point() +\n geom_smooth(method = \"glm\", se = FALSE, fullrange = TRUE, \n method.args = list(family = poisson)) +\n xlim(1970,1985)\n```\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-34-1.png){width=672}\n:::\n:::\n\n\n:::\n\n\n#### Conclusions\n\nThe model we constructed appears to be a decent predictor for the number of fatalities.\n\n:::\n:::\n\n## Summary\n\n::: {.callout-tip}\n#### Key points\n\n- Poisson regression is useful when dealing with count data\n:::\n", + "markdown": "---\ntitle: \"Count data\"\n---\n\n::: {.cell}\n\n:::\n\n::: {.cell}\n\n:::\n\n\n::: {.callout-tip}\n## Learning outcomes\n\n**Questions**\n\n- How do we analyse count data?\n\n**Objectives**\n\n- Be able to perform a poisson regression on count data\n:::\n\n## Libraries and functions\n\n::: {.callout-note collapse=\"true\"}\n## Click to expand\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n### Libraries\n### Functions\n\n## Python\n\n### Libraries\n\n\n::: {.cell}\n\n```{.python .cell-code}\n# A maths library\nimport math\n# A Python data analysis and manipulation tool\nimport pandas as pd\n\n# Python equivalent of `ggplot2`\nfrom plotnine import *\n\n# Statistical models, conducting tests and statistical data exploration\nimport statsmodels.api as sm\n\n# Convenience interface for specifying models using formula strings and DataFrames\nimport statsmodels.formula.api as smf\n\n# Needed for additional probability functionality\nfrom scipy.stats import *\n```\n:::\n\n\n### Functions\n\n:::\n:::\n\nThe examples in this section use the following data sets:\n\n`data/islands.csv`\n\nThis is a data set comprising 35 observations of two variables (one dependent and one predictor). This records the number of species recorded on different small islands along with the area (km2) of the islands. The variables are `species` and `area`.\n\nThe second data set is on seat belts.\n\nThe `seatbelts` data set is a multiple time-series data set that was commissioned by the Department of Transport in 1984 to measure differences in deaths before and after front seat belt legislation was introduced on 31st January 1983. It provides monthly total numerical data on a number of incidents including those related to death and injury in Road Traffic Accidents (RTA's). The data set starts in January 1969 and observations run until December 1984.\n\nYou can find the file in `data/seatbelts.csv`\n\n## Load and visualise the data\n\nFirst we load the data, then we visualise it.\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nislands <- read_csv(\"data/islands.csv\")\n```\n:::\n\n\nLet's have a glimpse at the data:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nislands\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n# A tibble: 35 × 2\n species area\n \n 1 114 12.1\n 2 130 13.4\n 3 113 13.7\n 4 109 14.5\n 5 118 16.8\n 6 136 19.0\n 7 149 19.6\n 8 162 20.6\n 9 145 20.9\n10 148 21.0\n# ℹ 25 more rows\n```\n\n\n:::\n:::\n\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\nislands_py = pd.read_csv(\"data/islands.csv\")\n```\n:::\n\n\nLet's have a glimpse at the data:\n\n\n::: {.cell}\n\n```{.python .cell-code}\nislands_py.head()\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n species area\n0 114 12.076133\n1 130 13.405439\n2 113 13.723525\n3 109 14.540359\n4 118 16.792122\n```\n\n\n:::\n:::\n\n\n:::\n\nLooking at the data, we can see that there are two columns: `species`, which contains the number of species recorded on each island and `area`, which contains the surface area of the island in square kilometers.\n\nWe can plot the data:\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nggplot(islands, aes(x = area, y = species)) +\n geom_point()\n```\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-8-1.png){width=672}\n:::\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\n(ggplot(islands_py, aes(x = \"area\", y = \"species\")) +\n geom_point())\n```\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-9-1.png){width=614}\n:::\n:::\n\n:::\n\nIt looks as though `area` may have an effect on the number of species that we observe on each island. We note that the response variable is count data and so we try to construct a Poisson regression.\n\n## Constructing a model\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nglm_isl <- glm(species ~ area,\n data = islands, family = \"poisson\")\n```\n:::\n\n\nand we look at the model summary:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nsummary(glm_isl)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n\nCall:\nglm(formula = species ~ area, family = \"poisson\", data = islands)\n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 4.241129 0.041322 102.64 <2e-16 ***\narea 0.035613 0.001247 28.55 <2e-16 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for poisson family taken to be 1)\n\n Null deviance: 856.899 on 34 degrees of freedom\nResidual deviance: 30.437 on 33 degrees of freedom\nAIC: 282.66\n\nNumber of Fisher Scoring iterations: 3\n```\n\n\n:::\n:::\n\n\nThe output is strikingly similar to the logistic regression models (who’d have guessed, eh?) and the main numbers to extract from the output are the two numbers underneath `Estimate.Std` in the `Coefficients` table:\n\n```\n(Intercept) 4.241129\narea 0.035613\n```\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\n# create a generalised linear model\nmodel = smf.glm(formula = \"species ~ area\",\n family = sm.families.Poisson(),\n data = islands_py)\n# and get the fitted parameters of the model\nglm_isl_py = model.fit()\n```\n:::\n\n\nLet's look at the model output:\n\n\n::: {.cell}\n\n```{.python .cell-code}\nprint(glm_isl_py.summary())\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n Generalized Linear Model Regression Results \n==============================================================================\nDep. Variable: species No. Observations: 35\nModel: GLM Df Residuals: 33\nModel Family: Poisson Df Model: 1\nLink Function: Log Scale: 1.0000\nMethod: IRLS Log-Likelihood: -139.33\nDate: Tue, 06 Feb 2024 Deviance: 30.437\nTime: 16:16:33 Pearson chi2: 30.3\nNo. Iterations: 4 Pseudo R-squ. (CS): 1.000\nCovariance Type: nonrobust \n==============================================================================\n coef std err z P>|z| [0.025 0.975]\n------------------------------------------------------------------------------\nIntercept 4.2411 0.041 102.636 0.000 4.160 4.322\narea 0.0356 0.001 28.551 0.000 0.033 0.038\n==============================================================================\n```\n\n\n:::\n:::\n\n\n:::\n\nThese are the coefficients of the Poisson model equation and need to be placed in the following formula in order to estimate the expected number of species as a function of island size:\n\n$$ E(species) = \\exp(4.24 + 0.036 \\times area) $$\n\nInterpreting this requires a bit of thought (not much, but a bit).\nThe intercept coefficient, `4.24`, is related to the number of species we would expect on an island of zero area (this is statistics, not real life. You’d do well to remember that before you worry too much about what that even means). But in order to turn this number into something meaningful we have to exponentiate it. Since `exp(4.24) ≈ 70`, we can say that the baseline number of species the model expects on any island is 70. This isn’t actually the interesting bit though.\n\nThe coefficient of `area` is the fun bit. For starters we can see that it is a positive number which does mean that increasing `area` leads to increasing numbers of `species`. Good so far.\n\nBut what does the value `0.036` actually mean? Well, if we exponentiate it as well, we get `exp(0.036) ≈ 1.04`. This means that for every increase in `area` of 1 km^2 (the original units of the area variable), the number of species on the island is multiplied by `1.04`. So, an island of area 1 km^2 will have `1.04 x 70 ≈ 72` species.\n\nSo, in order to interpret Poisson coefficients, you have to exponentiate them.\n\n## Plotting the Poisson regression\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nggplot(islands, aes(area, species)) +\n geom_point() +\n geom_smooth(method = \"glm\", se = FALSE, fullrange = TRUE, \n method.args = list(family = poisson)) +\n xlim(10,50)\n```\n\n::: {.cell-output .cell-output-stderr}\n\n```\n`geom_smooth()` using formula = 'y ~ x'\n```\n\n\n:::\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-14-1.png){width=672}\n:::\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\nmodel = pd.DataFrame({'area': list(range(10, 50))})\n\nmodel[\"pred\"] = glm_isl_py.predict(model)\n\nmodel.head()\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n area pred\n0 10 99.212463\n1 11 102.809432\n2 12 106.536811\n3 13 110.399326\n4 14 114.401877\n```\n\n\n:::\n:::\n\n::: {.cell}\n\n```{.python .cell-code}\n(ggplot(islands_py,\n aes(x = \"area\",\n y = \"species\")) +\n geom_point() +\n geom_line(model, aes(x = \"area\", y = \"pred\"), colour = \"blue\", size = 1))\n```\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-16-1.png){width=614}\n:::\n:::\n\n:::\n\n## Assumptions\n\nAs we mentioned earlier, Poisson regressions require that the variance of the data at any point is the same as the mean of the data at that point. We checked that earlier by looking at the residual deviance values.\n\nWe can look for influential points using the Cook’s distance plot:\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nplot(glm_isl , which=4)\n```\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-17-3.png){width=672}\n:::\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\n# extract the Cook's distances\nglm_isl_py_resid = pd.DataFrame(glm_isl_py.\n get_influence().\n summary_frame()[\"cooks_d\"])\n\n# add row index \nglm_isl_py_resid['obs'] = glm_isl_py_resid.reset_index().index\n```\n:::\n\n\nWe can use these to create the plot:\n\n\n::: {.cell}\n\n```{.python .cell-code}\n(ggplot(glm_isl_py_resid,\n aes(x = \"obs\",\n y = \"cooks_d\")) +\n geom_segment(aes(x = \"obs\", y = \"cooks_d\", xend = \"obs\", yend = 0)) +\n geom_point())\n```\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-19-1.png){width=614}\n:::\n:::\n\n\n:::\n\nNone of our points have particularly large Cook’s distances and so life is rosy.\n\n## Assessing significance\n\nWe can ask the same three questions we asked before.\n\n1. Is the model well-specified?\n2. Is the overall model better than the null model?\n3. Are any of the individual predictors significant?\n\nAgain, in this case, questions 2 and 3 are effectively asking the same thing because we still only have a single predictor variable.\n\nTo assess if the model is any good we’ll again use the residual deviance and the residual degrees of freedom.\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\n1 - pchisq(30.437, 33)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0.5953482\n```\n\n\n:::\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\nchi2.sf(30.437, 33)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n0.5953481872979622\n```\n\n\n:::\n:::\n\n\n:::\n\nThis gives a probability of `0.60`. This suggests that this model is actually a reasonably decent one and that the data are pretty well supported by the model. For Poisson models this has an extra interpretation. This can be used to assess whether we have significant over-dispersion in our data.\n\nFor a Poisson model to be appropriate we need that the variance of the data to be exactly the same as the mean of the data. Visually, this would correspond to the data spreading out more for higher predicted values of `species.` However, we don’t want the data to spread out too much. If that happens then a Poisson model wouldn’t be appropriate.\n\nThe easy way to check this is to look at the ratio of the residual deviance to the residual degrees of freedom (in this case `0.922`). For a Poisson model to be valid, this ratio should be about 1. If the ratio is significantly bigger than 1 then we say that we have over-dispersion in the model and we wouldn’t be able to trust any of the significance testing that we are about to do using a Poisson regression.\n\nThankfully the probability we have just created (`0.60`) is exactly the right one we need to look at to assess whether we have significant over-dispersion in our model.\n\nSecondly, to assess whether the overall model, with all of the terms, is better than the null model we’ll look at the difference in deviances and the difference in degrees of freedom:\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\n1 - pchisq(856.899 - 30.437, 34 - 33)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0\n```\n\n\n:::\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\nchi2.sf(856.899 - 30.437, 34 - 33)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n9.524927068555617e-182\n```\n\n\n:::\n:::\n\n:::\n\nThis gives a reported p-value of pretty much zero, which is pretty damn small. So, yes, this model is better than nothing at all and species does appear to change with some of our predictors\n\nFinally, we’ll construct an analysis of deviance table to look at the individual terms:\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nanova(glm_isl , test = \"Chisq\")\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\nAnalysis of Deviance Table\n\nModel: poisson, link: log\n\nResponse: species\n\nTerms added sequentially (first to last)\n\n Df Deviance Resid. Df Resid. Dev Pr(>Chi) \nNULL 34 856.90 \narea 1 826.46 33 30.44 < 2.2e-16 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n```\n\n\n:::\n:::\n\n\nThe p-value in this table is just as small as we’d expect given our previous result (`<2.2e-16` is pretty close to 0), and we have the nice consistent result that `area` definitely has an effect on `species`.\n\n## Python\n\nAs mentioned before, this is not quite possible in Python.\n:::\n\n## Exercises\n\n### Seat belts {#sec-exr_seatbelts}\n\n:::{.callout-exercise}\n\n\n{{< level 2 >}}\n\n\n\nFor this exercise we'll be using the data from `data/seatbelts.csv`.\n\nI'd like you to do the following:\n\n1. Load the data\n2. Visualise the data and create a poisson regression model\n3. Plot the regression model on top of the data\n4. Assess if the model is a decent predictor for the number of fatalities\n\n::: {.callout-answer collapse=\"true\"}\n\n#### Load and visualise the data\n\nFirst we load the data, then we visualise it.\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nseatbelts <- read_csv(\"data/seatbelts.csv\")\n```\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\nseatbelts_py = pd.read_csv(\"data/seatbelts.csv\")\n```\n:::\n\n\nLet's have a glimpse at the data:\n\n\n::: {.cell}\n\n```{.python .cell-code}\nseatbelts_py.head()\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n casualties drivers front rear ... van_killed law year month\n0 107 1687 867 269 ... 12 0 1969 Jan\n1 97 1508 825 265 ... 6 0 1969 Feb\n2 102 1507 806 319 ... 12 0 1969 Mar\n3 87 1385 814 407 ... 8 0 1969 Apr\n4 119 1632 991 454 ... 10 0 1969 May\n\n[5 rows x 10 columns]\n```\n\n\n:::\n:::\n\n:::\n\nThe data tracks the number of drivers killed in road traffic accidents, before and after the seat belt law was introduced. The information on whether the law was in place is encoded in the `law` column as `0` (law not in place) or `1` (law in place).\n\nThere are many more observations when the law was *not* in place, so we need to keep this in mind when we're interpreting the data.\n\nFirst we have a look at the data comparing no law vs law:\n\n::: {.panel-tabset group=\"language\"}\n## R\n\nWe have to convert the `law` column to a factor, otherwise R will see it as numerical.\n\n\n::: {.cell}\n\n```{.r .cell-code}\nseatbelts %>% \n ggplot(aes(as_factor(law), casualties)) +\n geom_boxplot()\n```\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-28-1.png){width=672}\n:::\n:::\n\n\nThe data are recorded by month and year, so we can also display the number of drivers killed by year:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nseatbelts %>% \n ggplot(aes(year, casualties)) +\n geom_point()\n```\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-29-1.png){width=672}\n:::\n:::\n\n\n## Python\n\nWe have to convert the `law` column to a factor, otherwise R will see it as numerical.\n\n\n::: {.cell}\n\n```{.python .cell-code}\n(ggplot(seatbelts_py,\n aes(x = seatbelts_py.law.astype(object),\n y = \"casualties\")) +\n geom_boxplot())\n```\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-30-1.png){width=614}\n:::\n:::\n\n\nThe data are recorded by month and year, so we can also display the number of casualties by year:\n\n\n::: {.cell}\n\n```{.python .cell-code}\n(ggplot(seatbelts_py,\n aes(x = \"year\",\n y = \"casualties\")) +\n geom_point())\n```\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-31-3.png){width=614}\n:::\n:::\n\n\n:::\n\nThe data look a bit weird. There is quite some variation within years (keeping in mind that the data are aggregated monthly). The data also seems to wave around a bit... with some vague peaks (e.g. 1972 - 1973) and some troughs (e.g. around 1976).\n\nSo my initial thought is that these data are going to be a bit tricky to interpret. But that's OK.\n\n#### Constructing a model\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nglm_stb <- glm(casualties ~ year,\n data = seatbelts, family = \"poisson\")\n```\n:::\n\n\nand we look at the model summary:\n\n\n::: {.cell}\n\n```{.r .cell-code}\nsummary(glm_stb)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n\nCall:\nglm(formula = casualties ~ year, family = \"poisson\", data = seatbelts)\n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 37.168958 2.796636 13.29 <2e-16 ***\nyear -0.016373 0.001415 -11.57 <2e-16 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for poisson family taken to be 1)\n\n Null deviance: 984.50 on 191 degrees of freedom\nResidual deviance: 850.41 on 190 degrees of freedom\nAIC: 2127.2\n\nNumber of Fisher Scoring iterations: 4\n```\n\n\n:::\n:::\n\n\n```\n(Intercept) 37.168958\nyear -0.016373\n```\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\n# create a linear model\nmodel = smf.glm(formula = \"casualties ~ year\",\n family = sm.families.Poisson(),\n data = seatbelts_py)\n# and get the fitted parameters of the model\nglm_stb_py = model.fit()\n```\n:::\n\n::: {.cell}\n\n```{.python .cell-code}\nprint(glm_stb_py.summary())\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n Generalized Linear Model Regression Results \n==============================================================================\nDep. Variable: casualties No. Observations: 192\nModel: GLM Df Residuals: 190\nModel Family: Poisson Df Model: 1\nLink Function: Log Scale: 1.0000\nMethod: IRLS Log-Likelihood: -1061.6\nDate: Tue, 06 Feb 2024 Deviance: 850.41\nTime: 16:16:38 Pearson chi2: 862.\nNo. Iterations: 4 Pseudo R-squ. (CS): 0.5026\nCovariance Type: nonrobust \n==============================================================================\n coef std err z P>|z| [0.025 0.975]\n------------------------------------------------------------------------------\nIntercept 37.1690 2.797 13.291 0.000 31.688 42.650\nyear -0.0164 0.001 -11.569 0.000 -0.019 -0.014\n==============================================================================\n```\n\n\n:::\n:::\n\n\n```\n======================\n coef \n----------------------\nIntercept 37.1690 \nyear -0.0164 \n======================\n```\n:::\n\nThese are the coefficients of the Poisson model equation and need to be placed in the following formula in order to estimate the expected number of species as a function of island size:\n\n$$ E(casualties) = \\exp(37.17 - 0.164 \\times year) $$\n\n#### Assessing significance\n\nIs the model well-specified?\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\n1 - pchisq(850.41, 190)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0\n```\n\n\n:::\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\nchi2.sf(850.41, 190)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n3.1319689119997022e-84\n```\n\n\n:::\n:::\n\n:::\n\nThis value indicates that the model is actually pretty good. Remember, it is between $[0, 1]$ and the closer to zero, the better the model.\n\nHow about the overall fit?\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\n1 - pchisq(984.50 - 850.41, 191 - 190)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n[1] 0\n```\n\n\n:::\n:::\n\n\n## Python\n\nFirst we need to define the null model:\n\n\n::: {.cell}\n\n```{.python .cell-code}\n# create a linear model\nmodel = smf.glm(formula = \"casualties ~ 1\",\n family = sm.families.Poisson(),\n data = seatbelts_py)\n# and get the fitted parameters of the model\nglm_stb_null_py = model.fit()\n\nprint(glm_stb_null_py.summary())\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n Generalized Linear Model Regression Results \n==============================================================================\nDep. Variable: casualties No. Observations: 192\nModel: GLM Df Residuals: 191\nModel Family: Poisson Df Model: 0\nLink Function: Log Scale: 1.0000\nMethod: IRLS Log-Likelihood: -1128.6\nDate: Tue, 06 Feb 2024 Deviance: 984.50\nTime: 16:16:38 Pearson chi2: 1.00e+03\nNo. Iterations: 4 Pseudo R-squ. (CS): 1.942e-13\nCovariance Type: nonrobust \n==============================================================================\n coef std err z P>|z| [0.025 0.975]\n------------------------------------------------------------------------------\nIntercept 4.8106 0.007 738.670 0.000 4.798 4.823\n==============================================================================\n```\n\n\n:::\n:::\n\n::: {.cell}\n\n```{.python .cell-code}\nchi2.sf(984.50 - 850.41, 191 - 190)\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n5.2214097202831414e-31\n```\n\n\n:::\n:::\n\n:::\n\nAgain, this indicates that the model is markedly better than the null model.\n\n#### Plotting the regression\n\n::: {.panel-tabset group=\"language\"}\n## R\n\n\n::: {.cell}\n\n```{.r .cell-code}\nggplot(seatbelts, aes(year, casualties)) +\n geom_point() +\n geom_smooth(method = \"glm\", se = FALSE, fullrange = TRUE, \n method.args = list(family = poisson)) +\n xlim(1970,1985)\n```\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-41-1.png){width=672}\n:::\n:::\n\n\n## Python\n\n\n::: {.cell}\n\n```{.python .cell-code}\nmodel = pd.DataFrame({'year': list(range(1968, 1985))})\n\nmodel[\"pred\"] = glm_stb_py.predict(model)\n\nmodel.head()\n```\n\n::: {.cell-output .cell-output-stdout}\n\n```\n year pred\n0 1968 140.737690\n1 1969 138.452153\n2 1970 136.203733\n3 1971 133.991827\n4 1972 131.815842\n```\n\n\n:::\n:::\n\n::: {.cell}\n\n```{.python .cell-code}\n(ggplot(seatbelts_py,\n aes(x = \"year\",\n y = \"casualties\")) +\n geom_point() +\n geom_line(model, aes(x = \"year\", y = \"pred\"), colour = \"blue\", size = 1))\n```\n\n::: {.cell-output-display}\n![](glm-practical-poisson_files/figure-html/unnamed-chunk-43-1.png){width=614}\n:::\n:::\n\n:::\n\n\n#### Conclusions\n\nThe model we constructed appears to be a decent predictor for the number of fatalities.\n\n:::\n:::\n\n## Summary\n\n::: {.callout-tip}\n#### Key points\n\n- Poisson regression is useful when dealing with count data\n:::\n", "supporting": [ "glm-practical-poisson_files" ], diff --git a/_freeze/materials/glm-practical-poisson/figure-html/unnamed-chunk-28-1.png b/_freeze/materials/glm-practical-poisson/figure-html/unnamed-chunk-28-1.png index 7608c9e369fee2dd49834420c5def7e61675f197..e9b3e649b464ddb5df45dca65c88ea5e02cc9bc4 100644 GIT binary patch literal 43945 zcmeFabyQUA+dn*vAOeaYDM~0uQ4o+LjldXyiiAZ<2qG=g9b=(VHcHJXsg$%d2B9bn zjkI)!3|+r#BdB=he4q7u-*>(1S*h}u(COG<$|G+g3)Co8&kv63WrfB zaX-IvIwsrCG0FsIrttk$cC9)p>OSqF$iq~N(-qendKZmSESvT{ut+_0_rqXwsOjzl z9rF>Udu138(Y=Xjd(gI|{f1|US?rJx|MOJU=j7M+OcQ1mo>j6?4P+ij$$s$KJh!xI zraNTBqo>7oxP|8K>wVgfTXv!Mu_f?#Rkf!ScfWrxY4^sRu*sdk&*%S$_t9>$Z5?m( z8-_->idyO>Gp3e|2NF~j$Zj>?sE-r>xU<~|wa8SMtm8#~Xs(2+&S0AAy_7`=SNoQC zX()Bpu+5{%mpxn}eCjn`BHQuezuwyt|U8OUq%_^US^?p$Y+-K|6c)09HGC8JDJsxfYqPIk@> z8|pEc_lD80Cw z2DCSoC^bI#NQTSDv303F;CwK2Ugka16Tc6bH`kp9nfB{59KFl6+0;#2KRlY6t=HsP zZ=}hy>6*5|*0+0S7Eu{z%@#`rdMoxHj#}a#CA@q)Vsefe3bNYN6wT z$M0X8-oEoe=l-ob!nyAAd^mH__hNJCkvr#)mvxo0|M zZ!li3J>NO?LH54+hpGFVyFEKvI%U3=+2U+))~#M8I&A_rdNz92oVGXxvufuNVe{d{ z@FePP)4)?rxWiiY{0H}3ydnMe-P?)gj>x9+@QneB3YXd=qNLs7aR5nE(CW^s_h zz)jChScXyd?Uid=TYd6Q4USdY^d*ifrltk;-+A|;v%`Qo@o!${ja>!!Jp)<2 z+1o3kXww2sx=^oN{}z91b$oGwrO`Rk$QHL=e4a;YN-JGrb6eax!kkH|sF!g^?g%PQ zCdz5@v=h&JgI2V7&9!%L)K%EZV>t&Vw4E;RYC+Yzc3E6@atATuPZ>lOs9W$ z3WdU;jvqaA)`@JenI=`uC{%Wo)A119L&id~#9O;1cIw8QR61e3T_^lf+G)yCMZS=~ zLz(-loerG|{&xC{uc2h$%T&gc`+q4G&PCE&U);}r^sl#neG5Ck*?Z~WTF(q{9@~_edHVHxG-KQGW4$>V(^$LYX1*+Nqxt4 zmudrMLGGVF;=J7b-RRjJf`=&$_x)cqsPO&%bWT|Mw4tQ6cYQcp_vd z|0!53(e1{ITd@1P7&UTT>?0BzDs!_v8)G%6mA~)CLlt~xW~T1LR_%U9HF&01x>)zA zW-*5*>*5KHx&|^dq4un(O(VNw6MaUrL!*4c;VBXi_i@K)O`^v+l$QUClEgdkcl=Q& zpWbh!(76q_W@0iiGrLph!(tph(46hKk>lX&=iDOuz6%7N8l9N)?ZhPUMAn>b$=x02 zSnmtL?%)+E9`kE6&yD1JM$cZMG>M+h8t%N@oF#{oanDLvr@kBGg^?q7A@-hHa(;?d zm6hWAJL%@3z3ZWVoU`=-S~Wl8tlj-hJ}7J@)ige}Qt9?pQm0m;h(QGfMhyIV zD668PDoI9W(ie5~5Q&H0(7B5X^;xmfp43J6gn}s8oq5i+M($V6|JxQiukKxalB6#B zP#J^L%G!I1j+EdzgKCW5w__)D(GxseDE{V$dyv!q{leHBa&o-$@hsYZenp0kWT5kU zeE9_9(bb3kMO`tvpm8~W>3Ea6XeF#hQEV6W&R>48`gdG{uyMNg6ONF&XdkR5GI$FG zDK)+u=!Fs%JYKhh#6|ITXlX_DQ#>>-6E*4`wc1vGnYKMe&*gj!f-Tc;hdMOul^MIO z@*ciu?ym_H)Z;i4b@Db3&h2kq&xHwAA%mlXxl=7d9`n<^72yh(ds1C?`2D_9$OhRx z#YCbBAbYX`xx`A1EIU)?^RyfX#V>t&LZ3hL*{Z!qcF8%!woF3ka?@+(CssLQ@+U*Y zg_!qg+)cAet5F*()m!{~&V^W^&~cSU;8shntK)14Gs~;*^0`)8FgwtXoXI`DzP&Lq zI$niav}*$Ovz{BuFm7F199fc~krT|H|K>u_tje8k_en`#M=Q=1r5ws8JNKo$T|svC z)L?R{z*yV0%|#h`6Y&ktCPvsLqCJwC{viVJVAKpTCs8gvp^le!^eD)DyEpyGScbuU zmiU3LYN|?Eil0`Z^R7m^g=R#DS!qhSOmH)MLxxrB>(2X%25kk{F9|~#tuhHY-#!is zRGL;r6*gMs>qzaAv{7ET$VX}$8F^KoqU^dqJ>A;mEkk^!MpnfhX6pR)221~375BKQ z#B|#=!<5gWrM2ds5ei?YT0NIEk__Y`=u*?|Izt*V^B722OVv1x5t=}ZnGNuq?_ia3 zu!y~ym^-OeD`P^y&n|vRF*Y7ZyONsMA;`BErBr&L{NQ-t<6HhAXJo%nlM?+K)MvYQ z9qT(a_3Vgu`klJ!>a+Piw&l`Oahwli#Dw|HZ$6(0HBYV6z58&|zB5E5F|&KNzb3Y> z$*pd7b~1l}d=v8AbRG_~iYwA;!Hf2=`f~QtiBR$l7ALU>J=D~8qjc(y&d=p9xy~<6 zTk)Zq4Se{M7t%T^5&gmonX-wzotjQ;%jvxn8*&lY>Gqp*L|?9rCJyE!UBj+?2=u zAt{q0=8aOruML9(TBiDI_@v?#0yxs%x%0pcu%hIZ9dzc4ig;Y8CB_s?Ibt+U?098X z^U{Ug!|KHu4N!heFxq)OF76^K%ckq&>-le`9qReB=ORYG&5xItw-EEvJ6&7G!;axb zW+of05_9<)6Vj~mX1XU95c&Vc#+T7#Q_7~zuYN{jt~=PONVL(S%Ep@?*)gX;%xuYB z#2*dy885cIxz=j$yM9GqFq-6*#S;;p1xjM|(^h%OpYBL*pxcvz8CqXRv`qhjdIhtd#Y8^ z50f&3&(M#kF=zB=X39NfE|rCB^_)=mWUAA3wagiDA2DZ0olLY8%$qidEv{~usy7Un zUHp%Nyc?wyKo{aVoGIiu+{7wjbCKDDcAKb0=#!2jztYK85bF_10rxP(z67R?fFb<8 zRo_iTi4K?a;^OGL&Bl(4(Vi$ptE(An-61vzVxJ5frUH-k7FRZ4M-#AxyE zCx#6nzB-Q0A_@76vlgBimz&#DtCUN1?>}7Ro=qy|@S*3Hzj(+@OU23%Cv18eY?`7% z*^AHtDZ~zRa*u)-6{%n*e=zqWR( z7I?jbi_;y}z0bVUJ-pOb^yB-E#N=QaGsM+Ade<-CH~2ZmW#*LY<3K%+Olfba$G>hH zIqz-=r0cJAJzOt$JH$aT`H~q&oD_!|HmnUq@VpPKNA+FgncY7D%Te6|t2w^= z@Ydf}vV6}@K?t>5tCsBP7Mhtx$M9)(c*{%zIu zYqoRc4l^_mYKz&+k-F%Koe*k&IJ)N=sU4pO*_jE>+DYo7yXYa*zPR%t$w+V!Htx?c z{tq}t>GAxC?;?&hAm?yu!@ll%tZe{+aMHyO_gVkGcx*e^^s%SqZoAVVRW`Uopjjg; z548%|@sVL1g-CjYF-P;M#oZEg?^Cp%?TaoZ_EmNGiM8CSPS<~P^>trVa635d0KKKz zy7Zm ztaWLjb(>qxx-|-mcL5Ra|NMd;o(x}!&Id=^D3WK4b5GYPmU^;g@h^9Q+o*M8+XP#~ zEBMN7=9`0`Q112*YmKEJRB0@mGR16QSr+%v@4Po#sW-p7x#_=hE^fqd&gM2DTGsts zwBl`En`BzBYYc>{G(6Zucl9mAWtd{~7aH^ZAfB)wu$GH=_|{v1|LWDCT$8?HL=c}5 zq8<*}Fvf_&WpZ%q(rn@qTjS;IA<1H=!KC7%4?MV>GQ+_&RukI~b|zM~SRRZp_9In9 zIoSg2;+DOggEg`0K4X#k#C9J+|5AbMeOdMcwFbCNYY*TcHq1}#A~)hlvAi3gv?5L; z0r^Xl)BISmA^4i4g~`TZkGUb9>A1J#+t&RmXEsO?g1ql<xjn|te<|dc9 zP7U+VH;Gr_)qlO$L$w0#(a2D?8*83=<;)10uwTX$p(?-IW<-KbVPpPB{16)!n(H;b zEYSr;j2byk)*&waFEpt}TwCYbzm*EMKI!TWUL(aPAo$_`a(&No`J{p86{IpwkN_t? zNN+HUoeUi``E`fsVsg9`+W2G(zeiPT1QLU{hF$cNnv!3s+x_YX@!vqLKB^>i=rX=^{EzD3$uw-Q9gm zZzN}2+1cmpRxqL`cD}OslI*f8Ry}btB_-j)jqgrvPdH}QeHTBJLpugzZbLbgdbu1L zJ2{@hEkccvdR|-DQ;jBMw7A6jxY{@)f#WRNe9`dKtn5))DX|3!5%jWCCTxI8uIY76 zQF%1^H#!KFo@u-_Ck}o&P+8~DXsQ0T{~`2Cur^e2=QERaRi}oV7Y5_Zk-{aijE{Rp zKk_ABbo7jB)xNoL>*=B`HOOC|rh+^FtRt2|dExt_e?4u?A@Jr`@%AJ;Cu8tk`{xOg z8T+5#{n?k_qBYDPdHJJ9zstlQJMqU({4NuJ?8F~C@w-g?u@isn#P2fk$4>mQ6Ti#E zA+$72zk=A>f5v~MKpOKJd2Y_ckycrxg?e)eg_NmxLSs>G&%oNQ!-o090)Q8BC_dhI zJ3hVP1ghVP9P%jYEu$OU4iU0Qg29}ivN_i6vZkEAQe4Ax!FPXt_mAZAKko}Rtk6;O zd;oF=NWUp*D7~?0rU%z*R^0bw#A7NuemGWy!@2Wb(m+CXt!T<@TU`~giOR~}}$ zdHe>8Zpqb8_G8idwx3Z%q{nrefv4yy1x<1lQZ1kE67+oPEgmc=r%>Bi2>6s_=y`2r@aAwai7k%Kma021kT>1F zZ~kDL*SdDx(hSZJkZws=zP_FQ7MQ<%v&^)<+kkfK$KiuIV2fBw^(!3HInmE>x9?fW8qQh)YQxJ;vvBJRvhoOhqGguGx6TV6s z{|2o~vIg?fr@v@E7!CctZS{=g^J1-0 z`xVXp!sr{)RC}mJEwv2vo_>KMN{=|JWN$Zvqt9+#5I{`Uv7YF_9f12({G#sirQ(c= z^rPleTG>~qd8$s+NSY6&jc8jW$)#&aCDi6kP65L3KqY%@Jb$=Cfd9EzwY1FqG}~09 zy?KhF1^RBYgsP<-=@Thw9(PwEnSiXAZ#n%Pb`Z%-=jCAI0=Ivvt7g|18CV4B6RIP$ zKxvn?jo2TX=&v{5&LZS6STEjr_ee4eFTZyBKB=g9mhBT@R2%hzLzEx)+AY_sek&zO z?ofRpg=rkv4@j3|0iQQ-7vDcONNAX8&ay9U=?)tvS31IjgPX~~VW0bKkxy^t#N_Td#!p&^dh0i%0oZqG!Hdyr_KRlEtCbG$ z!}A3r{JU^mUG!Y4)Yyj4H}?h(^j3}?kZS1IZP#*l$B|^SDjHEUNAp@4<5Xt51nCeW z^Gs^o$R?sW&UkH?Zl%aNPr)XM$_1m>4m$8z*QuIq2%yEu-9&@%24j!Q(DT)7^byRf zZ`gavT(2%PGCnMZB;=-P`8qveuI=8k^B0=zs+8j2%FK_x)0_))9oB5c$s7>o?`uj6 zgo5Vlk-WL&?gpAiwK7Gbq?D$RO4trH3rITg2g=X7nlf#*W6GZhaaXcGHp!>?Y!8E!Mya8vRu8Zlx$$CQ}gZHC3RwdO+#`+ZUtJixA?UWF zk{xF*NXc%edfvX~oF*#hYNeJ&(C|iSFmVP5zITps8TjRIb)JlVfP*JGy332+hy0Cx6YT$oE7&jG}@aX?A5LJP}24Z6OrW6+nkv>Rz5 z;CNptACOuDQ&_R={HlGZROu(uu9LoB-+3GB4M|vyw!OKRNAf8jsuT>}=?Z3GBGn$h z`vCA#JjVh_hB0nX(*5@N_8n5LtmHW0r5GYgf9>|JmW)+pAjX;LJ}O7bEp`3{cqyt% zBT^ULgM+rOo9*+Rr0mA8sDR(M`=JWprSc?B(UX!?2|(}JUbWjw>Y^Wcpbg#{5<_w{ zAq3(WI_f8IXw58 zog&97oob8EXn7f!iy+n7@9_0E!ho4cegR9~=#5@LH_fTo{X|}3?^D|yM>SMeGoFc7 z_5=L8t9AEN_Mko`g{j+ zl7v$?%|pnu&bDp#oW8asZU5qxkJ#0M_qQ1+@P7L%idLIuCR|tnXY$3I@iHGne~H~5 zi{rTB@p4(co|DgdJ3l-aXf%z?%#_GmS{TXLAg8@u|F=wa#TK(OmMqW`C^?+Ckdc_U zkT7Xi`FxLs{zx6054*k?j!3%@ZxNkpZu5jaY2M}XS)}gb8xxo99-p2FO?1T5nFwQ5 z+}at&o^5uIskmvGgV^v__b3El)@OQQ#54b1EJ6B*LBuA|mq?>>zuw%IoGq!~$HtV= z>ft&FXmHK0@t*PkfD!N1mIaSIu%l0AZjb?i)pbA|>F3Sqp@C`;86SKZe5(L3N-fj9 z3bI+Z&&HlajC9PM0>`}Z(3cwv#eWKWjw08TLL1I~@=M$UDu&(F@5-yM)af|ZNXZVr z?&u#d?V9cgC{M=$?1_1ZWL&{T*or;BjzCnKf&fS$wg=FOR;TJxO{#rAG)TM+PM15HI5QvOm4FYQ`H!{5yhk zX}Vam5lhLT(Q3TXivDd;p-d$U{G-O9_G(UEogZJtX5i@#mzyT`|Hpfg*^vdU%V-b1#`n(H!g=MkTJ?K=ej zcfbP>jy2{U5NZv4?SW~O&>>{@(mj7Q3t8(l?bNuYq%da=G3-8h3u3_cFjv7e-u>C< z2(83lmCd+yl(cbm*>l6$#SmAwLzd=q{K4)TS*cVHuYbATX}ltuaJDMuRCsb?dViy7 zbZD{^Cfl)mVRvg6LXEqP7{?SQ;bY`&L*!p$koN-W67y=7ruo$w!HA%ZKA%Z z#GXXl28d0D-b$3+SbO1Eq@ep=TAArKR!KV(qzonSy6tM*2=NP^bC%$30KnFYrl#|; z#g3$cmJOY|3A+Lc5_NMW^B{3ALh!T5s9$Vh9wdij$gGSWZniqQ-^$-=LZ9RyAziN* zCa{SNnN}>;G!A`q1BV2Y5Q!EiWDhqy&xwkPLJVQ80~}LvkIYmi^PDB=2Tws~QsNOa zH(n+s7&`z`;){$vLUzhz>i)SaoO8h>T~K;G?(sIO9HB7J#Tk*!Nu+ieg;l2N2@AMcpX`x5DWuw>k!E(T>B_rJmK^4kKkU%29~$`Xx}s)@ zRVv0J5!slz$)W5Pmr9|u>?1v&o~E>Pu>T%AEEKFKzz!hxaHmxJR zAo^01j`?%V>v0{+BOU*c_Ba)=2dOYYR*~SpWiUNc23T-h`G*HQ z#WaFBuksc449PQ*UYiu}XMEsCvS0%c0nL%*xRdrZ^2--KYEjRV&KO zuSFE-of+>bei0qUh73BTj})xi>}wbxJ*iV{O6p=>7zN~Nl$+QX#hUHTK(ZoT+2iFg zY>V@;%xD&+Ieg|G47n*<n zqKH@AQVibm-5A*Q;`$`R0eb-$9@JiX$GJ%7Ia`J6AA;#IA7q5q0R{kFf=R1;=MKVw z0H0I`KPYDja<~&Kp8RceV$!`VMB-i^q;}au>Dowb@U$v26Pw|Xg_LRjDd%=t_);($ zn#d>@;%4$Bbzac?^UsiN4n^yH+u$Z;er4?>%<3O!9mT(M^lEWzb+-m%cu|hsWBRK# zRKtu1`Y4W-%PzTj-%-L*29eI>=t_>@-;wnm*(}W%sNos7K&2kBQ6`mK;6=y+3NoUeuZ7}&e_HH`4R+JC1Vn|)z)^49(VVHNU8&s~928_0 zJT#lvZQo%3{2EDB@Nv2{g*nL$RG`umxWWD7clPS~PV){jY!Qt3aGUAOewp|TvlBK1zUwsoAhkRonwDampWIW-eRf(xBI zvYNdpJ5q!eC~P`;?LyFGdRZlD`>%vSbVCNh#WC9>FZn-vNX({pfvo(qB zZ)pTSh2NYNshl9k+tZR9_qIC?0|KGsc9OrkiPiJ&V(J}b$0Nl|q|Q`kfAQM-O&=#* z1V}vs#*oHN9K|kvML$At?PScV6n*4XeW}m}$D*UgV^6B!@`{QY(X>rl2NVT!84-es zIE|#8LBYWT(GmC*sAa3gYcU~M!hKq)dq7R}E(&61q2hmDw(MU#2{&OESud1CIUuaP zd~md2-Ox+R{DsMX44SMyd_flCMf8Ao02x(HmXfWj8EcrkNz2X#E_SZrGimK5T);N1 zBfy$dIXwKgi3#}2%=Y#+W>|%I%=T48tKeQQ&JLs$xAc_bIH3S<{wY*S%mG4Cr{T<= z=SV|^;}!#HtB{VUw(r&h$udwEeDxZneqh0U$Xu`VZ5hJWF$u%>aqg87#}RS_Cx|&g zqY_Fuf)jE2{}RhW_QOAF+x_Xo3CZzK2ecnf!fd;2W0;J)ORhTse+aR=?*+04w;(MZ z=ke~EDNT~nk1?iz5M4dt{8kzkflp>^z|r8-An(8ZsiiDjmcLK&QMc~sgH!<*EWh#iz0tcTir_)DEuv0fVbLPxJU^d{N zR0@?8Y2?_ikMVKXM%q&NB8PIECltwKeULazW-=+D5V~nkYXUg}mLN%Z60ZWp5=b=@ zVQ*=2?gakws3N6Rophq;(7h?BH9h^K}$L+b+4k%>@f zuhW%*A1nNeHN*2!WOdR{C+w?FBdsIPkaQ|Y_X@FSo0Wyh62E^VG;j=i3D5W&{zd4* zk)2*PY7o!&t4g!zI$bz_fz!olpZ7A3>x@0gNEsR*Spy=9)+3T}p~L1&xou7gQmxW|$C zz>b%(2@P$w?5kyv)l**9C+q~3MYTd(6+5nP{BV^|KtkSZKhm72RZmHh>Y6Z}75jYUTyzTPq9j+;^u6K?V zD+dYhr3F7Q8P@GYGMY`@3(C`QNyT!IRocZ4;fGO{ndubuC!AcfF)N#k^+(Rl118Ck zo^?V-5b6%}>d2{RB{auP|m*Uo+KsKX`#c5%p zPONvlsZ@3g6AZE8=h2J7iSxD*htcGsc?I9PN>dQ$Ep`56AUPgdI=To~L&+UBz!^xR zl$NV@+Kj<>mcR#bN{!^$MqH`>=85j3)m#l9@W-&kIq%j(cNptffXZQCTaP7od0r9& z*Q;j;%g85blzSVNvK=t{pNa@6#^uab&iO!lldKnm^sV%!-?Fs7XHfYxyd}3g$UIqJ zSejNAN}Ze7J&ghsW%|saE%b;z9J_$SzG~41wq@Em;!vX_xB4?zkP_jW zUQ6BPzRsdR5g^H3 zl=CCFVs^*#?$YtwJ?F>1OhOr<=6UnaV(e-VgD9vZHd%_X|kDXaf zE37QEDBCGzrw>gQO+lNR8)=N^&)LpTkBzlV<%z}4+*9DV&3H2p2yDJgzPj)Zk)y#u zrx4PHDho60=rs&j5o>5(%0ubNpzGtKiBW`-$d_}WS7E{*rgT5MOlMBiY8%hFObzR_ zT9NhxNU@QYaFzfRCk9Ywv4)7DFvoek{q7Ok+jdhuNKQL344D-|Mj;N7l>r2Q6Xmq= zoc|i|_1;Gb*9e3MMq;{@i=dC*#_v7|`X9&ck)WHK z^=5igAPJj~Ofo6Q!Cc~LsHO8EFcp)_mlFcGDMArT4H=~qXuUzjb2$jr=Xc7C zVmH4J%%AU?wf>i2V=GpG3d0GqEk4y`+W|#c6Lm|d#^`1HJMRBgxPREyS|rq&ogGLl z7AoHUpm`=U!N0CW%&wPkOi-S5Es{&{|5d2&>{m*XH;#)ALW%>IK9y)}UJcaW>&-RP zCBL!-HS+;rkE}VuXMl zZNM^=zJOqUOh#JsJ-34kwT4c|dxR|zj1??bbc67H%#~=hg3ToDX;AwE&N*t&YY!q{y9CVZK;w5PrruDD_G#IEM zG%y$Zw~ymBT;H5>IWrH|!~jZbrISbvL1hLkWuB>+)Z&%|C|P?Q${T{?n2( z>J5C31-wtpb%O$>KhcPEVyRBuxwsW?&XNs7f@#6YLr9nG@jlJUei_oGddMXplLKJj zo=Rg6#01CJIzu8{gs_Yu(YF^%jS-`dWwd^7JklKLfe6i>I*VY{d{nanVWS7Qe z5i7=QAI0+5XPm6;V*wpDq-;I;6c6FWWozGmX?#H+24x3z)3Gn*9-?Xq=bzR%On>#x z=R+w0wNr<`_yVyi9766fAkHcT)1EB$&d~u=hOnyr!>nPHxTXTRkZxoJbXAYs-1uR5 z_#lyR#N2%$e{z`od_r;_=X5aLmgH9o8-hPZy`eTb6JvokGEJ&iyL);sKNBZi+G!tV zMY2bc_aYfnZC=>)9(UOhR;xVte{dqb3&)iLvKf^)r(8%Zq99H?fGn;rV6itKsK@yi zGzP|*JPbOJb_4MlkE0Kp9mZcpkBxNIGYjg5EOzNFMqcGtH9~jM*8|g5mE=I&nK0@X z$4x0*IJ}ti=?ZyA;@_4(+X6gj#*)xYtD;~ze-~+nQDMB%Ge2W*{9ov?)H-9JQM_L* zFS6mRwmx{5#i_GH0%zy8Y?$wmT?|L1k}s&<;3X32ry(Zq4oFdWXLzya3POX*FFOGl z3g_@HlF^q}!3hc%NwnSD>r^u#Vb*m98cQe4?}mv0Cda^0C+Js$I$=Sf?qzQ z0_{us>7;;v8VnRx3&_IEEBx3<(o_Ap;h!!2BQ(F;7t9~E_@fr2)#Bt!IX>a57$tIL z*#)9qt)_8Jgh3?KMk||J}wly&{LWXzF`IJg+6EI>;D;Px^Q!$ zhWx@$Z?N09-@d;(bvSFl!7Z1D%GVJK5lR$`o|}*{g2dLc{VY-}b$gPb_k=zKAv!uE z20!K22*K3GD^wddQEj&=*|FEd0vNA%k3z>i8iFpKd?!ehRp3(A#uS-%);yWnUVZuq zEr(cnQY|++G+MQF-OtP%mcK078;z9q( zQ5gS-0zix_A z+bES@UCU0m5>D$^lbdbx5@quvB7nMPC_kH4MofN&c`%kLq+W(F-*YFXlu7mh?xfW7 zG9Z%dkgNjWQ=9v}loPg|_1gT?9{jXxL^=H9fP(zV2J=3k%(uw`V5iz0r;mH1JHPfo zL-8Tfg|e$TrydC%abZiC5$XdfZ)GS2w%8ci*?hLSQBNvTEr_A17C`wG*KdYmwJ^lz z!q)9~f~SzmVKa=LnL>izSA9lB2|A9KX!9!Mw?!fVkk6c+$U>@smO7Zd;)BR%pIlOf z1$-i!PkF!&VcNor=zGu4(tu4oT6c2v0;4M-tRrXjYqf^`P-(JE?~~hKLmR99{yXNBlcM} zyr@tK+wNQ2?|2Hc9O@zX)M*&{xv5+0y6tHR=nQ(+Rn(&>koi~Pts1pP1Q|?;FU-{n zHRMEgXx6g5FN6L14BM;k~Sx}H~>#F-2z1+qv*g#=GZ;`(gKo@^CdTJ*s zzJ`00yYC(A1Qj|e6=o(%>aa_ghhi_X0zMEo6R0~msorseZC+$$~FS4*sn{0jDB9K z;yL-`RpksWn8$UwoWae!XZ;4>>BB7Fd#tDEZt*x8@r0walXv>K2`uK;^@(0yM?m=~ zbQ^kRjiX2j)R6o1Ibs6tHPpczOu%y-%K>@lH4?JG~Ew=noe;ykMpB z`lzGvgSXpYqkQjRg!b#7rB>gw{Cup>F!M|I2QOYXVLF(*LB^*}IcWc7PVDA5gEGR- z-tE*HCnKar^LK*|5p3K^Hlthj0@tUA9M z`z}wWRl++3QqBkbXG7#dZbH6{R9C`~CqVGHW!Phsb$?CJwz}Jq zz+v|I`L?rHNqmc~fG_=TzWjSxqkj8?JxDcyu^GRG)J=VFdZFxu&ptZ7)LVsc_J2nE3E`hR=~hcDSToiqAT7yhMAqe=}` zk-b@mcKzd5@N?EpWMsW2F}x3cdqCvw*wYA4dc`JQk`BcLzEn7J?&*&;{PN-9VHk?L zb6J&S!SflOJF?d3;O-FG}A%&(ocyLRH2_5Y~j?q`E9D^$9*BaU1uih0K2ZEjo44QP<6)wRBeCZk7}T* z0|1EwbG@rcR_gqL4Vb+ulN8tnn@j_~6-eo1G02sF-+59XAj}tveOJ#;a-5d^ zDayMT5l~kZbmaQB)Si5Vs1?2p4Y`9p0OEJrc1sHw4xE@;| zrE$F)1sm2{Cw(_63jmSz0cvKuo?opNTACRdE^q;OOeOSND)r_I^@y+S3h7z(&@lQm zHf{E*)&VMMLr=z6k;9vQ+Nxj79rBLAKR5g-Eq}IjSu6fm z2+i(uc@%8Ry3nDee{GZKvAXlNN|%wcwzcK6v7eFvJMs$NQ())J;EHSx{xBM_jK`{? zluFGHI)Ce=t~q~hjbq1iqB*c5-pQ^%T=g#>_U{IlCUn8^3@MqLg~Vd$&kz4MZ_fS~ zoMP4i_o#AU+-t8#7`#F4o=&d?2#c>Rc9-Jg>1^8&PfFqM!1c4o3-V`PR%`d4@G8)t z+6Ne{{0YF0N+w)Ir5a{cWM652e|xWonx6YaMfUCcAfu`b*lF1}az4ym@lbC)hxjkE z%D+Fac!qv~wpKU$kqblI7(5Fa#%9WVp6K`c!vWvU4Ea6ydF5q9XCVU7w=7p(4$0lT%>B@_d#YkYXhu2g5q69x2kg6I) z#+t73xg>qD7DUD(&(Ng4+Y<|pD^5CGca55^T-S~t)F?=mjMR4z&q0Jx8+J;Nl>TKQ zWLQcuzeEo|FY%EVDgx%^F(d&VI*{;W?>>my8tl0F;XlXt=NNyHweOqpM;rfWj# zd-@J-y9LS$E?jL^O&najBpWX_NR;tK(2Qi1u^DP?(wMU(yC7YR5Z9#WRj)Z&eKxf~*UzH{w{ ztoWyBP_2-K=W0L0xu1VV#K2CjJ1R#qK2?TjNn%be{^y_n{IgyxT$S?H9g?9`2zUgW zNgpkeq0~CK>Sj77Qk@=*1O#tggDhzzgEvaJ>Ys!BbCCa!H1cHsp{;jVDX<7gPsibl zQMhXIP9!N5T!!vJ^S|3K2%vjGLWc6WY%wC=bp;bouIthlS#2U*2{d+9Z02#NV$)3# zs!aJK`oKe`!@>u-))hNyCj@{FTyx@*H~4;z<@^Yi3&iQ4++7HaE)q92HwxMs{`4`w zw%XI#mk3&*=yV&rnDk`+gm(TT^{+s@rzZ(7a4k-j99CMfh8oWbU~V)Bfj9_5>qi(^ zo0-A}xDW#}kHZ`s69bOnrADEvj`Cjqs93$|gyfIB%dkQy-PmBK=e~UwYyG6+yX2J$ z?@3RX-}!?Lrs!B3AR9_N9dEbl&A0q5AKI1EyXo8 zpYQ90ACmRH9L($I;hSVYv!U*80v+pZk94xN{kkn&;n2{m^vdd4drfIdwPf%+c&K^e*#hTcQHjA{ijh z96QAtVQS=YwrSD`VDv<@3?$g4R$O)xoj5YBbWUC8QIt~fV`a&{h*WsHv%j3k@}qR9 zf!trt)_sSV3?=N`NWLuRLgt6v!4UuzyOJsY2?*8V0WAj<;<_gSWEZDxiicJ`BT>5z zhGb5{Tnnu7Z7T2u66Yp|p*xJV76d@A^%4^b*#|SKgD`FGe4`G)Vd+c(hCs-2l7@NT ztDSDzyC_#y=|P21&LCqs3t6Fah%+vrBjd(+drdDl5WAQWT(j;QCJMZHT#~$pvi0Rm z?FfezTh>f*9k){88bnGRQ+H<(y(r+qK3ON6?(`|QSro|m=LrLe`7OhYb89qQKLkRW z;^PYD2q2<==YAL-&)EyYW!e~lAkB&qG}Pqwm1QoUF-#G4Oji!S zVE(*KqiEqgE{W-aX(I#s>Lx7*7T5-;B$>Asvcc0}U8oqzOz3UW&2;Gf6JRhjp0;sq zN4*1j$H11LeFixbN-T_I3tGv?jV?mtdtY4y&}8qG219BJWk6FH(>g!=nterbzOQe8 z9%7PW^V1%KC3?hC4{Uo?FhpO)mzZeZK~&edt?VM{fL0WltIS)W_Bel;jhu2P++$|D?{1)@uPLf4+D&R=odt6 z<%CrfGt%G3=ujAR_HYLryx+c5Ci>;#17SGuEYWk>Ya&5B63J1T2#~~SvZ0v|y_A=I zfgJvtUm?zd9V9~vV~ZH+e|%Si^wPs|)udolSXwwUc6{dbHEUl{4l}rDY=w#$Nh}l+ zJJJ%)|8r;=9##Y{TGPvuwq{#bmiAvfBbs1Fe4s@V5`o0W>x2V;M$A7&U3C-ocuh>y z&)-#_!dI9?04tQBG!WIB*2Za?0wtvi3}EWA2RGOUcbDUEVZcE}oXcODLjbfofnv-Q zO~8-S2mA)d;fGc(rP?ijGoQPn@_kG7w^Or{NzzK`JXqCZBRZhb$h%t$Hait`rRQ18 z955uXhN6`ukY&d=!>HR&)XcIZD+}Uq6=@{J`@c!lOr5N=Y2Bg zAqGPR{rX@&d8<#OpkujMixamyOp1P*#p>x?x#~Xg8K;b7@6`AbYGflRZ%~0 zEywgSZUqy9*#t)?(tA{Cb#KoqwFS4%U()RYLoVVDEG5SPAH4Jc8D}LTUdFKDq0{?$ zAYnMJ0@n6Ptzp~eWl|pmQ{4xY9x6r~Zc*08KbS%wHnDNZCuV``?I}X&seI?kDtJ== zC_E;;wZ!s7HX?k`FaVqHr27eZdjvuv6}d^Yp38H)2bhiAJ$a%=`!rs0g#u>-z_yR~ zCBl2@%_|Zdb2`}j2uC)5?l~Ym)A_)>Vz=MQQ+$L9KELBq4Ew4KK1K^Q97x|FV>v{D zxOT?zON+onbg982<#Pj0BZ(UjqIS9+R-SW>h^dIx7&^DY^AHo{b*?S8*06t-sfu+c zU4XePK#FF{kvD5B<2`}@wB{6H*p#JQ2fZS+klkeGH^@->KA zw|`u6^=RqZ2PmM(2&5Fv%n}|0BlIssF_GTF;TtD?V11hwq@Vd3H69C<{s}TOogB$&sS`075 z)FWJ7XHPPXBCl*{t?T3Dp7B2_&OUT|D0IZl7@5ln%pL-Wc@^@8mXQF5asZZQ+O`0x zhaE6@m*5(Ea{0h<=lS!UTRrQm6kcrW0FsYdB z3wLMItWqg%-#&|r;|ik5gm|NYWTwJxnj31qHEca_NjP~lzRNyzI0r!XS}n0Lo}xUR z_~(K^h$~+mE-ph9p%L2lrRmAFgssy%X!_W`v>)<=cl+#9muC(UO_mVZ2E)B4$L|jc zjdzvt4bQau2#S{bh%HT8E!CEEcUU-kFiVOh-*~t_RL{)`p#Q;j*NZvl-*5`c7U$Li z-dmoTu_qem-2HSW$s(*;UR3?ksrUFg*_j8jAIhJ~xX7?2910MX#|`Ql-!Vdhrx(tP>SNg=HR-Q77byj}?euLnje{acMMTxtM0 z93L>esNWw!Ta~6|i3LNcq2U9gyyuE$7>E3>d@axsxIbj!qtw}ssj(KwG;e8<=hdB>uO zFL+3+{PuQU;MjvhzXh^D)l*f)C>}W#!9ho0G3(-jhxb!!gJMhxi=+Omgwy zHcdjqK7`q~1>dnw!Arh5SweN&7w$H{!KCRTggms1Te0J6j3IMEcUOqb$Gz7+vQ9s{ zVj_Z04IU{$247mGTpxPg)q$gDG!7^fYh)cN;dsia5kK!PT8Qyb*2rjh9>RKiTOC40 z6R-SZ=$gQQeWVifa6#VS$87hWfCAuAdK@t7%VzXdPo}4n&``MDr*KapaLVoA?9&Kg z;AS)|Bh)7s-wo!b_3035|Ax%4dRGt8Qxy8f>B9;ogrd8Ele#9vd>oXyOd*uHSe?igE(!hW8aEjN z>v1;Q+q6x|s=`JA#nG%2tlGX|zNfN=(h=IE!mAkM^(nK&XxY#@u`)mUdxZyI1Y0B@ z&n|5o9+{M~0Wz&_qvGvx2t_+(Gmm^5LYcjnroIYti$|Q>B&mhvcPs&u!KZ+Q;gQ8* z{D9Bqq-6J`4Yh;;AKRSOaK;4zWZZcEV~F0J(WzLfvETHkbrotn@=Jp-mlIDb!uc-XS|~Zb*+XFxB)xm51~}Oz$r%4J6L*WT z+*>cG47Rc9GY8~*%f;!pUgnFEE|C|?kSg?8Rh~L@_pe=Z>>~Ah-mgM}7w0!N8&vDZ zIdE{JQi>CUy$$7t4G>~KnaWXwb?PI>BNh6`g}3q%Vj!HiP$mKbsBlUi{u96j-Ss(m`v z^`!XL3}{;>-FMF(LM(2u_no`1G7VX+T*laMj~w}QgpJI^_X&Tx!D9LTTaWq^vxl=7 z$75)l?x2J}-n#dGDE=rh6QhBx|+H9%e_$l
l$XV2OCxl1A0yvz943w=!78U4DkspMV4i6W}^ zS>Y>Gp2!l=(N9bZMH$|;asQB)zs+bmI^{$jR?+fLce{IOQ-HbSnI~<%jWU(+3GTv3 zhQ|23^;bNif-MOC)FLcFuMm?cW2H$X8_F(adGDsfC$`&|=$UuwYUYG4E?tdwSztAu zx8NGc7@m^O&pIH%FC26AST7-nHlH=?JkKKU_eA;ESTl!*z{I$k#Hvjw+wYyLQJU{) zoM~8_-gVO>KHMbE6my-~1$jesJyj1ozHn7s+OS-@GHAjRbQ@xvn0i9q>h$Ga$X#sy zd{}1(wy*xCXM8MUA+xIXE`DIv%q^n}rrcVjlDMm?&m826ZcpZ-7`4BtC}2D&L0}R_ zi>qR+ss3gd4io4T^^D7VZ5*pt0vi?rbv>W!F#M)Xw%MWN5#WD>r-b3AUyc{41#jM& z;B>koe^Nsllt|w-YTQQlT-+zk1Lb6eiC0l4yyB@)H3%e%^keN~>d9Trel5`Ht?16A zlAH%;^0Wd-kv4uK0R{%D1@_4zJHI^>5LzvKO*B?soRxq8X zu~u}2EeSS!DgxVrs9Q>nUxjo^-aY)gx-7|~tmxhLow!sEPP3aYT;%u|{PLpgaSxSY zZmeXu5DA^ghsHH;56+x=>*z^q>uyJ)f`p$o%z+Tygu6nwDnxa)3oRdCI)~$d_QSmL z?FfAqi$F5jZyNWU!#5d+OhjVP+?eKo7NZzZnMIulE!1rTu&EtfI=^QYJ7vRV zhscdWLK`{y4M?14Sv7vghm+{UuuGW6>ipohLY%{r8U;O%b-9U;x8ZuoZvjCC*XsKakeNu>VxvnuZOH{SsPWXNw66+jj9Ob7 z?gfHcmJcG#2BX|ho&sYJ8Jq;jsB=4_nS^u`wi%rmoZLk#b_G(3moV~e;C&bZ>F?*T zh}(l}AMgk|IG`~KV{P4M47f6XnrU_!(H9#etBe8PhLDP<@*QExe+8AttEsA0i87}2 z;)5i;)Sf2Vwr#e4KBOzF-2VDZ>JBFaaLe#pRIJJmR*7b=Jd&n%jsMe>Lv&HqfmtR+ zY7H1F&VyuI8&TtN9ElOA4FJ_Vjm#GJl}Bel2u|GM#c~H3xciX0X6p5f;>jdVsQwpO=kh~orY)=b0W1K!0<{oc<8EFtAkNTivg;?d_T$GdB+ zhtvMd+IoNv!2V-lKMD{xR#ZUBkhaR<)22cC82DUWU$Rtoxvn(wSn1D?BP%*`nrOW< zhg^b4N~twAe%1giHQNvW%=5?rW$Quk%8!M`F~yMirtlXC!DE`s$VsAa3kvm)MN5T> zZ=tZG?CK&7JJAa7Dtnzo!CE6pmZ+_r5$ec4aH`&N5e~8H+FzGOu*49LCT8T@K_8&s zi(XSVA8b~D`<&cZN`{xm30V#0WC{nD)^l=1uPY*uI>Kn zpG#DUd?5YKGVb#6)r8eaALrz+jZ(=XBp;MKKPIjH6l+G$a*tr&N$avwi&C|V2%_!k zJ5&|YfZROePLefjY9$t+ljoA690E|eGe-!a$v=xXBbIDkes!0wo-`j9r1L|JX-H2qQ#0l|-HPevz!k>JqEYmgw)M}?eQ zTi%E)dtx?Mc@rFyWkK$Vpf1FUpH1IkC zVO66$fx2uJ@Ld3kt`Qc`9OlzxIzUtK>?8sd+=NO$16x&cBFouCYrj$PmocZF`a-gP zwtgb3xCwq;9qC#yXj1N9IR@or-Z^lJ$XPP)eC-@;?l4ns{1QF-e=Ril1Gb+gaw(C8My_FOO2bhj<}g5nY!hZ#R*aOIhvUe+|iqd zQ@O`~oL2vZMx^EWUuVv@PB1RtsdgsqHH4i`S~%?+exX=&f+Ul&Q*QkH^R zRLG+&OWHTza~ziXTS{ggD3V#@z~ZBqkk^l&Uo!$eiJlZXI|{65_viN_Q9}TDc$C)d zN?62Y$3nJINQ0*n(${|oNY)9VqZ|4tqtw0u>aVMLlwJM9C{pKxwo5=pyNg~MMt2_U zhNPNqzH7wUf=lZw#Hb4B$cS9FKPn9{atcacEdl&#UU`57=tHBuno3sKp)Yv=$v4ME z0Jq7eF2%)yk`KsFVu=EL(}|3{W9zbCY$IF|VzqDc(ydP~X|By(&2z3yzmhqX4LaW} zb^<7)sP+!zX7Z}Ug1_7j$aqr#wI>>0eT6$LLX{x*HE)p)Oa>+viL_C&rIXmb`%sc-Y_-$Rx{9K#}NvI^{iswqlE7Bj#Q(wSJ%_{wkg3#$4HS zj99)^`Wh$~*EfRjW_>@S&iw^@$N*KDKgpV;VI!laU)PBE$7#xJ2#tU<4OXjy%#SCa zZ6xZ-h<2}-Ct1@ox1;;dp*E8FTpL8VX1FL}BBi@T_snof? zR|`paL|>ppClE(e*Tds~{iFn(|9Ehw;hx!gQn%r{O|s8`_Wi}?7Tpa`Aq9DNlCXOx^l zB`69sIfH`aoHKm0P!#sA{eE}camPFEJ+D9Z8GS5jRjsvVc-EZHoONGWQFh%LmNgg* zX5ES7M^0lfRCo+#RSwN+_?OWu<+T_L<$6OI8D(P`Ss8N^^J{0WUediRd)e&rHACIg zvWGDkF?V+rO@nPJo27kHOruYLam1(Wl-< zKf_%IT4#d{d89WVVt5z!_376Ijd$GJjUxNp_yZD@11N9qo+MApzAj^;?MXclpZ+w( zIP-JERJ-qhb4Qb9e-quKlsy{Hn|5ONu*C4UmAAwfwCCoETfK84uX7^v^LcpjdhMcM zZGE3z*EhhK-&8%GJh7nP6Qe9kaj)@qO_W&Sj+V=q`7L>Iny!?GWrB$-N|^X^ zwru>6h*4wqryq87@xeGc8Ck3 znVxa`+L|HhTwN81jBTA(;Sr*xIeeiNuk;z3Z`xVElPt{dKQf!RPuq8mwexA;we9rm zn6E9o{BP_hxY*w)81mlx?5<`YQZRgPGNqmI3f8HgU*Ax?ntU+$%7a6D`rTTGH>ie6 z=cBu8adP7Hzi-DnQ zSUL?}cLp20o~-=Z+x(tqY95n()@c4?PiN`g!yyY?gXDAf@O+1*-biX`#dQj<(?n6X47X0( zL;3UidN02wl;p_~MHy;JYD$a?y{gT$#GTC4+|rM!64R?JyR81wXEEZp`dC-tcdcaM zy>>_S8|@BJ^|kZV&Z}H{>Q$44dxXBIu5n5;*T|I}ky6x?4(3-exfCB5a9&t-8q4t+ zsuZg`XwZKcR%>>>3gfrn%MokjBDF+ zNV|K|I@7n6hOAF~VbF$og_#K1xHi{q|V~)>23LF!I{=o2O@9DqK=6 zm)V^#We|LcXJ1==MVzBT>s`6f*~!8j-?G1oWbX$YorYQ&1QfhF0aE49URYI(^{p&p`&k8^U>(WGEQfrrfFMt34^OGWNJv2uv zIsB1pXtZ3ZTDxHM9!$b|_Z$1M?vGkt(GIo?NosEg6@TnW1u-W=B{ITq*g@Xw{d(9X z5#Be=&NF%B*D|8&G0|8oIq7Uui>_$1qvc6I@iG4X+wHXfoJPgn9MSA41quVFlSeHw zYc9Xg)Tv7_%+n-$!Bmw`6SnZF<^~*f8!k;uNXT`iSS2TZ`ooSN`%%a_I6G3(VH>L# ziKAY>?cAO1TUWtrq@BH38+X|vhl1KFVjUk|BCp!oE8V(>QOaSwH*NKWS1_fW8w`w$ zBIYx`V3lza^84T3IkY$>Io?NeF;ASFlo(y7GlPSknw+Dgsqk|Zl#5K~Dcz2?H4ip2 zxH9hS5=YxpxD%7mA9CdG@;zIUq}_6`;m?A4{<$D9Yg<^mG@p%ZKj*pPe$sA`F9|xWT#e)hzw-S&54Qr&z~guf~{1y-d!#G zuHeZoB^Q>F_98bXExYYWjW+c)hM|5ftsDz>Ch+WJ$Rs4a^#DF zp<$PmU!uTQM7000Zzm|_Ea_$~OQh7+;czpxCHZ~H&FrF$R%hm&d*2qczwW%vq;+nc zIA2X%(@cA45}1aR$riT}m7wxaCC_SYm(0^Ujl$1Fo7_bc)*x&!EndIK z+v@|H-B*Gs_6nb5ylHW$v$me6QLlwD z!+ZSD#!NuQjMu0%<*Q7B)KTb3-tD_L_5scD8fnh?3;ckt}Um*+}krb8b3(d>_5b zrIn2eeC#DqrzfZ8gxCSA}+@btSd?qmMQK2 zB;inbwadU0f5P9*cObJWb zBuCictonQxrjdNaabc#}Q=jN05;ri8Sm(&2&33Ksj@g+QtH|i2!V+vTn1e@u7?28g#EQ>0 zofeIM%?0Kz9&c=H+?3hdaV1*A(2QVC&*>20Fy7si=`i~_dscodUHU*m@9X2WNo~(H zlFnx;5v8YwgkMXjhZfOE9RD%o3Y&)CNH`sfnR`d?%m53Z!0zna%G!J{bD}Bzfj3n^ zZF%zx0ZkS!*LeHk1smQ14R!TluEdJ-6W(4WGI!UTPE^gXOWA+V^Y-@U&CA?`*f=!>X)2A=r_^FuT{$sC17e6qVF~&ouA0|beXGm*>WR>`}+zL#3E1HoScK38!b1M`e@Kr=vCUp=b%35UGLC5 z)0Fc4iM$S(bjYGaY9g23dGMwrO_A!ID=vg4hk?xMJ^lmLr}Z=4#1^fxFs)v4ipw`T zZG!`|7e;Q>7Lp5b9?{nuq*pAs&~rSGs%ut{=D>rk2d-2|T7I}o?-_n3v^_aP@Z1~D zIBK@b1cQnGzK#zttJIsk8xhS?`P%Md?$N717GhG1Gjiv^N!w5KXY%BEt?&ngjccCm z!0;PstzOH_P#ejm!EY^o&FM1Y2``!w3RiVkN!N{sg4fHxNiWR|{?4GDYTM4`9)(aw zmyn(Nc2q_bkJ#0kZB%i0Ijr?&dbAhn9=8-C@A7Ny@Sgy+?DSFo0PldWr2-&Y`FgwA z+dM`#-q^h>rui@dK+FqLELugxWBjEY@@w^p znWfj(tk6$AXm0lPzjMn3HduVS#4 z(4Nm6a%yoaUQvR@Yk7E}_+FrgIImgCw>x&DrLwx8p6uLr^=pnD$P5#4el(Pe?vUw9 zQ1I(mVv>YK_Pp0Ynu%Zindj@^;GM8xZ)!bc3s!&@k{v~I4wHHJgO%g_bPo3c!Yb}M zEV^XhmjBUiWF0fY`Bv=L&y`c=1_&$uil%Y-UM{UFJd(m-C?p2eUHH)egw@+&b#v*j zf6D@f&;kpa=aaT$#m4_!d+QwlVV~Y7uUoOIKcD}A32^$KN&eZ%|5wD-Kw$pKPX#HX znH^8gc4sw9*?y(SdyD+@J@*N#sPkXnWoIGIG;|=2!%+P7mK9egF%O-%435J=2>4$ghsA5U_sB_oqr8vh3G`8uu%%w1B#x#jLvi?uaD~-tf`P zmMCIccdQ`(T3g}A8>d%-1EC}^GH*MYJHal!simFm)yLI;mo5Ph%MLDCK_HfMg}Oge z0<)8KP{2ci-nA_QZXK zX<<>rW9m{Y&A-FFHG8P;tle7n+L@kRGDW6s%dTaf2t&9Ar|Zwc#A9&u1{apGFgMWr zeV-X%ntj*4fBgS@&zl^x7uT|im^{s&ye;UsJ*h^=O@TL(Vdd1$z|@Mb3-cmVQzfOQ z9*jw8dB7}WKwe!SX46~4jB}n{{aNh9GLuMwZ3ENx+{MHF5wg^qK4wvm>f>h4>uuNf zWS6R9(Pn(;58G|=j*96>vRPx5c*n|fq>w+}vUOeUJ;W!F)?!z!Ui(p|IM%7pc0CR z{c3gea^FBQqiVovC!YyiDPcdC*a{+Gb>|O_t#D31CmN;!8`-Gn?y&;b{oFv^Y{ioOkP^H;T=d&=mbgM3et0@U8btA``YJk^S8UKvA@_re zHmb@_%NJuw{=1P#-oHZ{NsrkURXFqJZSZh5Eyu`<LTACsw5|c$VcYNSi*l_Cw(QUJ{=P7OcJGgHuGIHGy7$MlEP13wkB0vr zZ8?kFB}S*&rXbL{!y$7hpLMMMgcNc(_oLaPkrY+;v@%j{ruKa0o1aOQia`AMj9k)G zW-z(7V7e*V{1L zQ9<)#(Ya_QGlMr=sb!{R*nJp0=k%a!cpwcEtru&0M10mv{uf*i(st|7`gGV@9_e}wFBtnk|} z5RQPaKSK6i5xM#4YB@7qF+!QCj41A$;W$7#1+10Mc>hvoj_56)b9mS2pI{YTi$ zqWg8FYnN{|4TFIlfiE^=zq*D-AW%v68I}dznZUsO37g>nv$?SDZ!yIMzN_U5qInRP z4uJ3{R@r3-9JC%ChoI+uk}xVI4hd}9Tk#!4=Gx##F3*R4 zwoR$S`&`UTP2CO4L-Ib*qQP=x&=O(JO?QRLLI%GzwZq>n)@828Vjy!OzwL##f2^ctya#GF zpp5RB0H(<7#6nea)|L|7f}_>xp6I_t`R8WbXX*g+wRmX2dsr=dUgc%Q$qe?vlJ( zo6tOxoiU}{7T2uV;m>b@E}2&iY@w9S05=^V6gH8%A8g@k2@mxz%;p;P8*tRu8c(d& za_gm#?K4G~bPAP_K1x)~?;>E`E_%5r4ByUQMJIP>K| zN$zmlXWfsFwp+}NRTmVAHg6Nm96jya<7m@+fH-w>n@!CnW7SXDJqIMnvD(>*9%|BO z5z^h+gIWC!HmpunHX8M;<{2AmWqd_8=O(F?AdeObz$bNQ#ZA?of4oFzHd&9IFHS!A z<%#r0&OueWv(BnlT$&@T`BX5|kbcdSS?@Kl;EQu{zHq(G>v3fX`<>Aj*|R%cF4Ifc z12to0ORyK6{x>~@!Bsd^IHRgz>NTKRsNxYj<2?L{TQ*52G1_!;@Y`F+fZCKKs}wB0 zMMMtJ&$QU=$6fCA&6z|q#x0q!uuT-%$rYcDbgl+&F7QwKzK@>GS~%cvt`s3X0R_d} zIj>icTx&#@7t9oLp8BkvA9gCR1#))99AOD2wQ(6I9q7fnfobWSwf~@BZ$LMik+V8X zItv8p?!9IWDId*z27r$>-}u^Vx-rfAGqK%2nzHBy**G>+gdQIsTBxt&qMc@Cn4TP} zcBAC^^XG+ab&k09m%0I&Dgm{9BQ7)b%>lLpO{P`Wi%Fe%ZIXV8e$22}*k!bXHpT1duOs41rJGm9ecA6J}WoY`o3HZfRLsH{4f%eif#blGu z-7)E4D|q{}X8LEZwh`odo)01P^}p{W!3w*M&6WMy$L*I}a4+5Ri{h(!g?r2weWI?>&o|8_?*mW`1#nk^879LbaCp0SaD31GW3DA)d z_Cafbr{@N)W8Y&_Ej#k1CK{fWM-XOX{EKNpcxddWdNV)EG? zdfz%`%X+d~)ER~zRV_x##^z}7!Gai^IdjGlB&k@~Zw;7p+YMroM5 zJ?iW>0~D?nFyh90fPURHRcw2VDD5P2&Ky*9ihsD4e}Im0&%NGn$8WA)_n^O#by|Z; z#Gw5zl%=o02Cv6U+^B76*d}vl?I&%vaM6o7t{=5f%U8OUa<1h~`)razW%hFdR5|oW zV95q7hd%f@Bnxb=xLAeeainG;!yDZHl1;F)0Iry zj8?XN24s>*$w4%3ABNzured3`Gs0$%FBXps>@$7iXp?!MMAGu+WnUD=0^T(zWK9Z{ z^O@jhXeC$|<2Qv}r|P_moBf6qZ`5rYL}$gnw#iW9QMi2o z&6qHBCg5LF7*zSpjn@kfQ~(QqgBz1zlL2+SMmxfx&S-c?&5=<$ypl+}v{)CZ^pQ zkW#B2^i@j0%eT5|&+0f1I5fL~5Yg`gj#X!Kwu@dfZQ6(R5=WpC;tLUnn;(9WoeOlg z;m?RLnPrYubpo(*cwvpgP=QxwW84kC$^L5X|XJZx54OIzcTTm5@Z0_7^5v$V;kn4vtdMj-!gGe-?zjjiWS_ z$#iLT7i~dA;m!jw^yK1u$}}O2W`e;f$FWH5BI4?7P@p#YgW@A!4vZ8d9CwSa1nT?* z!*ZR<2$kFGKHmO^7$F;@yrJ`n##gmiEk7JhS8sfYN1hv#TAg~2l*5`?C@^@DEj{%~ zDIekYHB+TMe?*VAnO3SKc~w`Wo@<{)ORnUs2}tI*4|fZSpDLY53J0AlI9R|Dak7ZksT1J_Nm7KIzw{rkGt7i7zprUI@ zZ=N$7i)X`9iVIvVJHf58@HnkCvGTWF0GD~2n)KqrwG#uO?pQKCI@O17Mv8lqp^+3ljki;3ibGo#+w%V9`yQvdg|jO8xjty zxyD>b-S2PLazEn?*Rh8+-;3ESayM8M30LRNPK}7BdfcEa+&wtt=_0vaaxiEA`l6S} zj*~p71VH-j#%uL^QtqbxMtvk3!r@h9D5693$XQ}0GBzviQ>Hoyl$K3;UsC;d@iiNF z2j=vr53tuxwAL+34_=PoGL!5gU+bInTblmbvU`?s(rLVwnhMc>-*f0IM)AowVG(3;;O`Z<3>)iZ)!8L242AS#^?Ax+5ZWp!T6O z-FConr-5q0@5NlE%TVH(_Lqg^_eU}Ca=1pK zF-Sqr*h`Q|lzDF6uH1R%YjrOfJP5}D{o;oZ!f6|@Z2xk<*DHFm0V&a~d2{J8RWK60 zsEWFRMxdm?-lnxWkMSORqmgW8@nv7Z_t^LLy@$~r$53;GAdpJsys2IlwPqTt$*VlF zhD^R`JMliD$(9uocc5QuS4`fTiDO(l$a+Y-0q_ilnb z;JJa4+I#|EiFVQp(e1|w-lf#1jFvz_#!?$x03%h1mk%;if)K9DGyO_ zgW~kF(l(t=MLkww0q;@P5p0GG$YTOj-^5j?X+TA6mDKkG%bxoCo~Dh2G|+;svfzCH z6Ot(p1^&MF`<!~VjcH{}wfnG@*@LImX?B`$N1!iTMCi(zsHN2v`3tdmPSc~4 zH3ia)pI-Z}{5MRxpKNG6xZqb^r@}Wqs z0D}LzWkDx~=obd*heC04JUB_j~nobIl7<>gwtNP$g_pdX!1U+zpnyv9*vd_TdE7+8!0|L9PC0I44h%$C9IN4>(Vx zmqK)))~JN%OvqW*zS2P1lm3ziv*yQQJKh%3r zX$^w)-H`&%ua{D`q0XX;Y4@xIzS?xL_`F;RCxy$f8*2HO#Z-Y}1Qru5!m*f4K$EQi zni{@K_rLkDehA=Ld*tExiS06XqSS2vS5)p)YGP&}o1ys@1E}1fBC+M2^e6VW07>Up4nkkxRliRIaot#tREzIX)Gz-8*{Kf6hyTah?@oq*O2de;6^dT7s6+L`zuMy8^@qO=!J=vt z?l3aAij0o3O8!$62-kqG_gO0Y7z&05+fPYaCpEWPY1!WV9OD0-=?PVj3`zs~&4+Wm zF41W`yu+*;)$3UE4nC(OL2>Pc2IrZ+w@^eX)*Tk81F>4ur}}Vm`Zs?Pc9bMZGW zH_wX*WKFhYXcrX~A;8dxqXb}`W3WC1QBV4c?PI_G{qZC`}t8p{+pY-m$VLtd*rs5Rd`@(!_<0L~#=4vws{Y7_B(x*i92EzEWX zdd65cpvIn&;075Z6j$$tJ|`rI6tDUF^B1p z`+Myw&3Lt`~I@eD& zqL5gz>PwM~&LI3Z3WM=X|5~|X$U7WxNvzKHv#I0JrU3u`%}u%9xXc30=Chn64UP^$ z7V(Rk znu;BW@LGRGx~N1a)$uY4Twq?bHsf{1iKFu9$iYgTG#HvQ(NirLa`M&2P(K^>*-ly9 z1L%)(&<0E%vxv#LwQS--E{7c*GK*C`*`dEmpP$XY#IiO*ENiY%Eo)UOB<`wNUrqIWn(y(dhN1a>X&V)*Q<%8cdbFlzT z1%^7;E}CW$QNsM(j4YfHM3T*V1Yy-gi2{ygwiq`-=ln5+gykAUw-cWO(TQxP?2zl zo`W5n$A~)H1#ox5gBkPFJ*~GkDW2=eKn=VxbVh+bc7n%ae9EmHQoqUj$PHKQ0gE7 zG_r1jNwFQgrq|RC@L-c=M{(o1nIVYo?*=l6|BIfFrX#GGZ%|)UC<9qkXfn0KA#Dao z2JBGAt9|m-{+&=`dV7pSyx#swtUsky2kDuT3MZ0+nzy>ud>wzs**~nW5wf^_)v?-0 zn!0o`Dos5K!g24=&DCv(45~gMwdqN;!5`&v_`2Zh5Ke@k!gS zKb#KTgWts7ZpJP^;I}POQlf@F4=r%Sshol={)?>9;MwtUgw4aa=bW!GdUpIJN2{~kU&zn(`ocX%xxM3w{6;W@}8QulQ0q(Lp%vm!(XgDH$CR2 z<{i67EJio;Z)k6K{J_=ba3TMB9hK z1*|5c>%7aR4FlIp99ock-fcRj_DlLnhppWBlkOo+1A&#qBFo`qWs*HNzR$ESK{&D& z9rT1!KA|Leu_r-)L0ReH$0=PQK02iVM~A?e;F6l`duB%=4!{gqF}vU}TU2F3JnjId z@tkMe0JaEA?oFD2U<4n8H6m3&5mXwJ(Ng*tLh+ivpdZ)a=4T zXcq*Hl0p-Ur;bjkd#UfZxwND>`ayLEWG#cooM#&#lUC#^e|l+QNNwsIRMI$)3y;6bbb2;U!FOVwSSE8XaiPo)-_1wdRJ1 ztvC#o^7RJYFvaEOq4TtOWT9im7=k<=rhx0jl095`+WLfnhLYyYtA`u;3WJniy{3t-JWavlrNghh`7Q4boeeimx~~o9 zJj%eXyWtV_n~z*)wy!z5^~fFB)f;y2zW?md9sF_5);Z$9JZ@&T-^#3Cs-wYjLb{`| z#L}|3_CuXiZoi4Z{|7zw9*SfNfC4_R_mt?V%tR? z#f*ZrIS#!6Im&`xXn9MPHC<}nRkWhN)sI`1_Yy)@lVJOgyUez7#P33!ks(CVsElK} z(QF#|1Xf`ko@=lH)MI}(98Gc27gFP%?n(4Qams`nv_ird_ar|+nTF6&sta1&9Y^4c zJv4futJ14PJ(8b+-d9vvjAV7=XfGskU^P2b5DLyR2vKLG;bhUveO#vC$me3V5npTx zltubs%?7IdUdm+vPUtUWG5EBn1Ym; zISpUVLEy08a^Xkc)n%KG*bKtA4F=ORWF!U4e?BfKrcTjcGBu{>!jWGZu+3M^bjPQ%twG35G!Xjo0C04Hs{&D+7+4k9x@a zzrEMuzII+9q^%;$3#9&)7tvSL5Rd_#_k`n*UtT&lEWd~R4$Dp$_*z_Tg|dQu0?HFK zWazAdGX*a^H!TUx`nsUw*GCW2w62gY;(Qme?BUh}We^DP&G+OWwio%lKpJaWK@d6^ zm@J`V)!H~s09%IbUtY~U*XKr)Sjz4VVG@`*u<(ysLMO(-{|B8>k`k_W0!tl?w0SXX zNU@MotcS2zd(lA}mUu8XyK z@)&V2-r=&YP$$^T7d9Y1RuEIt3&f{$OrXVsp-TvjkQ62p0!neyNNj@rZ00dfc0VMI z+}nUyaOG;T`zQ)PfxQVmd@*T2_!x!YhIqR9m$`#A;N}f$!##mPc~Q`U9d$uedB_zQ ztKOQohS7;tg=W)mLWvq~pQ1&~b6hg3X~Lo?;pl?q!;D;`tA@o}Mv!Msk zUH?oGvNL~nak(E_0^~n3Q2)Jx`jFpttkNIvKh#}nN_;6$rjPb)80!)vK$}vrJWqEFVVV;0 zu@Lno_O<{ENnq|PH7+ccQ*DK7$7`%PM;Xqat`hjqH=|*op`ZvGpg>b+Q$Bd>`k2ap z>F}S0%2iB=hLoXcy6OkCXTfI+*8g@ezYkmFB(QNwed_DbEFkm;l~@vo-?so0rXIR( z)h8JXqee(zQm8)o&!m>t@Xt;yIobbP#4kVTz`K?_w{jqYzd*vJiqccxy%jV84y6H8 zqzuT_kB|}*Avk#_6p7RaAomkT; znpq$d`eltpn+GGf*XtgVxnXpMAgu?I3_OX@0n@z9QC{Lij@$_aL zYBZDcL4a&SVIZ0B4BXLRB&`eS#H%CDBRFzElv{EvTNxiZ z%*f=N`x!jGEonc!Pr&YxA>#wT1C@g>B=F9)i#P8qnJytLyPbA=aAZ_ zS8NDZrranpx~jFoZu7hh$F#CKkf9$i2sL-7?#ix01#!_^3?eb3fMMk!u6#)xsJmrg zll?;AkVk57^~CwJdA>===Est2kPLVCH~W}yt=>hK@^^E{za=bFTv#k;PS9`^ZilR>>#j52%)Q(o=fZ!JnC-Fg{DYb<4BAZoK9q}eOxH@rS{7d^atK(5+6=b`uo7$YYGF`T1SvpJNF%s$a)Am#?z~55IRdhwn63%tN$SEjE)<*Ee_QiIP-QmXJNjmB9(N>R zqkq#wOhPm}fkTcXpXT!{Q;Klaxxi+5ps)G%mAvjjq`MDIx)CuH##-&xd3)F~YMy-| zk&|A`L7Owrx*9)(uR-JtJlhZTk|6z1BSY0=-#A{Ki(E?4Y2Oq5f(HkTj5(u@8A$Yv%(|Rl8r zZC+|2NRS_i3m8KBH;O&7!@D~Vk%A?o`|Ah!G{HlQl4qBa6nrP5{1Z3P7x{>Y6;vvR zAjdukhzmL3pi%@0{pizeY|A`dB0QC-g%+hTh{nr$V%BvdyaLeW>xPi?;!)LJ07i(< zZQ{QDqX6bk47e=J%#0p~739fXjII6so$hFoqGer=DNiBAI9~T4qF|Z^A-#Cnrj8OK zQRj6a%@JA87(e=I%OYOB7Rp5l`8As#KfHO#RTQ1d!H{nD+l-T`?M}V2yG`N++8Rz% z8PQurWuH|04Jnts5Qzbh(P68ba%d~JcN<*%rmV6H&6M7Tk3=yBu%1OrJ`%pc#r1b1 z_MC_597hT*gBPLsFuW7DFA3bQ2 z>HZx`Cb?pfgj_ijgb1-!Cz0=x;Yof}S4#Z-%pkXDV-}FK?j|TQv+|bTicD&xLW+q* zn(SI_%tL-)hj)}vFnIP2OSs}zN=dBt9j(){X!_d?MY&aZ?MQ#~-|F{MB?=*$#4jTl z&V^>AtdSaF9ZTT3{PWJsV56SDeo=wii7XAQiS^r5)KJrY(B98v`EJzUxh9y*v>MdF zJT!}^Bwg;@X^pDANN09U69LpP+*%lP|L7BO)O~#cdoCctgeniKVbHDiCl)hBzf9%N zA7RMXL705p{<)-(4uaiFSeqH-@y}%g`p{0OpLQ!cigxYUAsF<}HvWfiBeO=e%JM0a z0;v}BFnL?lkR&7$Eynjy`9l?2RdWTKydY?(6O++zH%X|Xlbrl|lgD|fV2KcbB&0f} zf}GKWs)GL_r9q>Wz;C@FpT`1u@47hDFo;K%s>_o;VIlvl`1v`%{3dS2liE{-YTg&p zT4=1E=fFX+;rzO)x-{T-TbHN)CY<2)X_4|aHeek3RT@O^BgR!J2>FlzL+8hDga;=L>-wt*rmktN?44e_Bo24+7DyY9pRi;x(ZpJ^TxnUd%8=}w`LcA`Pv^| z10eIPPi&*Zxfvi_-^l^Vj@LQn&Z1�U)#M&cJ&~jGyH7;laiupFm{{HW8TjHA`W} zZ1sJtqOL4jP{Mi!=q^QV6}M|6C;3edwD^hJ&q528Vs%$VcmEv`A{K`b09g;Wx&z%u zQLf@YfWx~(yJhLvu-ru9Pk}xj?b|wrieN7R5dCm#&GH+T-~cHM1`Qa0Xpe?q$!|dY zE*+*qbq8l*&{Gb_GSLvM!8s@&+xr@ec5QbA3>qdCsD%bLg!VvI>ZLLT+O^Fp;L|Jo zPYI$qbrz)X>}1%Y_4@lfAMgSMGAapUTIT0}JzyQ2`dD|JU0RP7>wXlztHYS6U*U#w zm2d}EeBCDA6*v4G_0Kl`*~UNG_}`$7O=sOpFc|KSCypFC`%Ah1XyzXS`^QiIC-_NS zR)Ir*hXOeyN+f#@pNsTG60l(-en$`&?2fo`(X-fJR$%c5^D~5*ep*dUjYX<%)vKFW zOQh9?H|JOLhFzSzsL2x@1cB8G8lfVvO%NSWz@J6UWaMoIun@0Z@c<1h?1Dp%k82nW z8gzNU1MuWZcG#Ac@BRbDC_tQ4gyPhOUwCENkIl&E8NWE6;zJwN8zQr&*nl0V5G({N z#LKw=)n$YI!gxXuM69Dca`e|fEc>B+5s4Yq=Zp7F>FCQ9^&@_%*yL!N<;;=v@q(Qjr_Bb|63aQ(Dd-u2h6Jp(0MTkp`0+w zsUi(k>*O!yJ=kLS?fvcZf%zV6K9DwP&{|i4e8w9QUj7#aYVdg7qT3$+vvpRXWu`Rv$+?ocfa)mA^wo^hn(|ALHS9V9uV!E$r6L^f0(TrUUZ{ukAgOwLau?fn`mm8E|w*F|M4bOR_p=9KRe zHBV;NI$`49AA4rSa z{L}=l?N^~^MG#U)jKnn;t1Fh5)r4-)FiliZ*L4>zgK-}NiMP5VWvOn0ph|~)At28sXbw6b5)pQa-;TZTm5eAJ z`45c!YESu#;bDi8=@=A!)-)5mWW5=LnPSijU5GNzL$^ zg!cO@>BIPXz;yLlZo){`sBh;ZYSQ(Owc0(ySFO4$!spnMJXZiM@#C;1hy0?$VM`3C z3BY$0G(HwJm<7G(r4{UP`^uM>rN8&%hx9;73rjBUHjhR=E8ayV(s1=d zLZzxkFbFi?9JE{QE%%q`PvMF__jZSbeoO9sCy)A-XvJ?QG{ujauTqEQO}L%2{qD9W ziMp^m;WL4Qg4wgzrlBk9OE%;a2Xz6_EGzGIr+sMJdrj>}46}-^7lab2q3Qx9S*)R} zgUnbtd~={2_*>=Bo6_3`*mnugsvP3b$X}5Oi(ysXB_6;8X_EQNntm7t4iZ z>2_rx`4}9WKEaQc90-#E_)G0Aze3D@-nknYblY6ebHrHv7Q!D_D}Zwpy{c#@+O=oM zpdQYr<vBnB)Ujc`U zB*M8vSZ;=&`IApVQzk75k;HEzMSc>Z&=5|(YZGzuh&psYU==X`YfZ{P)=U|+u6_z7 z|xQ^ZrR0kc5xi$Ma_$Z`;N&>)RL4E?ODP5?vFnz7pn3P=@^@04ta zc#gn|QKO4*~3A}MuU1e6CukVIH zoxBmLeA^PsUkJjrb!QcC|3dt0k9~!Dzmv_g?V{ySY1Y&_ihNu_O4>8`F2Ju{riqoR zh!bJIUq6xB0qu>;pxJ_d9}d2EGPBK-ZQqlmwMa9+=kx96^Sd;GDcuE}V?G(L%AXVx zgH<3atX2WLmNvX_*HvgKaz%w5s==oblHmNn!n|PSa3NpUz_u>ds9gLxj(qa z4bid_J_|kB^TvxTYN)Au{(ynOHdaGw01BS{knDiR!SMGP;YxJ~s7w8iuDkR1M)@NPA$p63T8U$M7a^O6;|j&zhLA^am22^*8?e9^2@ z#yH2fsfukuHbg&BUWVLO)NYyOThQYvuxNmbNWv^Sx64w?_vJBl)iaV>tAs z=tv2CgQc8N!{pRV?i04DUVWTTxg#ydDayxIr7r9P@&@+`>a(sS!+39Y5;$$ft~ zd#cDhZcP*zLkIW49%$)Q(u6cMHiS0x4vUuwJbHEJ#Y%X1FW`RE6_C z2%BM)+hv%$3+dyM6m}+BrA}A61X^&3@$Gu3o7;nY`T=RuaQV{Js6lo*nY?ijr4Yvm zS0(4+r?px33(SSKf4%QAP%=R}G?aN8$JBNtL3iSl$k$+!aCK79j8eK|k9L+MRR7D= z&QB`FfbFle)Oi=VPPAdK&-7P`<|)Pchi1_tWY(W9^c>cUw%qiW71_Dj4w|Q=@p?Wg z=oX!uKl}cDOyTTfO)qkEbCrtf=7ES?%5z#0&{-=+ZnA2?daOSKYA$Co)wC80eIH3Z zfcj^*^Z@p$p{7_bhWN<+qE|eP(_F%CS!sIZ-An_QN)CM}cePIC)tUGn_{dL;*6HhC zGD@ybNijh)4=KT>+0js3U&NP!+JPxAa%yDUqtl)vBlM6kJ3Qt+I9Z=PSKr-{QVk6= z(s&P9*i0h~cDBebPhmj51A+ksJ-FEqIK7UO-a_F8^RqHi&5z~6G@{R3E)C8IV~=Ih zv^q8B>jG`(dM)-W?1l42_d%pWb-1yzTF~(uUG0$EVB;7xY&<*Ru+&__Ajx$D$*Wmt zX@v-Jv`D)hx(z7lp&z1l4D}|_dYQfoul-Bvp8#lukc~$Lw zd;)x*M##Fm0&#c2NEs>X&?Hh{n`cn;(q{xZXexF1*=kM5_c&|Q9w=Wg(fde~gKJf5 z)4s#P$EfoexoCAGXW#osPnUXzz;}vv&TQkNvV~gXDCf85PCsOJKlK301O&^8bG5|a zmr6o)WGA=BzDT))>Ou`iAU$sMHT`8v!(*wyn?K=&5o6V4;ku}+XZUb{c$z|Pts z=JU*4JU*FiToSsst_<`cz2f`XtYazNHN6T(9eg*Ah2L_kv_y#A>;L7UU|183V6@ZoSi7>tZmZRd7(c-GRfa>(=q6;tL=G)*R$4E zemWdKJu-<08|g0;KFoUmS64!k7#6w*n2WqWV04ytA?_fzL$yHrxi7LjSE*Ew{jZ;(t}nR3pT+-qo`z>zIbXF!X3ssGeU0;T78rn`0I42vJXx{b)z> z8+^wDCXo}6TH1viaGMjdh`n62p7ad3&ko05HU@3yPMy@=OjCmL!~zJBo^{h~;)2@y zL4>=9I9!p^`+jgRL{iVO7op{DA#Yh!$@IP~T^I55S(*mxW{* zv(=w55k*y?H|T^%Wc{qo)D$jFWDA?Luu&z)m7PmAzH~9S@nMqtwJ+o32f>Ah-kC_h z{ZL+}jb@*Hy^0^_U*y@uWKW00D(rO)-~L$c20h)b1ds9XTmhqp0-~<>H`SY9ZVK@h zJ?nOApo>h4tCcc|PzE#^oFjrqZlr9N@}ES~0A0~;eT@jjf1X+p$#R4c!?QSQt>Da) z(kIRuYq>8KJ2|7r4tgk`&&Mqmo9)$dTmAh$0_Z=WtW^`3F^=)HF{>D72KA($PJ9iT zI!k$z8UXl1ER5=W|8|oj@s^)(S3UGN0U&E?82FVW+-4c88b8#Nm30Z0%vDsk-ZThf-~vDsxlcN<-@s?z;T&DyQH4iw<`%4 zfNgfGg3t)U?nqYxUdWU->)b1?*gsunootX_-P2hW-rFKCn@I^P#Z+q$g$cx@rXp1h zKf*h&a5e|2l&0YV5r5ij9p7lu3FCUJ4x*MJmUx4(bl!cuV<8Pg6KWYW9hUOilp!@#TStmzLNcHe{FoN z;*SCxz7y}NtF;mMM6&D{FC}c6E^R5C2BUTc1H=)rckYCSAZ=PYdGz>HMVmU`af*Gv`mou_QT=cge*kt+uU#DO*)^EXK>#blPueUo`LvA`nk4Bk+r&o00IP>3#+ zTsBX6AXonJmQm<)MV;H&4JI8X=kM)hkG;_O?Ovf~FFTYP0JKq~T`W1COF%Q=Dyj!h z`|;tR_Ysj=i5NF=FYYe`EsUcEdiQmu%VG_>a@gGiVjW9Y6EzOtWyx=x6V z>~W9Lrqw+s*m6ysXAU4W+%|fTM50_3Bhv+!5Dg=1$t{*hfobtfXbIYI1i6-6Q>VP5 zbq&CdQ+8jxCzl?$kho$J3XGWRj2kUbs*%@`t41W>%^TnLl4O2 zq)?X)PR@8MMrD7xWhNqw;_~LK-=fIGjpi#B64c)LluSSz^6Yro%`tJrJI3_CmPG;hE zT1SSdy-T2l!8!dx45_i943Ni9XHEjJEBg_UJfB{OD+ZRhQL-M$5hJi?CT>;uA0Gu; zwk_bZVz?TB&$SbJx?xBH|FQga0&=Xl?F3ITgSr3#K%i-q71mJRGOfgWL57VP2YaEw zTiT6b0FqR{f`-vUg(mK&eNZ%nGpeH!q+C-*gmwg5+&g1;Y*;6&K#juR7EGBz#;xC= zafML8`hZ38Ye)BCUJbOZti1&()XtQ2{ya2VC7~EJmS)#z_1-JXzjUccdRAiNcxM2e zb~Eu0$sSd)nHy+}Yy3@VvwdSQ?Tt-f`bNNLqTw3|gJAwk(=au0Vedc*X{>sFr20gom&%HT z{wNL@JXJ)0#0h!ka;|=>4>Unl?~?f}q|RDR6rVC+g4|o1kduzt8D#aGTiUQJ)!~kz z;4Jan#PRe{ht7yeugFtXI%{I(1gST9{%YqI+Fj@Hr|wDEOs0aRJFDT{5}hn-wMCaW zKU=``t_|5{EPg_29?g}#elq?}*hxNm+I}E)v>Zg4@|}Io(?Y=5=e529oq@%9v{xY| zB&#n8Cl?;fRAlGv`H5CuJpm81-#R-I=&z5qwOh>^4+MVl%#QIq*SRxO^R0g}y_*Yw z7%a-8IeP19M+>J$H*7J||1p7{vLlk><4{v0_b z1AD?&m!sfmz+G$x5ab?$xi_kG$g-fu4~7nmt3lPY;jNi=G7I$XEkLu~*`4 zbn(%pep#NVu1%S)ETa*M+I#x-M7F-2ZlP>)J3(*IyDDNb6VXI*SN5TpBWBi!9jL}y zAhl;xs)Xt%gh7WQ#?TWqu_n9bUK@#bI5G`xeP4&EJeGI0Rrqk&7o__aYc(c>1VOu! zDD-Zj7J^+8-j^GREt2?*pn@{zhRufE7XK>=&`?*%tEnT@Dz3%=rjP#WpsMC)1_Sw| zx>_!uzb5=YGCS0kB0g)|oh6sjT^>;nV~Y!W!|3Xk@y820bH6A)Tjd$alsDkc>yf=Y zYQ3sA@*N^mlwxGAoxDn%qKJB3`}puV;3GU}5~z}UiDSO5BfMh#xGy94biAPoXF1q! zz*1Xq;WO^{FSCgAfh}2#OLDX>`qG&%4F+8<dNrkT;2hj=n-VpH9qfKpczXNAY!l^JH zJ2BX6!G3k*MA`;@Gbe0dOEgRy-r|P8Z3%%j!4F0O2xZpzF8X_1d}2aTyWnOAj+Jrp zJY*y3M120Gvmy(4#9pnrhW(;O;4nghvXeU(PmiO8+Fp0Lu|l$pLkham7vvqV5=j7> zte38LxozhfG4*@o&b-p#ovw$*=3lL^x(&5S`^gSj8}_`jany(i)G|>ZPu8JIsE6@d z>K+npy0Yx$hrX()iA9T-sq?hiXk_IX4_=g$QR21h%gU>8WIA&MP&(^j*?(NS4NW;x z&h%+`2GPbo1D6mB5vRHU`XsUV2^-8kpSRI~N@>+E46+gWU#zqlsJpNG!m)yoG=<)ZqP|8jx;;q%He zp;`{F>L>etw=!$?^Bz_ vb%HOZ2f#+tr%}U_zc11Et1)#`kX}GoRYaesrYpUZ0-qxmSn~oix9I-@KNy07 diff --git a/_freeze/materials/glm-practical-poisson/figure-html/unnamed-chunk-29-1.png b/_freeze/materials/glm-practical-poisson/figure-html/unnamed-chunk-29-1.png index 5c19875f4ffc56c78d4f374dba3365becd29c438..97036f551fc0a6a4df263eff787fd919821a5459 100644 GIT binary patch delta 61784 zcmZU*2RzmN`#*jhM;$6#+4CSHtIX^XLPlmXBdG{Q%6K1=6|$*>jO>gul5vd8N`t02 zRwBEMO8l=k_uc*deg2Qfd7Qh)<95z@&FgwTpV#wxH#JdJKB1~ubVAOwdWl4gXIxC) zop|wuzIGKhhmnO|J4c&3ksuPv&mZbyA`>|tgA=4a8lQ3T#d`2;^W@y;@VO_APd?u* z&z$sht3P+Oe)#U4J4Fv3v{vsZAL~>7ZRqpm8QaMhdl-2s;5AGjcK2yq+o69)&cmf8 zl&Z?DkNe8X%q`~qCh97PfJ;wuxBTH3_6Zp3_^p?=0tLIe0B5DIalGQi(~mDrCCXvG z9@kS(Q=jfHnz%-%`qH9+o4Sr5<HpS-=JW$SKx!t+(Z|nF&{c2^i?58@qnRv1zF{}m#Zr-WT&5{+Iai!y8-xW z7>55f(tV>l8SHAapN{0z{969j`}pGI%#FuJTi*&_{P#r`#+|_|CrS43Jc)9Vb$^}r zYWi0}R&bBM;fcILZ5V+OwlQFpcH-w$>7P6D7kVn3+A=IEV{m%JtrxQWA9yEqQoqDZ zk2%DvU6%A5tP6F`jbak^I~?=C?#aV+a*lg2V|4#JZ0R|E=!{dQugNmd3;zJ%f zTRe@nWRvLBhlLu$Rk`*GRXRUS{JlDVZuyWyQy}Ak6Ne7iiT*tr+Xn>R*JvpuLRRn2 zhpKFEXrwk)Dp<~Q(E4}Gh2}psNhB8*BrpQjq3OF_h4A)nB^Wv`kXsVPZDek`9k8y* zZde@(;9f5LyOV$aK@LE-v~fO6g@0=?A_-X7*940aOKMd+{gKw|u2Zk`mtGr4J~new z{O8dA9a%h)jwzd>KcX4o^o!k^Jnty=cwd%--~7-4Sh%$Jm8VLWnig7jB}zGIUYWdm z*`+u2K%%HcapZhtR)!O7_0pF+7mmKjP#mCh&RzNXO6x_I+PtuUqrCpVYq-7VrALVR z@ue%V7aO+cM~kE7QX*8JdzU)ad2?qPqK0gogoDI49JG3u^RS=cUU6$){Uo714{Ap{ z-V_+;pX!X0@gCKV7#VK3a-5b^f!87UXa2KvX)XJJS=orIbN@|g`(~<}GiC2QV~$WN zt8GnMJ(-~nE~oi}lOI~v*s2b4$a^L$`A&Bw2^(u#+MGq2ZEHR6#bm8u=7t)@_OKs{ ze||^))4q#${`W-WWWYX|Zm?8PZqLJ1C;P&1lh53s;?08L8jm}H-=E8KFJmp7hMR(9 zPCsM4*>)|V&hCjHmhJ@2|E~TT4aAP1i93#JdfPXPKZSH{C*61iPw-3C$z+k^k9;YO z817*%O^{ozRh{ajwey|+-_xZY1{-*&mEk)M9S?mqE>k5yDDq-de)n3ts?KYRJ-+HCExc&}$)rpm{R>@&p|`V~_C?+zj8E|KD4ZsDZDV`#+K&?LXg)s=DSqSsI0 zziwV?ZOSftmcSxvZo>9lH-^>eXL{=D{IL8l(FEMr#j(yKow(?#sC%rZELES09+rrjcx0_W_a?Vl<5k}l8LyI~9WiXN z;h8e7N23@7!e2>;7VZ=ZR|c{_~BiE^shC zpVXgz&OX&&lw^BX{Xv-9`Nh$v)e+XUo^~Fe)sF|xR=;}`!7OGe?i%<`m54-dZ|8sS z^eu3&VjW56Gtm+A-yv=M`R)4a$JB`eozve1bmPuU?Z|lz`%)dwB7BT-7)st6L z7H;*@m**w2k6<5;uCFatUn+vQ`uDbO{UbqxxZ`D4_OpxVp;ad^u1ysnS&#Zw)_-2K zsq?y56Pzt#S!}LPPd9Ma@x$+#4-W-{e*Kv1$JR@ncyuQ8o2b$4L!O;B<@PF5pP$s) za#<#BANjxU>MrP+sEYa?i2g84#85@)CbtTEi^|gMmnXj8gbY%}6JSNdr_X$-a&`Uo zw#*E9;x}vJYbn;1D0pM$W3|C;`3n+Kksl2b3HmPmg{CqWh8j$KSFR5JZ@>*H^ME9J`H2bR}qe^4K2iizcS#Y3><1uiQtPGmUW|pUBO0@V3-QV2ruJayq z`Tpg(&*G>~_g&<0E%SjB$>GLsBD?Pn9<;MJELF zinXOj@I(h-qZkDl!|3X+e7{fH|EqPEWSttZ`hS+4Kz|)qhf}2)`QE>^E(|#IL`$FQ z=s&BZ4zXwH*SGR>Q)W^Bd*xyK*Aw7oY^;@4_Mx97hhvnNcF=NuJu=o@d`~NaW>nrR zY4JQ0!fOIqk-czOyi*5DaCFD&&AfT&W?Z{_$8J_$E~QIeC2dFl_wd4;7A|8C5r6%b z@7mZp!Mm^vbJ{t#A&u{HmeXVuJ|=F>-wc<3YPh-ihJcOX|GPR{2P#Ahf-83N+>>!V z^d9pvhnVFbr4E)jS;q@kEG0Xe7w)jmewDrd8zs^6m(2))GCTMo=RWk#hVd?p-e{PJ zP;a&S{||K+J^51wRg(*C0uG%o-ByS%JxbhRQWE@~Q$8ugV;_Q{wkBdu5l@f}zR>H# zg1|XD^7et9*i9a_R7jaUy^_tGg<2DJ{86MVWJ3gCR${vJsiPA;DT1y&$qAQEX9~fG zR01rIWh#q!kG3apD*EWfuu5Zn3puR_3<|;Pbs1`iyZHO#1=HHfrwb|4 z6g!IFmf0G>nH01rHcwOyy85Bc`_y}mFA1rF6_=*WL?8|48QrlIl=SAKWx5Q1X)zE(5~^S1)SbOOO2Dw!JpB;**Zkq@0$$S6hGAV4g#21@Ww(^NCZfC zb!K9pLm=P9$rsCox>Ss7b5G`7md3leHAv^?Ap~yWl82|CCjxFp9#eTw_lp!AFNmWV z9_o9;s#BDl8|KGE<)d2&Qr*u8+L{FrV zba{gEWY;G9vU+VVH0I|U2!3NE7T7}^dxYUsx}@hwEQlu_#^TeY0@u7Qi?;XzFiG0O zfym+JFJAjUKSEZ+nmS{2G>Ia|@8g}>?CLK~H4k~+K>uQper@cg+F-wu<;alFNGnyR z=3D}iD+GdjWOw2#0Ky-+o*OaZjT|Rm+zqXuuCH=z!P;3&+a!~gCVD4YuI>DoJ1LtV z8~tDI*eih0^X+&kY@FHEdVSYK^*j6HY`14`(XvXZ3*sQy=104R5ttT=LoV;xT8NVj zq(sv`%)^?j zK=a?-TrlL-+@0Ncbvf~!17f!qk+c^_Hh#K!Nyam1>PA{a-CRecEJjhUE;$ zgL;YM>VNTqxH0M54wH6nc9pA-upG?HgcZqj2=kWQCtu|tI!SbD>n13EgotNSFBRjQ zrHO{D7kGlvZF4VU=>!?qp7g@w@0@X>=7o-jMp>nu@q4n5bcq*a$X~F}mA-=}`3WMg z76(NZRmfyc?j?S853QXxiI}KN%&?@`llS7T?4Uz;d-Tj~rV< zL(e}?5w$Q2H+?e^$v&0~&`TY|ASHd~bZ@HBXh$rEdhVo2gAwnQrSU{QtsS$c7n`Fs zv2*zGo)iP1A>+rM-iwQ>=JfLFqz*YdP^@3&(w)&CCUJG-`o28KUH8PSx90TE#o@J= zCw@#!CM{4?h9O4u?Vp8~zrCyVDDDg2!%^I)60o9>d@%x@#0>Sb48`M@QddU=z227E ztVHat!at8Ihfi@lhD#j;4qTCJ7n&oWosTy!g4^H&Mac+4y;7 zCN57qicuzD<-GU4Ypg@<8F?d5a||%{cOi251Z0JdwE#==y_2`aMUm}LY#m3m+LLYl zYvb!H0V-+x2LBc*)9^H1JxD_Y(;V#<-}fjQ|7e^pb?={n@e)F!S;WvNh)WWeGW>wc zyeDXonw+b9^C*Ot^G{PZl_B&)7}qH_FXF$xYo8^P35+r6c)>B7%-B8ZFxhe7*NEAp zGp0NHR9Guu-vswboHRLd;Et-AK8cB<^ioT7x}3*HypShvO+f$U;UHo7P~zI+Sisrv zWdgk+X4SjB=fYrJ<@?OEQ%|Gw=cZ7g1ffi6usM`&e8*Mbi_uP}Jpx=I3-^31UBiImal6Y=pL_*sWrp10oB2oAZpxFTiy_idrFSx3?ULRz> ze(r6lsqfUA0;{Zb01E1G@Ob$cl{NU%9b3k49KIlS*@MdGb9)pMl>tAGS}>=wA?wZ6 z*-yfdFCS-f)7dg704ChoS=4lSKJ%zw-ouz%GkPSJ5W`zC-R}?wq%7DgE0n@qcrdhN z#rhbQiiX)_=qc~w!iZLczWVEJ3c5gt?FtCZ*qRM^$7i1;UA=8hic$v5b9EwTS)_F*^Vmul+4I&ZBj!P6$h zg#Iu0%5#mm{)?eoBfp6Cp9{a1F07&X^zPxySIthTz{mI~$~n{%{Bhoq75%$JmA&f7D6HQR&p~AQ!g#@fhU4-%=3v`t!>-WfFVraAbEc zz2OVR%6>(PHXa9BW13*5yAI?&uT7!neaDgWot)dAf7)(&j9m zA|}zhVJ+v~U6akj)U{jjBNPV=`P`wi$AfY^ivAB64K^f00!l%K8Usq&8~d`NQ_T&Mlz0oq>5EcM4e6EUqq{lyky3-`RjMuc8ABS^%_!!Ovi zXKV(0_cP2;L?d|E43_oEwm+Z;)rCspL*Hiu3}zsF1C@)ddDr$Cm1Nj&-%tlUOsk~& z>hg5ASb0MZ0HXg6a0N{W@XdPJ;E#v`ijI%mWv?JdSmht*WN^8 zED0i~%Xn8pja_XP;KIEfDY3ki`<-)RxDH#QiWZ7SV>#q$Hl*M8f~1EswAU3*TJA#) zk9$}zIP`gJ{b&eaX1Lsf0V^|}99?(h%ca`#Y_&@X6pYB$U1F@@rC{A_DC5@$cRn;( z!G#ICu)itjcg+ePdL`cG=g3lv+f-?Dt6a@f@gFMC<|j}y#$*9FGj-55F^MM&av(Dx z2<+ML$yC0Qb6TBSEm-`Z+Y4q~;+Gr#Qrw>Cf#4;2v5Q%j##8R3E&OnW^>>9i!Fv>G z=Z<@H#20R*OJ^L{>oQw;4U_Y~Cv4M$I%Fc9+QO;b(l(!PqjwYV;_;TY7X0RuVykiq zU>ZM-qip}4D+*&WWVIuw!c;Se>E0jkck+|9I^2F7@;@GAJX@){fKRsfGlEpnJ5tojc%Cx}vgceZG0~fkMl!{=18Bb}%W`>~_0vu;;wTLK46kb{xI@`;^5u znV8hTzT2|BNK@n|0y!D;fW@lA_%|il;u&dVMH@{X+f3O2lhg?z{4KX*{?U|2zC~w@ zuvEMDCId@7OUKRh104j$@6cz9Ag|CXW3lpsvTjjI#w}P0lg1O(+K0g}PmwMk`U*1dz7{ElkV&NcJ z7@@)^$J|73T8bxx$?BW;_|de6=RGzCN27XYtbe-@-Gh(Fp5xMv_zVT_RzAh7f{?Nk z)jdfx-~K{(ERh6)MNFo^y9ah0nA|V){I@a6*8#yCPTBo&;BofBQysgl2E>Iac49p~ z)ue#tbvXI@;1!@|7E7PvCoBh7AvR(hu1v5z^?rU^_MGpIX12f~Fy zJ%Uqf*io+DBnTA6J~<>gMoD{RFcFc&aAEy3)DI^RrTlX|3ny`b41QwHeZsRnAXo@=sNrAM(gWgA`r?3zDVP2iZzy z8!P(eC{64GxX(P&&h0OwJ!Yo^VgCQbR=`R3`|$q9t~1=w#46$FcU=Mr@aXc_SGkGG zSA1GzwfRCS824KgC(HQR*I&}FU`Gxg%TQ=#d3(?O>K}>Exw>>3eyg8qFBpIjKT%TN zud)E->C88?gnua!388j$&GGbMh^adNp=#r>HL{|7l$vCsGvBcP4-Iy19B&Yn z{xJC^uE7&?onv)%7%4wZa=a1@8YuztOb>nZ8-ard?G+B5epYz0VdOc>VZZYesl7H2 zUpmkmz(w5bJI`xe9%J6PVPh29=_PMtT*?xc6#h?xc|u1^xu)J-^K_H4I`UK z(5&M4q6mC?OPeAyuhyd3g_Cw(3_sLa- z_WxK$aKnMB7FFis^YoK?!l;=tUY~hi zac@aNm+ZF1+0;k6=4dG=5kSmZMW=q^W2WGzc3ZejVAmye_uqkBTfD$5bPrehEcO%} zuSjJq9k+6P^Tsa&!TTW$yTo4XCpcKuO{S`ba6t{oxV&bXf%!v??V+kZi6G zN5Njrbt{O^!Rw25nvTg%NodEHr7x*+YqjFg5 zcP5*Kbj4TGR#6|;7{+$7F(#-mB>DL}b@-+NQ+NOPsEF4@Wx@dqbpWdlGN6U%pm5}* z;nkJdPigj54JL4Ypj;yK$y=@UAj_N$y|P-%6t*wdt35lOC=mkureyLtFy&qt(7?e~ z1Ib2$-Vn;@?T!6-p<*Wn=Ohhq;feUjr$W{&9|1iT**DggMP{KfgkBJ5zt(v}OD*3g z`O>Sa!cTo}1pQu7M3#>%$+JW1KW?D8AT@31i03-&S1RQhhaa_#<53%86SA-@wU)Md z?32&?;z0^k<^V=U@Ew*eN`p%Kd^zi-pSjGP0J z?u(QLQ&kZJmhMOf0nNP^vvA6c>VC-cQ0&i{EfBk`^5LfC%cGrDeH&*|F$- zIZ#U}LOclSzrOdWwe_>LQ$D2=l)@`t{h@b-^07>?bFx&I;}sE2egKjJQaiZAO@Z&d zC|hJQntNZVb)dzj{*pWE3wqWF@(2w#=YyCmR>9N;KFhD5DhgUXI2j`C6&H#NB&vf% zFvza$YqOFE{(vb>vUNScdnPA+}a0+0M&O+>r73` zGuB-{zevNOOob%t?n}FPvGgoPCom)U&o6iH6E){=IWFCEej0t^SIGS^R>Z)n+ zoK<5)KX&2*Gb3-v0u!lmr}xWC;~@4~N?S~^^aP#hg(JVi)ZlH8K{0xj%i=fw^H_9f=uT#+D>g?e?0R& zWKl!vunAR*ho_C+yfMi_!(^*A8RSgQwz07D%-snUE~+4U@RigV1GLfO74O4a+C4uV znK}&%W-mm4nsR^D@Q83;J7_g7466r@@)5qyoHu z5cN8Q*gO!MLj|ALho-B54758=q&R?cIq;4;(194GGdlCe7#Xfw5vyFumWY%DHUP0P zA6432Vxo{HzczCM#V$sv#`$!ByCM<5QOP=3h?xn@B4%f5BV&5upbfk&K;hFlY+#!A z^Ke<1T$2unnlAxMP|KWn(!0*Z*aDE;^;3<`2ztCg^SsXCp2{e=5TT$Ils!gX)8l=OUtj;; z_i<8F?hD9L=e`|Bu?T`|(7=cmC7;T|w=;N^EN-9LG_M0-grp|)ep@` zGx=7JYKI%Bp5twFYUXeu?e&=$KY?A!~GeGR#>Pm)%F6R-`v_|5Ulvl}JV*CX`OB<_+!LPu|tK0mok)zH-~E6{(k&P&7V zNrYRCehz-Mtm>^Oj=sbnr4(&Cn(d&fZ0)C%X)sVwDy-zQg|&isb$@E|T^#K`!)Vsq z`As_TO3A%VR_%HU4AHI8B`&b5|z-Rqo4SYfo?RhK1f!~cN3<$${>$<3!0cvtw z%P&@;I=pVxQf7h!t4jIMDaU>H&~H8o@V${Em&oPe}?AtTje>!{V?+haMbj5e;9Bw&q(R}pPyax0;l++n*XPzs2`T}8ZUf>1fB6b> z5DT1-vHkp8h6ZtdbE<8qOj^a03M1k*GI5y?r4n1mI*MP{UT~=GFy`17R&-kpY4S+h z0#)i*)uU(_6f(M9_&yK}Sj(^Y9{wka2;u1CPW|}$iknU!g!|~t3DX1`6pN{2O*I`s z3HJH^1u-hSc*-K{Kug(M3W~h23OhJ61KbG%OetrtU1hrnyP!QKWwmyng`7nR}1LbM$L;2mlE&=m9} zAvk-#K#@>t&9`U^#i^xxNajT>UOr^<1pscDlMxrS#RVzK8Sxi)zXU$p4N1M><1JuP zG64^*qN=2~SsoWQf|e^0;6yk4pU|}5eAK%VIeyF!XGP_1&{e|c%nFWi{RF)$rSdx@ zg+%b86xlqyfAlmfGxL{Dn!DvuD4c-T2mym!yAhQ>edp0^Z~gtTBWB0K_NZ6sqXeNM z_|Mg!<4MLYV;!;6^&!E);q#5|$ZaW9GU`yEBCb-0{WNkND7KJsBw@-|@Ut!WquXjd ziWC;!7^{hB2{)+CQW@Zck7evfEp;cb>1s&u@3Xz00=X{W?U}fS(5agA?mvFtP~_Rd z*$=%Tl)yC>4r1}{&itS~$eYr!+P(2EFuIf4(MSBbBH+ghNHqxv=yj!TkVTS%sQU8N zHrEdd4{I?vQ&5LxVG0Uc`{ECvhZl@&A|Y`4yE!g2@bSfFt+YM%U(5k{(||my_s>8n z5JZT$=_Z7wL&T1zire7s*N*B|jrfJU4T%YBmZ0^M~`YXq@Q zE122A#}6C+tbDSc?r46_djwYWBpxnq3Q zTe%qFh)Qv&w*{RR-lL3cWO%n{csVgZY2XZY;iK&nzcOBfNpQWP`l?y=Sqq?6$IiH> z#uJ&aAc|VNi%SwM(19zE)OnM~0Pf@6w-4jD#!bW_>mis?;@sfl<4=7$5>EzbFlJpI zx}sZlHT&U>E+};gUY;97@BZVf%f%|97ID7-`yEcUy|Q!uJ8;nws0?cXy%CJekDk2P zzN@w#;KqA=NKupN7?>?@Fh-hCeudGDLv?!zL=f`KX>tt57+~}M8^SVQ_?kWBtr4VuuShqn~T~p)2i(` zkoxc>UfIiYCnu<)4g00$^7Rrl*}j9wH0PEZ^?t4ijF3xUKyItsgOH*!B)BAFrsF=kO;T8EO6z68zVTqB9z2t(^W6up0^zEf5=3kD zv!7~9c2{!9otK)n0=N|O11)NRsORrL{kH7Rn-GC>@-oNU9zt2r`~U0kJ>JOy^&?Nh^Rg6Bm79v{o-RcE_k-5H{gh00SvO^Sp-8*SG&J)92gJPlk& z3Pz$)DJPhO3{ApKONXM_4&MKq@b<$q$m6dZN3IycWm=G+D0d6dO&vt5`i8MtP=!nd zCyf8)OXtC;$(xOL)Q>$D|FchR^Ca;4P9po^ont|uY9XCz0GuqII5qK}&D{>T=-nmi z;0Gbkz)z3&uesmENJ}LIzAi>m~W0m#_OI`YE zQdU=aOU5vHcmf zqTtbFliw@y4Im34q5>i@xd82wn>RN;jj+ze69@2M=FqJOgzfHg@8kS*w5Lg+!QiRN^gr+a)|G1q;d)YdP(K)M%?5Lu`lAImiq zX|k(%h)X?Q7>VHN0rQfRSk<8LoFtz6fmo4QJ|k=OmfUt^1vb|E%V+9ChOIwlKD=pJ zb1x64Hfi7JxTgGX0zzvH6)vB&!5!h6!~L@URgO*)%yd^qD_ZkqfJNP5a_L=ax5~KB zN`@kGvG^5A(V((5E>(rvr-S?xO!P=+apYI;LG>-0_>8(1pq6F5$8^CTq+yvM?^Uz3R0oUS~40K@ER>cZzbP&bw~O$faFQ>1p)vP4)%mScq8PCh8}1( z2xC)EnEGr_ra)-Qx9mqCqRy7MfVzA(i&}`Y!mE=X=Qs17FH*WtK#w5jJ8jN2Kuc(YFcuYzTYgV+2(}uXjf4^ck6|{hS40} z!zR-{=16}6FWn}BZX&$}dR;w+kcP)g_23@OJap!zy6e?Waz)_4m$?l9PiRwuxp*_M z`L6Y!-v`z}>Swp$^tWe>l)=I>$SbXa3o7OZr9K31?1eL0v&XCn>LB)TD3;F5w+(WFbjYpi2WNWmro@myd&Px-hy100fw9vkB2 zU^lFQNJci?-Tl_# zK{nY?j*%VIIMxv0&}^|?=EH^FY9?_|*+z{sj`7gbaSi2OUc>I6>#Nt7kY33u=3kU~!TO&$lqsZ9udQP+HNt??RmOb5=!HQ&b? zSWCWmIgb;$_neoA{L>VTP(RUzb`*MQoLAPz#(>(DTZZ%JK0;L~8_#R6%!q-5-S2dA z0rLm=yLn_D>Z)taLUB`rF6JkzBa(ii&daIr2=Zsysydo({dtQiY+1M%y3_#gGK@0qljwWhC`PYUvy9 z(LiBvyXmGV?G?g|(WGi$O$4($O{&FK9M&R(QHfE;rmQ5@31Fu^fd8!CrFWr;hm zym28o{%a(N1o>Vgt)9jy(0lQ7v6II_Q@S=9tzYp{NHVFLNwJGgl$_-BfdLD zTH%Q^DDDN)MDd;Iz7L%N-;kU>zUfB`-QlqMo{k%L|zNc%n!MG;Wma zOBb_xpa<3VJV1@1tVYZTqZA)e|2F6wdXVqTg{*#`s+{4HZi?8$AtaS*rbl850pik@ z6s@Jw@Ya8rQStIzMybuiBPbVVe8(Fc3^bC<+B*U_$UquS+@exO|2mOjx556ye}8wC zRD=$_6r0T$1aTd#ROm4%x~u*iXG(d_iP$h7&(pg%I{u|Ap)FcZ;fog|Y1dM~eB-{J zfH71*p{Dg}Y~clBWrvk|1geO}0lSX8=V)1VF&_kU$SRDVPZ#Q9JEAP;b%%OEN`Y2Gb&JP z__gzR5=c+vA5(A8D?f2ye0L87Kv&SXt2{o*>8FUM9ArsNAR1sHK&GN5E--425+xa1*3kL6L8SB_Eg+LSGC^4VoP_O)<0;)*DYe@%XYQ`H^jY{?a~Or(Py~jyVE_*>--M`R4+=r z`Te-4sc&~OSCknRPB0UJBX{xO(dHeQ8L(AxsQr_WxA^7(a$-V?Xtlp}+ysS1$sFno zl$VyL2a20Ph9QRMoL_I|}ie4Hw6fmzc8$NPx2W2cv zK3qm;TagL(b#Mon4h3fZu>P0DG#O$ROBr(7lE7wf4w}#;2n^sLC4EB-$P70};J~#A zd(|wCcQZW(mke)a8(4T!Xi}X(!f3mt)Vn>3-CJTHXl(>=kog8M%ZP$_VFTWVDa)H% z2Z!u|MHwW@Xyu0k$7-e^hV(*D=HN8WM{w>9nEuO>57=6As|J4cD@5I)E8|Gor*Oyv z+sDpSk92p^t;=%+f%_%!QMr@=iGofqIZ6H-d?8Ku&UXDNzye44!_c~(r#idYmqcvdjm<-i;pPx&vC_*6| zP1bWX1oI*gI7tTej9#ey6osiSj25gLI6~_FxF32bBw?@?(i+utIXSM>+CP&p+@8|E z)%+J6dxNPt6{z3iOKoe96`LbPIjO%`M9j2-GVuLenm9fb2r7AX(P9$r5gt{1u8h-h zDVg`ANtQnl^tX#;mDWso2ab{wuC2yRb!~b)4Gq*v!u6o^LzVeWu4SCZ*~a-N$0(zj z_UE>nT!-)PzKgdFO)pFlvr46)+<{NUwBAWwlB8gbQd=WaA`^S=2 z$@=hWa)?uvTgmbIDgl3nj*hV76RlA(ObD$z*g!VC5{&S_}DK7avwv zuH^_lZm)}u3s2mgGvxX3JPkQuD+IMRZ%dCT8N*<}rDg%8J83!NfdZfVwzG(Ku=T8=>aI|4)leY@L z4n-c(9nEt;4L6LZYo;Wx+ElqP7$#q(sqBB`ejF_dHSfOh=LZGWz7Km-+NmZOZ4?Gz zTeP-Uuil9XcWx8p>hn)T1q38cx(KXX3falSOy-FEK+FQa1J#T_ufc$ddx z)lOkCJ)86u*O7pZnS|H)`~s@Zhyiiy}WoI{}0uOx|hYq!MCc z=IhalOp9z}g&n#E#LFk|pdwX8G-QS@wHUU=Y^q<-oeYc~CF>5oW9@ozSe^+3|@cFPL7|BJY`M~-rTOb%aC zL-u#jRMP+?lo+PgbJd1sK6iAwUU}k5%>ChmKa6fx$~eTS9HOvSyLYRiJ%c!_R26i) zmLyPWNcvIV@;zrt+Vab}>dJ@-*T{Ft0}m1xZpx3V>>m$a>m%*O-U62!Ht5YMEE4N* zorcBS(7YYnna8r*v4R8QgoM9Y|8$II@Z^f}Os&@R&#@-?jxk@#uh1Xj0`hIN8+g97 za&n=gs6=h_%&VO4ojifr*iUT+%(q@Tvg$~!YhI`MId*wuK=m43aB0TR=OyYv4V9px zurJf!>ht$t<;z`C!_7P-egB1w2#)N*)`&0EWqzfY-jnn8Eait2M$RYpL3icm?^53= z)>t{nX4Ai3?h#>z#?@{x@A}0k=DsjdbfkXo780SW^pLc3#)^xNQp_wb()0)Yy}XID4mkAmJVN=VCZ@m@eLwkF2@Tun+<=CR1t z#&|g<<4&+wAbO;O6kr&w6xsw^`*bNNH5V0r!+iQxxm`vUPfLROWcFl%6&Mr?^`mp| zj-k~Fzps(LGN8%SDs8hnm>|N7KAZs6%Xr_Eh-vK4hd8JQ7u2q(A_JU|fSjL%U(3V>v+hy z9bc)UYkQZj!vUV$q48xL@XfB6yK+$+@(*Zwt1r*nYnbf;P^jKcui!hKyi{>y#|3|B z5G2h{KTGEWh!mC1^vkIPjPohr-a$J@Er#em(F4Q~?z)B6ANJ~JDnCYz|6o}mkOv5Q z3vR&A%xkHtzPhb!l|78L*6)$#ZAZ*+>!JL%{ zE2#(Ug=@OB9{f`5w+^`{I)@Ip)(qkR$JdH7#@)g3UnfE9SDss6W(%!pO%f2_*UjP`VfM%{vk0Tj=CNeyppNm3`!FBI?G|LX?1iC(#j8?5E=f;C_d zD&E~JbeN!k ztrV{21%Q%9g1h&)uRn5c>BeMMsjV+u1EU@E>fot9Y0JcBHGm7lncC6jG7w5lHZ>2o zKVULT(ftaRPYQ~_jUb{D~DAP3g?AGx=(xL=zH;Gwq%;^syn?WG&MhnZng!6%F-xbFO1wZZsw{%c$LaIL`y=zuxu~PW5`_x0!>~ zYkMf({C)w~{IH~Rk3tDS74R0gNJLb&89^Kt`=T1Bnf<{n8 z{T49XDX_~Lg2RPf-gCxrU0cQ3jzswbI+8&l@fWImg@2wS)17 z$|eZqIL9{6Y2vgHaf5>X*!leGc22K6Ke|nKD7jXRCL*;%p7%GSR66qYm=t z-^VlE_j6E4)aHA|qbb}0Qs+dc9^{0E?=KGftgm?=Hu8J`l^<}v@9}QttSg?s5^q%8yc?;EW_77K_m5I`%y{T8u3%IzuNXqQ3h!rxyTgqs;?*1ivj>u zifQhVZs01{Oi3JHps&G%mK|^=ox~(`1FEl4FQ~e9Q~;EMVhxjGz)EQw5(02K8MPXR z5e@eW`Yes>PvHB@9n^N75?21bm~lPe4+JVM))T%3P|EFDqZTL(QlMFHZmSOG2`k83 zPvVv4=L7q`CN%G7$0)80os+sWdZR_g!FpMmW>Y(|7pM-Jq8I7q_j^!MY5VyKzR*J9!kC$(;w zs5LtvOrxD`ZhCuP7TGQ zyqg~V8agG&UWW&TqCE9++icCr$38vP9CM%7T8!xEENbdvyzK%Pr&^T$DOG4JOJ9nfD+A5wTiG0(VGi+>skzW)*Tdk?p}&;sm{gm$W7 z>~T(bU*X8u@cg7mVK)ouE2^RLF@IzIf0=V}o>PY|xHM_Z>qScwOqt#0~I9}DlW-aGU6TsWj;&Y{42rSwIcur;imuI^E)4vYkc^8zqbLg+Rg97uB z&Vk+NcXjmCpAY84r%jLaEF(Z zJ6P&fyo4R1q!D9MB7BBY`%OSx3X}GoxX;ODD>}1d(f7yX238kGB8mbaQE@B!X#3)% zD`u!F)fY#@h?{bhXFyt^>P5a!_LW0~mG>+i4gbi~>A{G<1P)&w^f_c-^%PVgFYyqF zd3*~C>Va&7SfPLfnc|7y}=fbT0w;SeD;c*)ff5(Ic zzI)0e4nfNnQDCU>%e8E}e?Gnetm5Qlf_`FQ&9zX@y9Rb_>i1&A7vsU%T4KDxPa(!Y zBA{;cN8u;IyRh7&NP598dX`Cop zdxaap^x&AEyYl5AXpCb&V1{g!jiDBnBmwF||5^G~kDQfGj|{k8I))c%{S z(yh7n*`fr4RKrh;Wa!*86Dy}oxjt71qkXFH;aQFLqG<8JgXxM^Ae@RX5GwbHYlTSd zFHvFfw2i`eE=6Wd9s_@s2v|%n{##9>$AVUdyz$&uqCr2@QM~l=TscaCzxb{BTS8Ip zUV?DsryVw+4Q4A7fu#}fl@muD&8;gOLlO#VN@}209Kzv!954w1=r`~VU>z;K@S#d4 zUb&|jo-4geukgcTOD;J!!?RPWd7z7Hi+QEs$vmS#Ndy6*(zb=mYr!K-%-2sQRv) ziHs;@CO$}MAQ>TBBzq>=WkkaWS&^BQRrdVfZ#}=?|9}0j>$&<~*VFUmoX>dQ_x)P; z;4g$&S-FHFIg(G(X4~mQP0){D{Bm)FIT|SWteEvH7`D|pqf&W@>X|7YX(GHS=N__k zfv2QE+9>Iz5zlG^+pX95qXcH?aIg$TT_{(17c}D$ZF`xZ@apf*!+gGbmw{Og zxODw-052HZp2Hb-nU3-!`+gj1Klix)xb2h&JX}_d>>l-VKW-uWUdVUP*O7#1opUdy z_VS#ms2jXRwc?0nJ4!nZ2YmV=56NBJiNwtYX@M);p&eeuSY$brPD+QMiVmJl?=W^nM?!c7jD=1do5v80cIsuFS$zf#>z3rdU}9 z$H}L(Gg1DZb1Fa^DTy+uki3nw7Jv@RZY=+5p~r$np!1PARB!hBT(+ka5m)-69E+kG z9C-BPvfI%JyaWnugR$blK8=NTJCp^NdVLelre7`-AW%C$KqU}E7B5++{F!zYX3kU~ zqx`YE%}923A?MP`o?_eZB0J#B$oxQECH>p0SG;qjBSEq2<5TR=mBD(FmqC@MUMoI* zD zUBaN5XdG1ICOtw=G$6*up4#@2YPYICQfL1K*`x~0P2`VtUsBPa7h#|}7}aCY0s{h_ z2Y}*lM)VH=Y`u^1u(@o+e`4JK#*?J8Bn@9fxtZcQf|w)`e{Nv)=y=66_jY<^V0M;Y z?SLbYl!gGfuaxb@4mWcDYDQ^2Fjq2(EEQ5bhsIjb?44(=1fy9J)i6L#f_*H;~PI_dbbFIU}t2dA8fHWz>?-@twK6i<7FAbx#U z@3BjKqR&Tr0GH1{xi3NXkiy;9S)ACpJ4oY(wC%x@aDAyVR%kK^;=a9Aq#_$1!d63Z zM@|m6a@UAuZ{(}%Wh;>+Tt9Vdpt!;Owf3KhYigjuu4ZJgv_E@DlOb$5uy;rqK zj0LXZUEiouif7TfOM-Z!!Qn3nltT0h^OA`1h=i-!%kR!EnCeN=aCe4)$9?7Qw=TL% zYc=2cK*4dM^J$op+Po%j2g&2Aa_5iz1=j+9l)H=h2Y&qJ4V5MVI10U<-xhTbxnXc; zw3H0w-URtbRcrm>88S|(vv|^?-Aj`vx}cno!%)V8n0+t~FgoWD&z@IO>Dye-fIPJGLdk z1a&#f3CPyS`;w^m(*Uz?Y61M5EtsvT76{M~l7AoB45u+60SFExTD{atfe-;ZB}u*O zk~Ct*oV%3PGnGMjA^f|W0S{slNv>1C>rjH};vB_E;4u$M#}65!nh5%os?Px=!xmi~ zqUN7E>utBnq+sR*wed4hM>WA&mt(lOQS>l_Al)*HGh(lh#DT>xwWOP zD^Z{b=^U#Wrc?MkYJlPdKQIDNkk?!I^3z>5`<8qPyZHY|Bli0NgV}ve zdu^yTFpJ5=Pr@!F0E+Y#LUcuJ4Ivt4UhLot!wp;P1BD>;S$5Xmsp1gb@swSf2Z~4} z0C!p323ZD2BS;yU6t@;pbEIBRFN=;!RjPXjk&~vh5}>1}WFOxA0nON*4$6!75g89+ z=j4-eeEaXMoVX97gx6r_XB0K*j@NQD1voA;%FU5<*E0c^2b?g^u^M1QQDokw5tZN8 zxgG7wyI6u4{Y3AZEHLAr&8i1zn&QI=c9jkYnEJQ{02u3` za|!-*lMVa(R|~!c427AYT<@vrc|GXy10_~|Kl88N6LkH)LFWfY1IyBPq@y}ysD9x! z+#OAL`{I`w3tSf7>I15qz9hou7m6>u{xuWyaGcZH`FPxr5F}9!{wLqsJ$pzsKrqPm zXl_@*K-+`QzvKaNy~CKuO@8{f+z}ruJpXn)9&VhC6^p0Yf7BygWt+qLLZPLm63#j6 z0R^Fn@35tk$1)v}?Q;(|1S+0Sl&KEoL&BjjINB#)>wVNEbmKCo-MTJbd25Qb-J^3^ z{@sHUn}RC0?}KJdc-h^xKNkRv_*}NU@p)zZ$(E|eeXx>ZpFn&3N=_<2=qMB&WE^OM zxI!_v81H}atVpy3T~b~Dwj%0X*T+X%y?m`6+U>5*z9a|z$K z3cqa$Cp`g9L5_=#T+_>s8HI*xnx|yVPWoE(@IQa6l22u37)sbn4>GxamDkw#UVMJ) z1{BI(`LEB9#+KaVI`ZN69E^uFRZdqYW$)uZs3d`WU}|UxK#D2OU@UAGKSO6J=`<3O zE;FVy-N8#+z}ec!m2cTZZ`+#W*M9dnSU{g4q*ksMl;>;*`xlRO-hMz{>?CC8`wOgAD92r|xgYX$m>|BA*jdf)MgT=TI; zklMI*{?nY8aUTPTD{3_jF6Yah2l)U3F=u+;=$+{S9YYR%30J}pG(PO>_pnzFnR?&d zwq|-V3w;^_&t8@$@27VDC`f^ENr{_uft`M$5Q{eEl(-($k!{?bw*Lq^KmVV9KIodm z@u40pa=GM-M&hU4N@|7^SP>fix{B<(URs>D=ujfizUvRKNP(Eb6M6)c5`x70OW+4! z*94v7;~|o$Um&sF!>b-t3kUd_b699sIm6xkH&v-gO=u8}3-8+}u>FgnTm}xmA!Mh? zWKU$IKgRC}g4{Qwq=|&qr!4wL-}ONZ-u?=AX$LflkK2K<7=`kUB1baxv!1_jwD>XR zyFDdcdRV}>$!xQKh?_IK%45GW*E*Ca>901d_5EX$np{a30cnBwpKrnwM;>wjp>`+i zIy6dqwNZDe{`1Xl@19x#;YTsjw_j;p*eCcDroT^MGs_w9-m+o&EljaWj$lu?pB?2% zSExebgD&92Hvjr=%kkXFhs~VS-*9LrrbjQ7^V|F6rZUHdhN!D_RA~Qci9gb`bZa4XO(Wg`4(B zB42@6wwFOio5P-^X@;vGRR0_ybWQ0vd*LaGJuL97E0c z9U)mm$>6qj#0AKKq535-bShNu73i4jR%l4Gv8o5RY57{ixQ2}BJnunbQVP9gh7#-c z<6}{0>To#*IWM>x1h=o&%#+{S&uKTr^zcxHhvDmU@AE%jTrtGW&!;8#U8$D;Ik|#D z7b|2;mTZ8Rz}@?aax{Uta8ElhKL$j2IBJ~*IO8Y;(uECkMOsJ5?nx+%@cQLrbfo}n zqXf*s;6ZJOr%6&K>95AFm>VJR+ar)fKuvrh-*HGeirS+7U;^D>JoQK<6ZsJ5bMj(ZfN#q7<|Ulg+EP zH&_``0cD7E=yFaxM*r~%v+j)_Mn^5iq_)6ffMuK+NtY*@=sK?N=BNddgb7WfNc4Aq zbeRt<@q8!IszNV2B&|c$Yrom7YFK_=@q8U6*K?2=z!i=Z3Nhl?8!< zu?)|8!iLM}{BKPtLk^R)90{xW3Mc#sOC;3ZGS7EU*>1w1QirjeykX9JlGh{m$EG|m z(bGvj4C0-qY-7v#%=vLfW5Xhn1xNOvNnXF+87>bQ&L}e|HMZ;zI8!pDY{B>bs;kiI z%$o}h`nXF0n25@UL)oK6ne0-ITvDD{`^g4cTo0cQ#4l0|at7ev=Hio=P#mn#g;dA1 z56<)iHLed9z7J#=DADQ2#f}FZY1;93FHZOcup+~nG#{6X!y{Ffz1K4H`b3uyl&Zb+ zoc2@*P&l+cxT|ZIKm5D_M(kS5S;yLjVx zWg_oYO1X^~s-}n&OPXNC*RDg#rZLxO7>xI&Kb$v(g8dA|Yr$D`^x=*sHz@-I^S)?J z5rvx{K}VD%Zid$?Dwry{*&TU2dFDw*6;q7!7rrEwn#Bb8bnSbmfYZe&5URs}ve2rk z^J-1C;xmvNe13iYrHiAn&d0?bLc=vy#iQ;qjy2DSNzgO<9|CXSJ(8#zuX{Xws5fxL zdAtrV^v@mr8f%!n?tE=M)I2k9g9Fk7veij?ex4m3Te#I?XGr+Sb{>CB=@K+FGrs^b z6pJHXknd80|E0m9sI2 ziy~sSh|dMmqz^PoNlBuzN+7`H!uHg4H7bSro+JQ5qK=etPWcZ33W>diI%;ychY-?q z2Ha4iZV!!)uYw@AwDT%IuzCmmz=o^|uyQ{q{^>HHj{}8fQ#XfTjlc&Db3jshPot2E zP?KjUrn6#adjq94m+PH(MPLcEVxAo@aj1{QLWv!aHGaZw?eA~+%n$HL7mSQcaiXSA zK($}9dd%t*W32(1F646l{xh9dtp#vI-2Pnn8JV05)u^2u;PvI7hm6K&06S0!@G5J; zF=`3E|8Ia3hU)(SCjx<&lrI}emzUe1u7&~}YKO#4^cqL8%O%<%$`t?;Wf5qe1VaOF zoRHKu086Qy5`0w7DWg7BP`$*fpm1L~I+US>QWrr5kjpLy2BEP@T10aOgp-7G-DlvU zK~XVxce9vI4S1-aR6yV%&KaM&I;wcn4SRHFIa4G#NHm;8UkF)cZs z_GSt&n!VQQ4IUmcm-I1O!TuPCBis9Y`>1X=S96Ced6>3G#Ko5>4JWq9*eVARqMkOZXJbmhkXd#xAYx@WdLeu2u*|MQQ6 zI!S{+fbln0>^7EXa4#d7kV0I&7V@kzcHPx(62o7n9}5}wyJav-;URq5<^)SX(r!7A zBDv;!Cra@0uI413-&G(9AAY&RtxV6-gG49c`^lJg5M#QqLu#OK9r!U)wx2@E~frryezj#5X z?h+(EOW?50g}@?XZQlrO+X4 zv*1gD{N=~YVzYloRu6f(<8JCLDL8JP)Q!>n^@U!IPlfT3We|_>MeIILimLEeVZAh} z7*;+l9u?t(M*@y#MJUINdv34H`kWpg@Otnj_x7B;_1xSY&KCF|_q@vQ)`!Mt%a>UX zbKwdEl8#{HH&oKM4=w6~xzo|$!67NfB$wGAJs5Ky9dVEc4^9aSZx@S@0tHP*PV@4@ za>IE0=^V-%ZL0_GA6h*u940zw7yj*4T1G>|6C=Df-b2+YMU@Ii;G(^T120M#lqY_h z%|(3`FW(;?Bf${*b^ND*505VqkB3l@>FivLy?UWNY6(Dyxch1lygAxer;Dd8)gW~+ zLNR4dqEV)9Xqioo)WBK4E;FwjeOKVuEtuw>4??QsH@oC)pnJ>GraE{Z;ay1iVlTo} z5bJ0`N30=2%sUyMGA)tB&xpR2NptSqI42~MyEIx%^U%VWggk8lLD)4x93h$#%yfE^ zw+7gkePNmaG-8upGK2(AdyHWMoWI6{isyG$upPlN=L%*$kZ0v&_9rQkWqG{C-_Y$j zl3V(rR0b&EV-?(C~2DsBAj;AQ7|>==&nNc_A&U z{6(%t481Eh6i28F^IhJ)yR)?t{5bnIZPn8E%jyMqZeOB@A6icXNK@?|yO+-ueCO?0 zd~Zp%_c~`QAYf`v4u>xl6M_y(G`v0x){rRhk8~Y=&IMn98TMHG zc&ve^C2|Si{i!Rd4Ltf*&DZk#y>N@1AzoiGU;{5((*>1YzE^!Y-&|=vp0mH!`qN8h z1zhKMX%^5(@Pi7J>P4(%s1L}gno}&5?wM3w+umF=IJr0_JYR;}go!OEr!?yLt3NJD zqRQ*QSOom`%WW6igdE%iw|y63Zf|*_5Y5HyC=LbJEQs?Xk1q-C{Nbd^R{Jo_q2la7 zU74;qq&zoo7J_;YR9TN7Hm9XmGJ;)fqUzJ7?>4ZT#Nc#y!(}T@-uJzO5G$*JX1s~J z*6T5u=aT(h<_1h5t&NlSO;U6lkK<%ol+2T-lNK0I1a1ntpf-Dc`Q|${fR)9-gck{? zpV}EGy;OFXLrY|^IS?b~4ENL9d)-P6PJ>E!`^-|tY5ILOw_M|e$Dt2!<7}81Hin}+ z9Nf5{AxBG7HNpqHQ@*UM!U zZa?DiN8r0WPR9B-P*F!A+gvkF3!cEwwnnQM1m`38ErGKz5*&O|l0yUC4S}DYAwVZ)4RT*@t&5D-g$@YKz?Rn{LPc!=Yn#q~zFzBJhp3UQ`<$4|LqoUf?k${a6l z4&?WGWK(Jar(po0pTehpINp;beXSoxXeB$LY1G6>il^0(CNokIMQ@o{i|zbuPq^^5-|e!0gDzG9K$SFgYA@S^ z0216Yy4L$f_7|qH?>P=1Oc}Cn*Z*os{8_5d8~gO%-+CdhkN}(=Ev8=SH^_u2wbrxd zWzaU8p@8nEaCPgVefKYwPi1BWX_*2J`wjwfgDoij?Na- zGpC;_iw5=gL9yp)1u}e5|32D4JP?*RD6KgtMa~VMGJoxf?Ms|rivYDSvlp12LL8i(m z8ngu;{qQ`546v#{o=|ouxxLJ4t&=nj<=M5LKTVmyb%1IlevN``kB8;U8EZ?R z1UR2jn4XP)VrUq$MUrw92hlvPoxU{h{B7^2 zsSc#MjFlYvc2FiUbNQkdIw8Mcs{M2iOMSn}`|D&BLB__zC_k!xq0sr*AMs162I!NI z;~|7<`h@e;v35ug_~9v&8NN6jC(}!!rCf6nxzt`I>%=)!=>HO@z1zee^>Eqo?o>v4 zTml8^H;PLA6hd2tgpK<3M}cNAF#I;1D3nvZED9Y;{%YQE4iuIStqkZ zK|zY=Ibyyc`*S&gr!bBGtr2SLpXVO1QX?V7i;%kzE<@0bs@I*V&7j`c_tQsoFVoX+ zKgE1~e6)XA{JGjzw0ecYwKYK{H2?>w-E%m`1%J?4K8aG)>zyuwBw(GE;Z?b^a{H%o^e;QRa? zTGt-GdEb$x$?Va(r}>=b_<#ebgkRGxbE6-?MazH#`&PM=wClhU9NjD*873T{ikd1FJBdqe0f;;?a{x%5q*r zY4`t2P|fmP)~^0t`1!*D-P2{0JeGWTZE_oulaW08;YcEqkUrfvLH!Ga86u#0p%9v{ zA)`4KaXgh))*FWsXXdQB6U%De!@aL2 zTH|Ui;Bu9oq_4aJQb^`yi2uF<-cXX;zI!fQWy1;aCEY&Zvry06T#dx1F7H`61YXyY zxSXe^hi@5r0n|2(j=xB~A-ls0H1f_9t;v*XZ9`3EgDpsZaFtDrmcZ`_Qh{^j48M^L zZzAQW*%=IVhx(BYBRR*PCJ#csP7|PxYHYnr15+>qK9`*>RdI15e#3Aw)!DhuRj|;* zI$1TI*ChQ|TRlC@Q-7~;<wBB`H|EckiPzARq5W!2!KVfY%oxr9it;5Vx**~=iixl5@$LgcK%_mq9R`Tx8JM`@ z_XL9DtFGrG8|opX$w74>08$6%2W*q>oj|ONWoG4u!GO$XEiM&BiFa9Gn(489u~;-- zZz&tE3g(@PMwjH~vcnMr64V?rCz{7^K&AilMWRI`T_--y8w1d!+A+xRip|S$`IR5M z;93t>ng4$ImNa!e3cqQ0WVaT)MN8m52HVs;Cz1m#;URKLf#@(1cw#Cid`z_;2l!_A zHqWfR-+QPL$}LU_d8#gGTWYUL)zp3QEt#`!rVH;a!Z|}8+ z&l!*_loEW@kG1QK-~!ZsUS>mX2c~AcL(~4e*X?t3W zw4IrZhI|9$LY~Oi62oXFm#ftwyZjkc_fL_AW4J%1hM3-~pu5n*7Z|;H7};YO1JGcKTkyWy#8Bj`!any z7P6=t2a?+i0#ij>5X1;GcN7#6)9CW^hmK_#L#rH*nVEINMhLkS>JO5dY=f22_S0Xz z)0q|d-CRqyg1Q^}A|KeGJ5=i1AFn)rxBDKE=m(r!VBF6?AWBI&Qa**DZp?JBMxfuN z{jB6r9qORab)%x3i1Vb8Ukv?AB5iciC7~6hr+fNl)@L9QIRAw(3Q!FLqf%EnJ~L^? zJJsQC((S^p{WwYNvyB+W!K9%KkH!UMcyJ@mtu#uzhAm0o{uPju)7;kqO5c2^o78~K z8#Q`XV#8hK;8$NbwZQqWoZw9kCs96eng0Iu^>ySXMVXE21vjbg{4V$yl(hsKnAkp+ z9c}%ka3MYIH4Gnpgx9(O&$9GKR;(3es`soS|v3( z?C3iJOso4Z$NjDkb-X1l8$-`=|5ib7=SBFEd}B*)zmQCTsRqX3Y&6bXzIEB~t<-rM ze3*(koQTbbya4rk4(v7mMQ3Q!w=;lxf>I@Og&n#kT1?|6=`7vv zI#-|f3f}9Dz{H6qdN0R-K25pU+8$z^;-tqZL1z?|O!;z6``vtsx@Kf<)w-Rv=s;7r zpzO}v-TF`QvTutX#u|?IFG{y(`bWScG z9G-DCkUO0Q?*~RI(IF%ZTNP%t<(;N;-tGyy$_p1L^dhcgg;27fsXrUhY-lKh4f;Wd zZI!n(@L6qpSiV)`N)qY%JmM;alK#?6tBk;%7bNK}ch4&d?L*6Y02KD=PX0r2+?)(u zZf?>CHKz$-_VoLT0R&E;)3QQv_9n1BF1r%nfxUkSFK5-+O;vQi)rf~GCR!cZQ)|y@5(4P+*Md@Y;xECv23BF&Wo|C;Zn)hs+H1GD zINm1xcrPF-)sMQ+8&$Xuj12V=?cvGQDs7LyYMHP&>Z~v*~>8E1qQB)l-sXkQ$hS}1{o9uxYAt!htcy+WMDEI-q1hY#?#OsE@97f=KTXVZb zUU2BnjHzp01N+Jg~u-|Qzb}Yb6y4INP&n(N~e`S z%7jP$&SEH3NiFcA4FCT7hm9jd4hoxf@;#`_RLT7 zWk}!WGOz%>Uc{veaAg|6ohd){(TFlVg?Sb*^}_C#Aa?0*#t*Zh@;0xmfqclLpr`ED zDr}@_6imF!1F_EP{_jM9sy_^7q}N4dXw`^`p0#jTF%CpG;gCVqsHZC*X|8{BrgR>O zY2gYp{3sW6$Y_)|AV&!hSt)%3n6VY7%6l0>J9v`EKsfaLG$-b%isbdZL~Ugfzf=Z| zrIxzE@o-TuXPqG5{Y@s7ciw0xD#(imo}Lj0%;Y(!Mr3L^U7B^bPVW;*I&wZsAJA#F zKw&FzLpvtzeLH1n06ki~VyJ5~_fBe7HF)cKY+2sKNPJbKd0RCAQnn)60LhZ}(Cs<> z?{mhn@36p59mU)0;e5`&yT#G&FB7*OtAzLueBI+j=6kOJ>iIoTDXa9*N7watcbo0} znf&&9Yy&t5%_69lbs-0bf&%4A&oIsBchuM28Z{i(WWege>)n8=5%XpAf5I2M(-t_2As_4YKrQ#(fdR zP8V;nme}|300}#?M}d~UPn3Z8X_w6X4vi8JzoI`ZVTBu8VA)VgZ4=!KL8 zDKzA7#;c>+Q82v>xpw{{MDRRWW<*lzP7A;Hf1Y&C^p68!fGt z#uUlw^QryJcXd5mTk6VO1-LGg+rix@eC;X>+oAHN!azZv-IYDtW!ttmun3_OOTr9G z>Re6uiH0!CV#^=^bPlu*8NFv!+-gAq$uFgLu6fMJlg_+z>N0gdX!zrEB~#Ed0%QCs zF{6=m#TFoO;vdNGIGEk3wClu##f<~Bz2xqAXR>e2wheeDhb=F+a;o{=`Sw62#2XH; zn)-d+Cpv7ec>${>wj3euRiSg^KsI1c7tlfg?@~2*a2w%#V>Q-wRw41@V`MpD6Y4Yz zOa3GQlr6`Vv1T;QhXQ>lUHiQ9h}ze)co!et_DIK*id!m;S(q)H4b8>u0!xP^?W3*7 ze|CCyxaO*dr`8S#Xh)m>cXEmQP3M;DK%sx1zXq>=^T7-z$<{Q|b&f3nzt}ow;VT^n zkHQ`H`bSkw;V`r!AAq1>>*Q+l zwAPGPgx0MSd$KflLJEw1>X$cuX61IUk+Q)->rnjgY(x#U(s%%R0x=>@>ncyh)7QQ_E*!v2?BHdnh-@4#^*8Bp$@t=xc^H~mg!!5k zOoz&0ZKG4k!X9W~G_*+j?iUuX6d3Bk0+67rTopl3!P~=qL#aTQ^gl`t2;cVKo!RJ* zo&z4w`b4Vjp1X;$T6BTF??^D}q+bTAm-ZodmUduiPd2BGG1UiCzSb;5v60?xn3uG; zPzRx$1Oe&Ij@7i>PHvORM6@v=>8`Bdk=&u$6M+WU>Jb9mKbt zw4b?EJ|nqSy|YoB?}SHS&a(rcxeSqLaV@cRj5Kt zlFeU9A>t^~QAN;oyArL~bdjM!NQp1eWgivm2@RKsOQnm=vU3{So7h_I{enXXB(ouT zgXjHW!qw5bLVO4NZh2d;mvGab9z-%+6!?KMm#oXHP%=-^;CC2q>SEOL+q{Q z#}JMp3c>F$alM#FQu~pKVv0NWlCsLp@M{@fO{~so^@H{18^~E=0`Eg=t)qRUk ze?fO3l_fIG6An0V7$Ecm#>U28zG2%;MpbvQcYiVMoXzlM0Uy{hF4zCJ_vgJXg6btA z_EUbLjsXqOZREGSHJJ%_f5lj{#4jm^%6a~2gw9SBpd#8Cl47S3_3;gp)AuLjl_5m= zt_yUkegqhqS+AZe+|VUfSAeeh&(8VYzijbju$`GjB!>dlVE-mbgj}y zApQI+p8VVW9fghG5^I2F$8mbeP{r}3$XmE*`2q+f#V!*hYm|2`&#T|DmO5oe!;c*B zB_1?9gIQ0IfL6S5$i`nt0z`vixd@&Lda-;E?xi!Y1JpoonbL=XR5oYXB(77vEZ!DO zeX=oG4P85S2Fk6?s`h--RWjT&W^=;b(X&kp7!E2|e8K(Y$87_gFfSk|#KM@kQ%c#f zI(bEKhQA$BNsxDC=eilMZ;je+x_?T$03KRzt1Mpi;;sbb$6%;KPQ~+GTS|h^7E8x{Yqwk+Lfy&7q=jWutD_dhwhR z+l>UD^~wA-I{448<77s?;q_O45B{)I>zG}{K?IxnrU8KT+&mzbvO9Y!w-yKS+cpW( z&;I=e)fmK(?2bffFF;DTxT{odSRMLl+0Zcc8RF-dg}25iz#s0s0QUL~X(*#2A8MCiv~A zICH!lUsAhP_Ye1}V{4AJuJU!K_326v`+*m~f6BvW1v3WtkpxG_2u-ZJ6Gs5)S>;ZEXWFe)Y7{wZ&sQ^ah zJiTtRs&ND1Rr!~ zv)+mmhbxHg9$z>S)H$gjF>SCehv4VnYZUM%wBjUJ;^8@C?t7+{+|q1@uQ<{QJF`bV zP1ioYk^8OzlS&|>Avz3D9Q6y~6~hFyPt6&4%!Zx=zrRAR;=LIQSRIXig*Y!tzI)s> zUxlz?$l*UEv6PZTP%S3{u$=}2)72*#@@haaHtn9*zA-hRjQxV!dGt*!6gbkGyWfn9 zRuhe38JcDkXv-3In&Kp*0(j^^vrb#!=^Q=CXTOUt61lYSE;fm|>hXYDB=OsU3KX5G z6FzS6j8)d4VW_Ok3rGil&g{x!wEMIPP^?xK^w;q<5CL}WZVeotRxlqlEbQK$XXqY> zy%>!oB2hQO&0q-y@_@!)25>+Rgi9!Np%A>$5DDPrKho_>JnRR+#V3?J0ic17*tK}& zWVoNlAuSYMKGoMMJ%Q-Lzw=%Gy$RNwm+Kz-5KgNRR0F3HM17rj1|0&q+$PZV7)akZ4Z^$zeI$8kwTOp~*;sR*h5Jjx z#Cm&U(d_&oA|f@NA&XZqb90g8EF;@qP%&r`Z02;lhdHws^ghFn6?nJyE7l5#1)=k* z&49VXQ;nfN2XUkhiyfR>Fhaa}42l8f`0sUHgMOiMaXj#|_g&rsNmUc@{hr!1xM6dt%@E^3LHl*=cb^sVRo5;v$ zE033PJt``FCi=qa1@NqgK};sO`};)j``M+q028SyYHbAVhe!w?u=Jwp#5uafrxP%y zelq_3F%_EcxTn{^gn(MnpgU7*cVVO$@|tW)l({vAa0Sml*eHe3PVCJx%_(x&0o&m{xfrb8Bl(E(w_3&_}8I79|82~ZeuL2#DTFb3Lf zeze|h!os&IH7jm&XJ`Bo9h*W5jA~U5(09k?`1|R>R*nzY)M@1&BaBl*i4uGe1@0=KM zbPOn0g^J}^&0$4TEAV&6>_Xwto$!N+?rPR6-9ezi*ZwOtD0NEB>t$>zfC^1OLu)HP zQX=s?whP^XTK4{Uq{Xu0v4A8iGjk0%C|R+%#j zq9odWJ~N9?5$4-3J3_EIeV{$C=?+pDjIg%=`&sHi%6Y`3f?Jw}0FO%D8hsZNJ>)A2 z$mE5Hrk*dcH@^3>p95{l&e}Ict0yMNVX-*#_NNxqWh;LZF5}W@OGHiV7?8lo`-LL9Q8hV1+123mbg=i#nR*M=B(y~d zg2K@Drn>6AU6aod8t@JxxUZ#3GD`4+r_AR=B;WvwCO+ucqhlqmG4j2uf%%ya8so@S zj5r;tWqQ&BGME$0-knf+fKeHAab27{ofTvuRSF{SLZF!eQG9|DDqTpQ!wOFg=xQuV z4H!B6CYW0F2OKVd>E7YPqow>BI045`h=7MiEX2Rr%M-Xa8Ts`$fsuycGxGip6^5o6 zr*N;}3_w{lp#X>qN~y}a+2kp(5*b?axqW?SemdU86892e<1(`lk!(T@=j>tQ_l)8$Pn^tykkRCSN2i4>7_v0Fxj~ zF!aiUBHlAO+Lm{v+E?6OwMNi<;}rYPaRq5$aHUCqkp#!_OV=~B-rR=T>{yXQ@lzDk z)9Wj9iH?D%OKep9nm#Bfgn%M+-Ruu=5VRTxNaLM9oB*&$htp$_wB2!7P8iZq_joS0 zov!`v18=@X8Lejb7tG>V5=dVfZc|R-*klU-$)i|~TWYj6=A{VcQiFd3RSEFLIVIrakB2Y`mXjSImZQ9;Mx$lK^>^r2pt7Ttp4m0ozeVeywe3*iO-07O#U_8d9`%NAZt1E5WtS&ION#|xgG1Fb$|xg zKGIK^`oSUh3Emr(knQrBl0KLh#0S(;ei8VRVHVPSIK7nZaFeye4uS|0_=D#B(e% z4Awec+c(=1oIyZb)dg)RB#bZJcOHT7;`%1vMMJ9ZLy>0MNTLdD{y}|tpqEmfV9$W! zLH*f7D?i|4SeUC}ZFR~M(p{=%6zZ!fr{^f$NIR@Cu9bR@MkQcy=p2`5Jvb7&03);Z z7yu0c$Hi5+{mpmT%F32O)0qZ063ODu+kkn}0SWRA$qdKF4Q2?E+1jU^fpcD$0R~v5_K0+IFz)_J6 zTD0Q`?{ceZfra3|zr?V{m^9Tt!R6YM$op)TRzTJH14ZsZqtAA~UNUu=^CY}lR^YMKxpsT{JC-x{NHD>Xb+hBgbsvsX zMUjw1_f8Xluo8*USI~fmbb(r93{0WS-nzS($ps=akZ^6M;}bkUcO42RuFOjTttio> zh;r3B5PbV%bPY)0aJ(%GO)M<@~8u$&P0OUE(%0jH~)MBydxg=lcGED8& z!}z8~*+;efF77Nw$j!ZaVJoKNu=xWxuD?$-y{Mth5;9l$1-7CwP$x0Qn_ThgT5AzY z(+vjE;1HGH&hMfY(M9Z>_80MzDroq_A)ijxs!;y9hdW_n+zn{!l-oX2ToZi6*mM>}cDUWKcw1_J@pSaKkz^KA0)T>Fa5$w;4Bn1&D7 zoa&<`9H|kW_j^>lw_2g@n_CP~Gd++E9G??qys0~QXk+cO zWGrmk6cboqDb2d$>$B8pn8I*w`p|k=O6l?iib#<8&i(!#sj^Z- z$y|%I;imXY`eX(Tbb&&uKc!L?zA;0qZJF{(pQ(j1A5~z|(8M`Zcuf&UVA(ejac_M` z7HXLR-w+jL;i!`|ZeHonQ7bfXz_h&9S zH2NBD?5pJNl!v!aL&1E_cM}E1ya5-jbMq+Dtg0(LlLV(ogWljoxX*5hd@LM3$2p@! zZ|BtEIDWO-9c=(-C>~F*_7}B~f!$&|XE8KkJ)wn)|FAvdD<7r91~<34@L;C?Aj0#l z6$*=Ozh*+6!=!a&zDS+><#eOYRJ+~#^0-ZVq3JB9lmk5g7x!{Vn7!s{rp$$ zWR+6LI+#g*q1Ty8Kkxl&QSj$c&9vVGcU^DVx2GoNAt`N)d&?rraD^b2v|=Z7>o+3c z3)?b*eomnj_)|Gn+4Asg@KTj0w9pNKUm)$%CE9$G&b;9u?Zh2Yj_28wTQRSY{vzH{ zd*qQy&6Po5z?dH#-MF?Q6h(HHCki`dyV?SM{KIb+7g3=U;n9pR}K<>XQ6e*JAi{dQ;_nnagxs z+WPyY_#>?g_J1GvZVRq#onBE7&aeV;s~A<)<*-XV-fKJ1>KR1#LTJdu;&DE_GR4Jg zqqZ1XU9XYJb9y@$!QYTBuEg9sEc^M&gDyXO@!o`7dixjH;(#4IA}Q@hLTL$nNz)45 zsc7fN8r77^w3&{~*8rV^Z($M!-@(HP_jhg=zSYxfz9;WEyYmb*!9r*4!?rQ2t78Ec zH_Nd|CnrXg{s?+|#;Bj)7h=*tI<qJt?_rTcNjwoiue!-;R z85EQZv-ZQezvESxF1#FNY;CGrvW<~E?D#h(?$4}L)N%(z?!-7*x$JlF2|Re4ZuP0J zg3EG_L1y*J;>sZkQa#eGs74#97)&{S+mW zpX$uED^CG|Yzw2h#A9*NW<@raUW%E{^hy=)mm*~Ko=&l%scAFx+D!{TJFCH#7Mz~c zD#>cvUjKP#XFHrBom#1n{=~blbzKVX;xvu&eI%KO2pq@r{(9|UJ3i7ki!mfbUt2U; z&;v2{@U60WAE=&~4lnr?e`XE2l@DDcnYu-*>>jg!1a0pxG4Dyt;Ny3*`UTZJ5fGeD zuWv%gNE84m-}22<)k1Y^cCH(+ajYi%X_{}pm;{DGP( zn*tsysJ=7{9GrFaTafS_fog_9dw*yU0>Q9U$ZI%$XVC_vqT9N@)oa5(jEg(rlk62R z%{v|V5E6UO{pVWC#$<_?(9g=0IctmD!gN8Qg|7#vZcGHxOl-`rzKs+76}`Il=bwlT z8J+~E0e`;L%`;8?Nc7L?yv+QIK;IETsfKMjwe3ANbOGqH(TwzjeasD*58krImoyBf z(R_NeCSWh82bX=^Wio(yY%9+7mpYBakvIOZQ>x^F0eWC*K*Ho(29>MjQFLQCx1Y5Xg0f>BYU;i>nf;ozQGJ+&TWqnxiH{z zGpjJ58-&2j+&*&p-{jC-~}KoPr;W_fjfvRgUJS1SiUP$3%^Dp=r+B@+vlU z_!P$;U1hEa-w=EZn5rfswBGN!Ez-@*{c_Be?P>T1C-hyxpFl?+$m;RM{ia3NgC|1y|5JFEy@uW{ zYZPV{w*%k44NR=-%1X#>{4PrQsRtdcZpN_F01M-5K%tPCvpCQRP@g#4PsIg)U);!j z257h*!q+JOGJiB*;<+#itE9&Ty)H0a+4)KDVj zz*1CETbH6woa=j2@Hl{&ijN+VNlsn<0A14g4;)G*tvAF7RI#=D=6A$I=t!^POkSWiH6jRfgh#AwuNe%SM`QvaJSb_qPABp?qO(z@yaGZeM| z$A(})hZwr|AM<9_&$z(91`^Ns(`ejzH2`^}K}xXBNTH5U5~Zds&E>7NPQxqrrNT`AjWS$= z*GWyOjmEEuK?4hm+;oBV9{qxS^nq-T&mdmvH*uXV1NyqzcD^I>wQFNWu6^!`9>NN2 z$c`harUnJ6DPx-eSeH8l;*8J?WPwoYps*ku1yag7e?8fSMEHE$V&zC92R&`PJ`)+o z=l^;pTF1N^U`*7~8ChZGl8~vZe)ZD_+sNt2xon8+Z988R?&f4gqc+YN{%8UMp7kT~ z&~e4TUnEl66*wTIp;=)7%~nm^NxU2OVY~K0#QP-!HAkIRTlIv#b$|e00ZCo&e;J3t zA{4N}z@V$(^W2@uN>39HJ)V;HUnZe`4qLp$`pYqQ!2W*WDHrON0drLX%@1v1E)su1 z-o2ekgYt9Bae&l*_L`Ao<>{ zfCH`wmx#e491)Y!*8i1Q0#z6VoCBK` z%7|%GKev1Q(8G0p6;O7%c@1y_madC|E;+_U4gZ+K-PzfcG}bEs<_AHRb&m3rZ;!mo z&9#@PP7ls9)qJQ9{{@Z`O?kkr7v(>pcnce|ib*4ojxsd@Bgv{skEqz&%!VaoI_iIC z8vZ}+y>~p;?HfPry1Eo;kQs#tWu`_S5 zie&HKabD5g_x^r=&mYfU&mYhIdfi1_pLw3gcpvZMedy90h}^MA+My8TLfQHtOlhmv zEXb;?fL2|gb^`StgnK0s49FEAa1M9h3^Oon5883cGi0P;R` z63If-^a(&mIUKA_fz4jX@W;i}7u8qd+YT2%`TB#w2~|`eg|~5$Jlb_6ITjjF4wWFQsCmR`f5%JccF`5F{eo*-co2pm=BN_%Rk_4&? z>*e!3uR!hdD9ntr)m5?93pnKeq*MemZ#ZICKKv@>{BVep;5|TMd|U1~T(xe6uE4{6 z92=QU+SHjpMf_N^q0|z<3%{2=kkr%CJ|Uemw>Z}7=VfQG*)}+?+cxi zasl-E5}3dSsC&xvecJQ;05aiTsrlxluHe91Ux2NNoz1M*ajPCFJX`$PTd3gsL1;Gi zL#jVk0AA@NoeBw`NUvnIW1z2hG0C`8H4rHTp0CC|BY)^UDnRmk-R}$crgc6`bo+ia z%^@oF1<=Ie{FV`E)X4cOd62KVB_TwO$T(9!Y>4nLn6YNVaIdL+uUeG&1NU1#Si_;# zF8Q_!dGjox=Q==AI_(Q^!PKIhmADph$+=S30v+^u-CD4jw z17?J2+Sd#MaZ2Bw>A6(y9;g}j5vJap1n(C`^K2y#4P%W9h!dBrfl>^bakf$*Io&oR z)gamx@NkOE;hSbaueka6HfHIkbNJIDq(ve_1%%jdCxqlem4WqnX~)1LrXu+|qk#CI zcoEOrVjOsHKl(bOAz)i7*Ue$WG2>tjqRhoJLpLF691nC=M?k06O5Q3&T4!>s3@5Io z$+a&kv^!(gIfV(hCIRgbSCThDR&F!kj+Kvk%QLCD{m32-$nIL(ZV-Nrwg&Q%m`hLKG#@OUk7qD>0-BSSy{;S2Y* znk0w_(2=4M;NHFl0o`|;9c(l6gE9J=zaZKI4(PV#VKN9Hv`wv=puUus_q<8qE&&j; z%aIv^w=;p~@Xa}ge1s!}ih*zTzKZqoqf!<#eP?b<;?1nb~Re7m-}g6Z(t zlGGO8LgPO50Xv|J?ugxhKggn$>3%lQ7Hg5s-pnY-f2k_$0a*Nxz&$9UoGj5B?=I=i zU%4{UA79eAF!N(nnOpug&GkfA6S5TyDzX5 z;rb!$QxQ;0;xwFrfPcomejl^+YJty7{Avt&+HWrdR!4@4PC%~-)Nq_%e4<3A{W`@i zX-@;FwsJtkr9wRcB6wA(a|N;on%#Pjfv!dX>uv+_kdCHCR71k_SWL6{auw*<@Iy0) zQcuFu-BXhZc880n8ZafqR`Z_2yJAyN?I`cwH6=N#!2w$-9C&M|ASV(0WEd%pt;Ak7 z>O8((JJU`u1E zen18B&drlXdoy!vppSins3*3dJ%f^(0lum3imL=XrP+-^Of0L$8I!uLS3%EZXunpTnISWvL^nNo^Iz!_KpDIJw$zB+!8-DsF%MD1DFB=F% z$m;ta3b;o!OkadWFUD&La9lrZXP~IMXk)PuFaalxfzxX++O1|^AUgq?n$)E>t*r@2 zTM4dHLtj6Y(D6zb-m(MKEd+R{>K8~2P#l7>0h$SlEYD%mf)(>velDnls6azX+pB5U z-n%@APjum12lG#Wds(zq7-eBs-m^XC-9@)g=T)pbpvV_6w+o;~Bl%r2T#P)~;Q*Ad zZhUyP9=%b&qEkR4Pp!LPwR1tef-*2wKPPo)B*AFKh>I-Np-%i| zBeT=1%iXJrBTba67N8=OfyRTxoh&GdM4cfoM%_J^T{~u z`VWB3>**!8U>r#gD4E+KcWztT`+3wuy9xqKV^gOJKvJYXP-4ud_-z95t_9=A-a`+d z+$yJ*91sKH6!rk@;Cn<1LMaMLxwqe&-&H;&tMb*jk?iqXMz6*-+u$WZZm+8TV?vRX zugS&&5lKrn9XNi+ZeO2XTmnN~a-gI6@|yyt=a=JrpU2z-G=Z6|%Jkzy-_ljeAr2EG zBQyW)C;A9GX8MB+y82N3xyJt?86RpcJYckv|p-z%_uN2CXJ8h&ipWYzF z6M`sy_rnN%Hotw_+IDBxB4l2eglwHk*TAr~5K_TCCSUG)sr3}icF|f=Yz+f$CupR_ z1JCHqi7(Ki3j8xvWmNq{xpsuot9X#`4ToP)M7r?6jX9Hd?b2{la_A7A897pRF7iy_ zD^R3_5)Nh$yESl*f%XGTeH!YOf_Qs!>Epmk3rr$9^b3fvr@&%71OI@A&zfGE13~Nx z=}(Pm(1*th+&D)mZ6u5X#+CK2L6)Zk zR^l0~_SaDBj6Y`islS>-0TXumuL!g3T4od8)c-4S}CIM z2&r-x9tY#cv9}He$kby{pa=yTjUsd?3yB!W4$%q6R6`AB%smFkINYj+Xc{vJ3k8EP z*#|(85VT@D<2Df>`toY6@p5871t^R;NMRaAnXxq#dlO5c?}{7AF}%C8z4B;Em(#YL z2W6(BC&7mWX4Jm0246AqAhB!BEKu8e1L37wcYYam=J82SC^1ED+!RF>K+0+|iC`ws ze%){ApCo}qLZikfLFMd_Su3|%G(S*csV%*JPP=Yl{*FD_-S$F|Gyt;eR{fY^zRQ zc*6&4lo)TalcW}8V!UQXnr?Y0hpJkiKszu*qX#NhAqcDBRms4MomH?GhGHc=euLkk^#{$MzGK_F z8$Kjg=dJIkEHpYjQ*SyOBAe8#SYtRck)P`RzSAc_ALOb5dGYV6GXNqTuA?bhM<*n? zPHaf}EPwm_`rc-LMTFYRGXPt?ohsTvlfnoz$?XbLFkm^OT#W$@CS{>VFS`NM*hwTM zgyo<>x-HxC>itgOK=R~tT=P5qGU5i@;N<6LR_izT5|3bb0NZXJGlfzrh*9jZ6K*Zw!XzZY z6xp4JuiQ6FTb>(6Dh;sZKcFHH#yE~V_C=caAh^u0mx;aKsYz$XYP{^J2NL=a=ZNTj zr2WC8$nt|c-hJ)<;8{}+Z8eLL@`wlM0@bAF!Olch)WKEiRPSe0a!7ayzv`t=j4Y?PPlLOenMt_1~P$QMiZ$~y&&(c&1LvW4~F<<*H|kox(biRegFx< zXAttCnGVnZVNl8>WOQs;m{y1<(QEidMupFcnYt#dwP zNSl*Qe}9(PyM7UCTb%T5I%&Y^Bba-1I=uzvQbE1wP&gGkju}I*rBo9yE|jkFIw0qR zgqE>6S-=B6*`p-*WNr2SetEbc3KU|d=Jswj6;_PWFM<{#zy%nO!q`B0!gcLQu$|kA z50$dE&ynetEpY?zv9jX~>AnBwAEmqTQ0xl<4If1e3fD;T;@Z^EY1EBi#@PksTqL~{ zN44a9v>${`o-ZKYe5JyHt+B$_p6ugZv-E2_8{K7(qc?u*V14)3GRjuOr>2N zQ_eWTvo+~S0wwp(!v*!7IIWBp;`#*%{rkimcLMCL5+Q|* zhhA5?&sD&cN37!TY(^X_n;ZdP*h>aycC(@pm*1Sl$YE2+p)OSD@2AiYpJc@C5joBN z3Wh7bIO7hQDyY{Cm<`WS-X8*?u-9kU^$`e2LDDrgB`u-}(|Wg(g~DkVaCF!dC4|de z&(%RtI@{Mt-v)|3k@IKJyyJNQDKCLV4*}u$B9m;zz{XYHdm$oZyI#8iB`R0r-5+H6!%1M*X`iq^s{$S%yoGNfbcP(Ku|wNjzbJH1ys{mAzJTJbXJC_IoI zoWGb_Tgqq-Xyln9R|lBWqEYGvn6n;gXrG4;7TLrtKV6Ntsi$H1kXI{h(+jAbi{{JR zFxCcm)q4m$mc=HRalc=S4-vwy8={^I+gd>dAQOzSz21p59?(Ksp;UOgfaZ8Zhw&Br z+c1V30VV%{T7SQkLS8fr&vb8!;xeQ~0stH5DJH!z0e3UquhRO_10;wl$dB0ccp)kF zfAC)-8OainmQSf4Ui62+hzZNMoCY(o(^>Oryei7aG!-GAyiBjQ9_#&W0S@EZ^uMPa z*%~`@dDn$~!7%Il-Fxhv&WCDWzdsIieQi?zjP*Ko(85~5!x``g~gwLgIzxe-K=YEivP0VMvQ1~ z6q@_<@B##@73o%60kBNb7Ckj`7&sWHkvv{?_uNxQFfUcGl)26oyPrN|>;A>JGi>{w`LY8 z+4=JaFe{yZo}Xhcp=ft5IcYcp%P{Ko6m-#%Eq>Z*id4rk1!9L%+WXM9&VqSr-Eulk&Mh4_H z;(=oYyzXsrxTb3D@cjREiMgshpbT{neDckg+E6mT1ZLtmW5PChM3iLCWBm$x>srUD7#s=-ZNsY<1z})+tcLD%#3R>B?-~)n5 zo#oocSFMLvK{Pf00~oRx_LIA3q+li^$o?u^_b}=J!^xN?4wT4$o%94A2_eHgYIWei zEgm_V0G-0#s%D(-Nl63zXxrEqWmW-;}X<#wstT(5@1f7~OST~MwECclQlLIk1Hregr-37~np zP=I(3S)Jg3$ga^n-gjwvP$`U7#FN*1MsV!&3oN_?8X;JBP#Sy&)_@{3S@(lV*n_!% z7}qjL`rxJT0+T$Ubf>cg-_}^xf}XRC|9PVjmr|es!QlP&gVmvW)Co#`@z7XA%2YQ) zFr+(HG;37)bxS;p0G%yQvO@0| z%p=o(1DNZZ2_x>H1eM$NBc{9YtAL3i)i@PgL~Rq`hB7R85E6=Pg0AU+1h}e+=Vy5S z>#B6l!z=?W(^sVaLTw7fJbcb-w5;6P+}`|ogrn^L8tl~XMYA@s7rh9-R(-`su#o1= zo=7DwB<{$bu8Ec`(0?91#}{bxqXuqHxbPcUm5y7__GZbo_C2a>Il1hy~TKpDhy&6crX4#wV2H?5FtY#GP^}(x9rJGG{o*Ev;VPm zUit)k`hIBi*M~NafiPZ>5u*07^@gq-y=ZL31^Ta5N*_a_(4@N@)fIzt`NBj*0%vhW zem9;$g#ne4CA*Wfq0=2AW;yjuKcGDDT_+Fd4>wM`UU8dCz>L*w)ph@Rs{ms|6mal- zDcK`2>u3~^@9#O>V!#O&A=GUwuhN;~%G7879ndkrLI6CI2O_#_uJJIlX1xK3;YT%u zbrPWT^_1ng;_eVdcId`C2(}%`o})Msy7_t|b=@RJI>MjIV?kk{Rk&BfJZ@2BE3-&2 zYDE=B13tdP_&X?R?H89ZVz~#RL)4x03Kb3YWRLy7L~j0T3+j7A74swX0Y&z_0+7qM z2AhEjCL*9CJ40#w1-+cT;a)R8-9cn0WYj*gvK$YsTMU+877>;2ThlMt=dYm!4Na&; zvyXwl&R|-i-91D{3&j(AR-Xmd5TuFvV%PD}YU;UIk?()SZJ+^RUsFf~g!kEFDGz8@ zYbeKPp`i*bF&{;5kRLrFdFLCb+-VQM?nmw5^Kf}fVw23?!GP!9#`^x$!%+~hpELHP zLe^}eV#Cp5Xb6=LRX6^vH4TwR}9<0hp+2F^bmLE@?o)8q-8aqLB_WQ?G zgX-GQNRB8p1#?>)|2~PrHg9Mm(T}PCDTYZV3aokfnmsOF*rdW|)q@BNr$4*hDirQB zeaF&jD(A@_lb#JKH2+**A&*Tty|#{KJ|KDP5DGiBB|f`k5fXh`OHGCBUqd2C0in1L z049&>x5P9uh=#$LJbw?VkVnL^<x^(uTYm4g zhxybibn)mx(28#U>;acDOJ+)Gc zFY72OBjH*L9%ydrwJ-Z`lAlY1uyW)={YV3k;jo%v#G+wY-DwQOOGb z_5S$k3SI2#vHYGluy*#EVo;)l0`2&9bvx1pX;YcK8$?|&Xbb@~`zfJma7axR99mv} zSHgoTVBni4(VC*#kw2l4jG2?s*ZB7XAU%cH$?GGi6$$MoBWeXOkng|#G&(?WR=)k~ zDzp?+-49627T%PUC@A&-(5CPcyKy^cE_nkS-D;M;FXidXN>llcqVRb}91BKK=I-pcICChVu|^d_T23VVrSu>PNxPvd+Iu1v zidw%~O=A!`yMZ+dMrtA*s}3j`<7V9~Ik(0d74$a!6IQSf5CFZ}8vt^2*BG$(FraUU z?J)33!XbD;l{S-9DZ2I7CukH4F(V0@hEx%?>oFc|B7X|)+Z@}a=6Y^f8ezvbB(+H6 znn2d$w`oqeiAZV3)Rq)5#*iQb!!o! z4+6*&6|Yb?7Fu>4TnAtP_09w5iSJJhE8K&4^p^j`M^(tsu02a$CkTNgE>W2hTKr@X zSMupW(5^TG0QMz1CF-?jTb2!GZWCf{$~^#8dohH+{LcWo>}4q$Z3+A^F~O3VU%z2o zK*<)#FMoQt2i&yi^CZ=XNf-?K*S^EntG%$dGVnmh&f+cj2R4O^YohqFQj-%9^w?MK z6+5u6s6$__J!6vjCn^5Cd<|d}l3w`z6CY+=d-r_y#A%Is3Wl2->nMyv=+|xrt(JQ` z_JKO2rWQ$G0Rxf@X$_s`L~_QWQdfAH-&_Yc__*@xzcM?}fuX$Tk>3a>L<9Sxo;=f|2p3Xo?yUVTtFx~K-C$Vyp$l=`I8M}h~tqv)u4pB zLJmAHL$a`7NDult*il2?SDfFp^`AwRK+fv+UDySr`A#%HfvY&^`29<;@E^nIM2Xtx z8o*ZvKgb_Wh`0!t${v%#*InKgatKt)KVrbIj)z7q+mGks6=-(C zLjvLwWOVu7B{NpAU(Uj>)e6CIg_W!*EfIBGAaV65;%VrVKoi&)GJ*iw4}hNp0>+ zO*k&zAWS!W{kp=v1uqU?Uvld5>v$}k{rYug8eyN!6h3ihkNaeLof3|v+rZHvL)`P^ zCiRYxpzis|#g5K`0*i;8)!)CnMVs1M%Au!u2t9PZG1%&2H~s#5#{B%= z5V6P4-J_TaLleOa^j)bmq;z|rp2TxJR+}6MKDX$kcX)U0uu<#O5Bas90A+Ba!s%17 znWcb$MfA#Zz)%W@#ZECmgg?<@wZ+YQ$rkkb7i>ykZbAH(tk!5Vbc# zr7#9)-;baiVbmYT+fGK~JeD_jO|iYLtpPMRHYz03XMDs%9ZylHc+Pl5s(khohq@d) z>r&0*!+fSRC9}P=F*30)iSCKL(O2qa83iI9EK~M%yG#@y)vu?({a(30leJHXdUnW< z|Fr_Mu(8bir@jN&5IM(f>XKQG&jQhBm)Q1CI^B8UNWSVvhf_c9yID(Bntp%u6*^p9 z?wb&b`}F%fcW(9ydyt9kp%$1T5UIANT_W#I_Ov5wl2q3{y?Cb-NLBY&si!=Cc?@m! z&XpFz$4&%S+<4rj{y?6F49(ryf`3NdyMhEmYUZ1MIGx*4f8eDuSrb$2vl8Qjpu`9fDDKFH$EO9uZ6$DY;oHS<92=_lF@~Q$ z1K;r0uTPN{%Z|v>7f;B}zwu z9PP-MXnG(~0*9+}+$Du}{htqzzTn^DZPp3`)M_(Bb?4^ZVvMetQ2`V;y~vWrasPFS z(i4oiKi^Wh8QcahlK@CnQe}I)jSUrr*S4_*r^nxXEc* z!tLKLfyjjswuukLW`avDzM@+ZxI02sd^ldavt}bQfNiJ3-d zc*y5}2gT1vNLxJfBkv3Qya0NF_+|<(N4kkef8Pe_S)G4E!Cy4hU=F$3FcdXvQ;uU$ zE`P*vARp$3B-COnljd!i=H`9^**g0!+0}XT9kA$OF#JIIU$1e58v@8zQ}=@0_pX-Z zRmVt6XJuu5{vi^jCcW7V*9OhOvj2MT)aWm^b*^Gou4jWWwXjeynpM{PaOMmI_)^XYQ%q zART(s+RcPsfGha_FySWA=O%KZ}>x}G5=76A}NOHN5iF_mcbB{GscAV|7> zy83O_XlW%BoRZJ@S(3Dza_h_QYV07;hw)WMOG+pKwM%>}n^fdx?*{yY(<*X;9De*~ z#D#WJ`!Jm-+ra^FY^oOfM2>vxUNSwcS3xrv(AFA+D|a=@=T(LM*IM=}?V&bv>rWn9 zdSm;1!yrEp)BEL`JbUizDN<4=y)JFTA^NX=AyVd&|mC)YK&iLoE?(Cl+feDr0;H5y>XJnZc{#Q|Z<1A-$^9;QIm zxxY&n2)b?$e4DRc+6gn=u8w&mkej7xo*cg<0)rPJ0)hSNs>GfjUK1rDwmS6sv;K4O zUweqLIRsS&u4_J@AwlnYSPTs^DQr=C#oA-BvMW2qo+p_4SnDN4Gd(7UO*p2!5KH zo5LJCY%6bR_-tm=B+GpJ;HeoQbO$*t#eLd3^5V#tqTeCjE7+#D_~h$hm(XwG0gqHu z+eO;5XLVrDqEDgku=})3T2@YO$fgp{Q5J&bAAZjnq-^c{j->&Z-|hVujA#0&1asNZ zB#~ig+B*f8Za{KZ*=<)|h+I@y95evP;S_Z07=*jf^BI?@d5mb3S5}Myo)KZ}_y&om zg8GV3%B#1V&7mEky7H<;-&P#{hFq*~3ziJxPy0JTvuGIjo7EYy#q-tHssPqn7aMJT z>}wlGpb#M-Lu=oxYx+zGo3AntINWT;KR(AjX4|_k0V7x9A#q9oy!H?XNE!`Kr(qtI zDl9ReR+McI@aI75SD-6A)-tdy&uq6UaBz!!sIn4XvUJH626{9MVf9ZNVeN%xcRIGy zwea30^M1oq*XWiUJe)Rq)=uCPSXqyLzH^E}$9^d+EVPt#{WzTNQo>s-M&(X_RrV1D zHPaM+!fznyY2Zh(UO-Dc7rJJPTarJ-tV|_NWuFZBr)Vd%%)7J#OKNfyMbqb6K&r|f zwr2v6kPgpG+$QsOr8@gV{4n4VBDTF{QxV-u-0vVV?j0^?Jg02C>|0s}$$eCB{yrM^ z1I~mo;DXwJxp3zh)aM6APj;l)E87P6VA3O;uc*x-TCU!%1~UL3G3Z{rXWwR?_$;Te zUtqVBQulm~Q^PGrqle*@jYbt%(hT>rva)tUtZUyc}~BW>KykJ6Jmp*>RnPZ zcNY_BRgdhkeD!9dz@iQ;Di3m3SE0`_Ey;mxpxWsv4mt5;FX%~%1+YmMf5W&p3}i6G zZb*1ecORZT#{npzx!dhZq0U#T|1}AHDoW5T?%oEhszy_($wwkq9l5)nIya@&y}FFDaWyRIp0qYz;bDRO~16OB7fBkyq}At`sU6vg>)BZBnPOD735TKbk* zg;ILLWwdVq^Wj{*FoEUOdZc!GLeQkH=FMxASaWRh)2=0?Z!!5U#!QnQ(}}dJIXd4q zQ*G^eC?|6y^{}?&)hb;YrbxVP_m1t?IpnJGWF;$obeqKY;I7H&S^I@UfOGCz@@JXh3_KE-u4Z4A3xuz0F1<%& ze;yLmfo5&H7k8bp)=S~fzG!g}W4rL0g{rbjDQ5FKTdH$cQUFGn_sCrG*V3tX<|IGbY6xeVH_7A;T6{kAkrmejELaJZhX?kg`K3-&51UFa>U!>@-JSr%xGH!5ukY>* zTFoH;;;Z$YX3GN#>ZFp=>m5qdgAUJirSzgIvaCV(WB!fGWWM);5t)5#b0l_+mR()K zJNHpw={F#iMR(0)=R8xx78*OFzX9X-K?~5LR_3|$UB1o9W z?CR&dpBp7|m{A|Equ?l<#!{>;lf81I<@n~EOF7}k*4{U^OC2$EpD54cbMt@F)mo&q zhgwp%mzAfYyTc-*8XeEsW>;q;rw&vQ{40K;Y<+&2JHnztN2~BI`;~ZXdGuU)+>+NE z5EeefIDxCE_|>bD&dqQ7@OeiNmi+@*YkOvyozwx z5McW)As+ToK}|~s2H>Rn#kIb7KFE4jOUMO1HapHdt0DX7af_Q8*c}2xpAm0OelGXa zG`#*f;H0YvU$#|tWJ&254e`h6g+I1uC14a=oV}T(M~cQhtj8|@yuw2()+elhZHZ+2 zR%svROX=GiZsD}Q;*~43x7bnDLh_e*squ)G)0;0ZQuBGkIrFt2%cryn!j3Gu2X<-$%xaxJ>T(D>P=xIjnampEdb~Te40|E4F+# zb4$QiUl0=x@m!gV8T7h(EHdzFE!*l`rF&5GE_VUF8;-NFN16eNw42A}?EHGthyzR& zd0zNt@0EO2`nCynZtmNDB|nU}^oer`5J%5O)ZBt(Re<_Xu6)aMbOQakN5T8f9D6d# zuM#DGSSZl;M8T>0AES&VbFxN7Etrv;K;48%VkN5^e{CT1xb&}kL7DdDLH+2SXyBfB zD=K|$7vo+uS4z#K?+VU^&VG$08LF9w_vXQ9d3f-?eMHS(_pJ1~vb|P^QYRSps6Z1| zfi$?6)jpHM-D>4?qxEk^Di{N;;wH!>ZudMCF+an~CwcwV1TjHD7?Y8YAH&CjjAL~> zUHicH6^Pp$@oCdW&(qR0$nB>V++d*I8D*=2vK>lvepe@W$@KiL*zbTPEa&Z1JQ+2g zX`;T&l$dd}T!yWjY*{$TGxO9CKZ+;jE2Q*78NR7GWE+}R^)j0HzhE@1j*D=Q%9poy zEQYoCst3Ppi$(cTs`c{dy{J5F{#jF71z6yY+ng)P6eNCRYDAL_-=tMl0C}*o>oGSa z!JMQJxA>)lK<=R1qq(Qj+{^pUWL8+PuJE{aiX<`_Cz-YGJd`7^&UwavJM$qPu|(sL z_d^3+n#|xDjp%8!6(J$qM*yo$U+EY2W5TJgpbMK$J*KOF`gVTdOkwhA!&YeaGb){(>zViD=g8X}!f%Lr2GOC2P$0XkMN1={07oFO z+T24+1|DC{{uJ2O=x!ko&>#82H*xyyE*!FcGr1e(O5+~B7r^h3-|cWVy8LLW-$dy? zJxoLaE{ejNhEuL@@sYFhL8$i73A_~Tuz7ck=CraNim;Dm+xU;_+Mf(qE}knF8Wzun+U7?^(h*lM|=zf+xB~#0(ST zOuL;*7CY&-+i!#Z=H8!KuAlLlS{Nz)XHv$~H2F(U!QvWsZxbFkyG3g^u1?Lpmv+8F zLW@pdvv^zCLzi^5cnCs^zKsY7|Ju6t>cS>re9(bdxpmX%NvfE#4ldauK zf>_c17|l$~z=uw4LR_h2`G>WgU-DMbFYGCEB@;3d?Wr!U5Y&bi&t#?b-<6H4a^K=# z#QrTzbg&;_p&KV-rBgL%417vuO*8oJToXR7Z?6LWj=ky2t+@2)5)3gMUEqF zon@ir*+y{P?syNEC||N6c<@n`8bMk=c57^LVc5_7rtIP9L_Wk6uUz}&0wqNnZ6x)2i-VqN=ABl1BPIKM5pAC}9eCi_*r8bJTTZGme z`Q{%c&^xf?%a{7TN(?52g-r`Ht!~(UEI53&Pi_%H1&uK)wocurpA&mbsglVF6!si- z=US3cbjP*~PUlBF-TtDs4Np{^UI&wTw~_F>AFtkRb9tTFdt4ElRFv1Aqc8?;XTCX* zdR#PZyXj8i%Qr*^?hk{x9Rfmvm#+sk4+G1`)z|BaGO<WF@5ybegfyOTh3{24gMR$OoBJ+{c0qR92v0kTLEj?1 z<28H521AJ9?XFhWkgY&U*k3MegE<-I8b6)8!CukqM<+Ht(WvP=aU6SUfZ&4@u_dV* z!Zl`}dfg#jdIq$F{?Q(U=^DSzfjK<~%Wp)Q6?NGrQD@1(B7e6{g1@$TB_n2;Us~qT zfeRXt^s(NL$Mt*J_emP%fK4Kht6HY#X#;vGf;`6OBj;7R0Z_{{ zj$#1M%;z?rJj>=R% z$VnNGY0?^wqGdAZZZZ#T{*R;<>VpP^iTc|v1L}Ok2t9HK?2eV&vk#t&qKgjFCWG?u zaG5ukc{L%C)3Mu!J(uP>c4Xd89KH`LsuaKM62)6_G_bY1I_a2KiHNUiEE{?69;;7t zD`m85eMTY^)Oio-;tPz+rn$%7^y2Kd@SXLiZ|jt*|8?m0ppSIY zCSpd3BNPgPWO|i)4yp(Y*?18b%0ADrhEeJRM%kv7LL2_X2uDj!B$72bg}*t3qo-&C zY_d7~N>sS|85|?NcmoMlY0?5zC0lc}455+)YO?9w2-~D0#%2TXnU$i)BZr_&S^@&y z5sFE>8HdjTz%<43vv~MVbRdsS=%bsHQUJKIe9?TD1|5LFPBtPD{^l@_p3)K!?W_7( zs{W*p6L2{7ZW6Rg2^#_6o%ZJrp{F;}V_Q!C1OK0or9cfy=AaH>4lGP_=m`Fv{RKK2 z&pifUlKJShi>{;k-EFTe`z9fnlU(i>!W3a6Ik|pg>3#^isVK8Xd=v>mW?6LGzImye zab}kZfYl_ZrqZQKzbmAd=cDLFg{%5Epg$oVIZw=#zMVgRC~kN=Hg_@~!jXp8Re}+~ z-3rQt1k&-?eK1&S&^8xfW_c44=Zvv}9e*JGAu(^*7QAT6#!;I&^j?W(rkg-U(n=2& zZ39XcXMizhUvqRYv;8~DeK+m0A?8EY-7XNcy^0^pP+kCg6xp>r=9Kf2k0BD!HWH$R zaD?=v&e3*A@$4&hn#KcKRM7bgImb=nCSO&=I`0GB|6vU@98`!xJgO2TIimwgG4>{p z#Qt1zKS7U8DZHw->(9Rs7L>y8`E8QejXH{@+b)hBi znJGaURWcz{3*qR7o&hOYvV+$XzzHiYEDcI`Tb0aFTW)d$=*9m1o;!U#rkTtES`kp; zw=pViI-}I@!7&ckD54T0Rm2r!{04{uZRFA>aNpK~kgmCKt-W<@D#VK+wurEwWxep> zUCiji5MHl&%*YAgpQ(cG<#<;aaL7uZ; z?*YU9uyKH1he4aN#?Pv7qGH#5{^r%0oDvmC*X>s3?y9+SL|yy1-yGze%SQ}SPi~hK z!Iq&WRb3Sbje+(}r{xbfi{+37+_Dvf1jFJnn96+M@!HKUTIO_Srx*S8U}14rv3&Gi zhn!(&$7Nk6Fd^&?xY6}fx5Wydbk@fJ&$RG6!ne*X^)faBXfa)}K%wdhIdCnm9!NLw zShZ;T%k)%d+RnkJqptp=d2cqd#4|Z%GS%8u?sihvHgwR`1Jv5?{Nayv!qt&S4*>)& zC@Tf-_bRMfKjsMgEnaeDV)#7d7Dy|V*iAWv?{><*#=X9=hBkP|u`D41Cc-VkIAyA8 zDLm!GVg57AC}y%aZiCX#{J36<5Mdr0vukXWIygPC8Dq#Z3=HGh67aYY#XYg|2!He@@#-RGGUD+ zVoTrHT&_Ju7)>V*_Ug+e?5LhoDwLK29FPq~<;|7CvHVd-2`SS_PhkyrVLzl|7So%U zK_{RF>#`&PMvDnLr3YEY(VJ=S&+k?Gv$Q>gpe8h15x9Qa>~&Rm;q-c_4utBPtw74J zboFJroYY$s3>kOSD5R^{<&R^5-XL(wW?nQ)+~#bf^<_mGTPQKb;59qLz%n+tCI zF>_F|`4Ef>x5ro(0eTsv^Zp2(2GXYO>5Fds7OZxME<2wCb_7EbMg5Ou0Cq2T@#J?@ zribfW<*80O19xfi*F$GTsFVD@dYxQ+eyNZFCeK5}*8a&k01v$ZZp>m<23-<*21alX z^Bx2)*v^Y#1|Y*wE&^E%n)M>2234u6tqD3mtIn+)ESFJ4Tfs!RerQArTUjdnATPa8 zFL)zHn0pwZ&^e=4JK}qFAT?OC*bB(-S$p)WuALXyB=UHgPpHMfZj6Sk2#o%(#aW1p z0w#_}Y~O8in-vs3T5Nq77hdqP3x5s#MPHvT>o} zPJ$TCoIC9AZXGm5rNYg6-F*-k0=>wF-r72y{bT8jsC_W2pZ8$Br`kglHZU9IfYtID z%@2YcuvKP<|M{Wt;;Cn-ic;tb%*0^`>Pd+{uzB^27-)CXhtgYunS)xJfDn@XY6L_+ z##eBx{;@r@Y`JtpP$pnay9y=vqKU454D2mVcCvh%j@=L7ZD6GB6U#^tZM_(p3I0#? z8Zvu&mRX;fVIH@?DcHeFD($lF|BX@6}+(dX@WH8?rZP&OiN!d zgc{UlQ@iW}@|G(uo2i6o?;lG&Onhk1Hgs@WfITrs3B=Q|h(Dr?r_A>bS=&(ISAV zF#Xal^}|W8)?EZh!QwNqqTK<1uRl_`Nw>Yye`h0A-iPadZoLNLQHNB+LAmuiTsI=@ z#Ph*aLwM=;C1k2G>%acbFA<}_MUNU3)S$Ec@e#kjC}n4)CfnV2jx13vRG5MG`2X`c zfJyR8$g2@Dx_=)@-4x!VcuT4sDds+T;5{O7%rlk_{}<&0u(%9Z-BDLt^8Q&_f0h_v z3HaC>OH@5mPz$A{Y|;fARg*Q^0RcAc<}KIYB*$0CZ5AMKrwu=Egxk2G&A|$NvvXr! b>FNd{?XWa%<;uHc@Smcrs!ZyM^Vk0mGpmw3 delta 62047 zcmZsD1z1#V*EKT?GJqm!(A^*w-QC>^qKG0=A|QPT1w`o(l@4i81O=%9gHS2KpjD8P zkS^ih2cLM~_xrDFE+2i+GxxdAz4u;wt+mgST9SqalE=T!Bi{Yqaa^QrlIm@eIq~$k zor`24@hU1*Tx8@lT-rtkTx9VlSAJ}eNN{hV z@mqD)fZSp|SsFKO+n=AGEPf4V4J%@~>)8DE-ZAs;%sYpVC6m(&RL_PU`0LA+*{ol9 z2sFw>I)Af@7WhT?*O#zi{AfoR4E+#fm)cR*{rHsD=JHhE&$=?X6^$UA2H`MH%<1!J z&&JfCIC)iHp|N^Ln)F27{drCJ;eUUyH;I@tF^j4s-$V^dcyu3}vQpk%e0%JEjOHD> zB>21jnwgh7)3Z3_tyhqxAG$|RIm8z8xN!b;x5z*1p;@>N_r1Asn6C9D+(x?X7l&`J zZp%LS)yA8l@%>Gd?DXR}^t=6aiBzMhFhznChlILJ^H|7YiT?Wdn>+#A!dUyw4- z?Q3&|T?=KE|EY_nE@RuNlGh*YXO`-XeDr|_zF3~u4f*zpEQdN>*3XPZ&flT(VAB7+ zK^qy&Aw}O`Bf;b9vB&MyOiQ<>`-&_4)?8|C%%^9PU!EJR5q6b6z=fe%IEOuM_vRD> z6VJ75^@+|$)Taaz{?Fp5MiWw5{mHzJVg=likC~hs7WvVmx3`#BSwFAa%+k*W8p6CAp;uS^-;{@*RvARu@*vbtUW!%Sp*_pZQ26SVYHF?3(Qy3=r7O+wQ}dSp8s zp3BaXwHw!;lMttqiR|vg3t65hR~I%Zh^=%U_*l$B|36O?{C2H`fHo z37^G_l7ZXR?=s}i#q;Pg^t!Z&?`|)}RJxAXz>g2V+kPnS+TIYbHTKZ8A#UnJzV`bE zr$eiji2wUg5s}q7VDAzIbdM0l=Et|8x% zzmkaw_8^N)EGx2YxRsK?qucYb>H&ulX0m|l-YLs~lBl_;tF6aTSi z$lk#}LIa^lb)*k{cx(oE8Q*1%efy8F!6}Me9Dl0~S#f;j(>Zhc_u>1GUf4=aUYj2g z-xM&!P5%1cqPAtB`sJ13{)f6NrOmg!{wK`Wc`;H7znA>J7NDzSJBu@j-S;}ccV(K} zyzDI5$HNHuuE)$r-6FG60gHVu=4~m*bK<7>jUOeZ9JgbbwWA+@cmE{g{R>5|y^{YY z<_WP19?HMjRwxdOv~Da-gvxDw(=9S7#2rlelRkqNs2v8Ll{$TX++@dl^7v_zMt&Reyc{FCng zJSVnb4K}Jvqf+}OHlJz<}HIg2{d)`N`hDzP0V{tjXsK z`)mL2`VrWaj~t`Mq?3>kFRslEMN+vV(^@^bnn}};Z9Q&e{i)nRj980DKQ&apsc}0j z5rTd;RztVf6f5T$q!zx4?S?DMQ+pX+Zdti-94x6WaFWG15 zM_Vv4=@{gvY0uT4Uy2-Wto!~L{u2uS^()m8oWBi8gI1D&qvrUhbBM6t>d(0Ts;k8j zoMSj=-G^eOGXCoZXn^tRrzesgWZ~2LQemF}UqT*v%>a%1ARI>+QDleVpWpx2uLKvI z{~Qqs0gh{7L65YLqbuoqr3FA6H+71Si;4w{CXoXOqnJjC z#gp6%uOl6sMPzX~%lBnqGaaKn>G0)(Rp2-_Yip4sV#UaD-EF|lKS z!rGDO3l}XmLav%XOpie#`|ICV>)F45U|Mmpjl;e@F%GbRb|f8t?v43jf$>Ds*+j0p|BTTJRp9hM@4RPGRMGqPysuKCwwL2-Hc)sS1L@E3$Xef2EP?CVHA%I zlE!KfFMmAas@Xa?k%DKD_9~$hIcpKkEd9gfh6^tsFt-e3u)vVhGfgUR+xzjeV)JsX zk%j=0Vz#n#jVvWmtp9ny(rMwCOae%|IMx~`z(LVLuF`2+82vPpd>gW3o=v^4K+nD! z#l2iGdYb?MCX2^ZW-8P9UCME^l)5@P@nY`F_*Cemh&Bn5sm#ufG>#M_0BCK0yu061 zeoj7y4L$m&9eWL?q-6vu;&40MM5MeOg8CsN>MCW%|GAj6=wkR%GvHgEL_WIBBKv|) z$ihJQ%Qco}$X+3ltnX8fEB8Nho*Ddu->4!LmVUffcE0{RD`0DN?m=}LE(Gr}HznjZ z6AIK)FVqlwKyvBHQ9tDe0c_ayEPWzTOhDkDK>U0+sFOJpt)~!DMFpKT*C&dwG;=B0L2X5*#a!3Ey;|&) z-^It*?rkA~9wT&Al`j3Z)0c|ZDoEN3G0vbws2e$iE#;9WC7PGF;F^U6sxOTH5+(BB|&}gW*b_*Qz8mkA;IJu6;W)z#?cS z^gW3H9B92bM)zvYer=RZvpbx8QZt2>AF5$4q&?;kRR@9K{O zzMa;EP^?O8J&1Z2eo?Uq#vuU1jmJ*4xwLpIYL9o1z zgNK$NRAS$`^y<~LfN7BiqC zi-AVEj8Em?-wDB@?2)|omE8@3VwG6sP869=hMcuqgEy@TqW4e?);gf60Job%U%K<- zp{rID!)cAXI2js+BFeE(pHN_nPhI$zG@xM%?n3K=uuWaH6dK&)pP$%e#T>ctcC0PI z{&gfm?^vwas}kX|4!t^IAI|8J4!@vz+43X~E?lIOCS?lj#6@C`Q^)IYTK7bRzqiD! zP2z4XEkXG*CE05BlbLf3z;bIRCt5zebUUBvRRqruuBeqxl5>_31sz{shWpj&!JX=a zQ8G^#D_5}o3*sI#p=B4T^_<};mb(|r6RA=pN;0B725s*(r)R%s&LO|K)1*A( z(FnZiKHi=LB~+w2^=+sAf$c-gGTsJ}^n!Jpx7Qon zs{_BDhu$WZ85_lfe@iFisK@kHy)mv#+Nv)dI^i-X(G;(7_PR28!4(y8aD%dKl4(Yc*V5k0T8*6w7u z*4vQ~r1I?nQ3t=wG~n`ARoLh8K^Tlg>D+LA@v8U6_&r&*O-2uG(}&cbtFPsdZ@c#@ zl3fXe@_4bgz%XP}fR09#+YMMT#cS?(e^)b_LBSty@9Cp$rRNOt@j${Axfr6?d zpC0DcO2jkJ?W2G)?=L#Rn;iW6R|~60;J&zTjBs*jv2J7C8%G};=^^r8Xd)F!%jgPI z-bcNDeWK$){nPi)2^&fi`S10ytPf*m=+ZLe!W@_8Cbug$$P|_UJ!9hufMa_F#BOxx zA6a=XKGNF4iXcp}tJk`?M(1(a>b*qN?e#uOm+p(Zru)kJE*FflUOI1>CVA$WQ@de1 zmWX=gz~ghUj9QxNYv02nw|k$k>h*{Zdn-d{ke{Q+{O{RDv1qU;6(K;}tjn90&cvy| zve1fUUiaQCB!f*H$2&|UJ6nGiJWpggV<)yib1ypqCQ9)Rp*2yDjlKvm5W>OupK*+K zX(O}}{_BsSja97uPDabqg(=d#6UmjS&Zd-1m|=ck^(WO(E26bSeEOrwNWu00Ahd!= z@MjwXt^2M>cudC1crOsJhq{rQtz5RgjZvq9_ny*^cSpYfOOPt#V^rE8HZ(H5c|MwG zsKWjZ+(BEuzd_T{UA{kGa-MfoqpN%%w6MXY@jn=eUEU!LZ}spVqyOYUK+L6h_b~kLat`Q#f8x(cK{Y_2}b#Pr9Ii~ z`9hJ`j8vL`5?R;#RxM9`XvyE-&B~l9r`p~DDZojCO*w48n%To?Mo&Hae>Wa)fQ9;> zY*uPTVruG@a&31fKyjcaPum`HfKh<~yE^STO#(OO!`AHGqbFbd3}-|%3HONv8c;+9 zE&q6(Wxf23xm1*hu+E2i+wtJwuF+STb%T5|aTMSx*wT8>ls><^U$jqrI<@`Z)J_$I zGwAx1wDjQ%oyk&}P5le6InRlJjbR&{4fGRe|MjdJ*t8EH^RffTmgj~B@|Hf_$GdkT z->lTg)Nu|i(ad?!NXXfz@ELMsthS&xsX>UwX(jSy3DlNbJZUc8sJi+o8R%%gz8vho zZOrG}3ec-5s|LQP*o7Z1_L-m4gfwq``Z^;SAJ!t|F7jf-4zjksJJ)C&0h;2AlU-RX zo=i~@RKNs1MdMIy7Xt01`qX6Xv*FhwDPf6aMo& z22bEdEkp}H%ifqfE2WU}{k!yG9F?IzB=W<;W#Uk8EQSNttUpB!YGHS2)~E6_#=3LV z`-R-nvWZO?57VRVEU=;o+i?jFrnT9D{7Vzp$6DDf1kj#s_vjb}lO`0>i@`Ce4piZ>{C^K1f6AcNicI+#Hj$v>@%YU!CL?4Z<4;DC< z(-qX4C`rO+n0;hc-F}P8O++upuBxy>FQfMfatQO`I=~&P%AKb?@2E4)ZYn;6t;dEE zWgmhJCh)2J+(EHXKr|ZVHuX5|WN%^t0WD;E{Z|nOTm165dS6rEC03_p19#<0)C2IYUO=nA$w=bXf8?5$g_h zMYsZ|t#5S7G%3Tuv|kUbzohvN{uOywwAV+nu`5;(!`*jwNc7$!mXK+IX-K^i9uFKGE34=?M#C#rFcPe5g>~) z58-sWj5P?fm|Wy#Q3Eg{zDCB*_>iwppJI#y;$PJ_^{-6VImq{aE96wsRM-ek9^$fL*$V z!y{KY+!n_)lSC9hIhOcm{?i~^WDsR9>o8?r{Zv*ZM`v}!1sg#Jps%9R=?h}SA|Lp( zLVglZ-jF?`c)WrJ*15kjZfT;EqUTi&?fR?^_V(b4-L2X4UO~+R?>HFDBuE^H$#DCE zfu3%KGZwY)4lA*gLR9P*t)mm+w^8IVH_~_vm^ZO6Q7`_4E%7wgk7eUBKUbzUQ6ZP%{Q1^c_K=_h zbe>TF-V=q-m`Qm|vO$~HHQT=E3(K-f-@hlO2x7@-xD5JEKcTZUk8QlI1g&XGIx7e) zxl13IbzFG=A{;5GMeEfG0Rm|mhomqF$7i}RY#I=yQsj}(dGyoIx=|Wxu$AnAO;j8M z;8vKLdF}g~BoNcWtEAt~9R}95d7JsIVX;XeM|s0$QONSkgYvC_HDBWPe;w9gW9IP~ zyp0pmXY*a2EYj$Ir2DYaN%x*e+QrsbMZn{$T&QjXRL=dg4gQEF1<@tLe+jIQys^Cc zEVJJ@G7ZblO3o-}-J(_^iWX4wSHoKkcrhHaks0Wpd%qwmtsw67nJxMowFUXSTTsXS zlj=|{=4Pu!2B@u-Nei@34QhZ=a4dLrcHmAK@p4X#9LGtT1r4G&2G+p!EVKaRr02v< zBm(Pu?k{GK(2o=SwbMk(ij$r9eVV+6AI3jPLjfh|S@YbjHrq!ev1qg!;22IhumSJ4 zru8yz{#7vty^}tAw2VqDj+ZmVmXpy-{(C>GY+c3X$M_90gUs#DJa;KwocA%!{Zl>& z6x>ul5PTPltglACURv)cbPN@hU?Wnzu8N!vQ!AJ>ji9L+#>;(#70;NSq9dYM}I z;0QzV7@VQ?nrL}l$8@&IBsDjtr;L%q&amv~LDq~v8R4%IV&p%O}OY*u}-hi7<^(YTr zTt>j=avbo!q`$s1(k!SET{#+!*xD+aEL=xRuXsds9rd_pGDjy zRRS?@RXzQoQ*P_7VTBAz>)A+Pbe?_pz3C@#_9B8JAwF#gOaH z>VWHss~?3tV}dS^Hs7Ksb{vw)NKdHqTPxeoB4g38H79Kv@w(e6TZJsir2wj8w5~rl ziboGCv9&iEGHr4vak@oRD@p+H3&|1!PEnj2ldMqG0TpM&2Kva>brss_tlJ|R38%|YdkV^>DPZVtZd_<|!$eu|fR7o--c{M|R=V)(p~5d<1ZFEBeSi@9J&}OscutqM`ve%UUYz z=Gi)LL)oR-q1sQvG&(wL>$hl93BZ|{l6cc8XU8gdlVy_2m<=mIJ)|F=+jd0$v>zmQ zfh-r-LF|@%C=DdsAP6p=N&#-LU|S%9kYy20)ImJ`%{;eOkIAm4@d}!m*aeri z0>hkF2}`uHP6N+$g`0j2KlD89cKsHfQl0CGp!Soo12swqnIuMw?hnATY}Uv;|1yjv zEo1UfcNSoK(QHn2AMNK=1L^4a;W0fimmV!psKh5L*tM}|WB5O^i=J=B zp@lP9u{FcaTrn^esG75Hw}Dn{gYB*IC@nbUHmXqLyHaHS!Oa;_91Dby5HpU*JIt5^xVk@F_E?Kx}D8fePBa zgrTc?{foNocHNcet~2I#N~ai;YY#Gt>2ULg>jAA|UFd!$h$iLa<>=K`>eBFRd9Oqe zUJ$>#X85*OH?Ot^5dS`z{A{Kj;9h7l|J0naEF`;6IGr--l-$QlDp6NM07-ID#o?%e z#Q<{7DhpXvYCKMih9XZDh~-(sYqV9uZZEJV%I+ccBlz_}Oytcjs==G5AY58&rj9VW zh>0#4zwo${v_v}qXo#=a3@MF=WM5I8ZiKr-=$XQFCJ}yY{r6Hg;a#JN3rxKoh zgfw#G=fHD)V0}wG)-ycuDt8XOZ#`lhkkj$o;!CfKae%zokb}edC(=S&M-D``bJ@~j zA0gV0HpQAWPC`B5h)}R7lRW>0HzcgnMUyR)EM-Ud{xs<+Cdzbp*yVVYn27GoB5@HX z1mun+od>5hQGbAG4Z~|{rnleD`Ha&mMz_XuYpcDY`kc>71sZuwDp)T3xPV*y_^~QJ zyKrdKQC-nqMdi+nn&+En<}*_RarDkSm~*rQ&&xoy_7C;1NaY=fh=kpe;|4vCMl+7% zR;EREG^m>jJ&$yYbF|Qg899bq5PEujLhqPW=R=>Eg;bIe5Ux~2Fd6DWQepD`>uyv1 zRmGd@v(HD`GZjMY)IJP5 zz^Ju6NlinVExS)3KFAcGvOR0xk!lH@*m?R7SAdaM2%?SYFGTgt}HX z0F|4VI2aI*Si}>hngS=a=*Z}zpbo-`X=f3+TMxUHm3plCa}Z>uijsS$dh+fd07{yQ zodHW$WHJc-i9}R99in!hv4(7UCIj6;F3=3Te`qA|M13kl`wd7Kt3~Q0uz#{x4SVw( zwFAQA&|MXu^8Q<>W~GfVAmw|rIezb4`{j&)M_~cq-yBFf+}k4dSX!Pth^ZW;@vY(QE6j~eC%O;g+IDajo zTjZW3K8?u6_+e|$X;fzn(#MakA;8J8q-9!MBTj>KwKbOV^Cq|vhdH=D{I6v`xEArbE^ieeHaf5F2Q8d{sHYkHi0yuzf z4V`~164mUn$Ii)psl8F|JFIZrOg(Q6F)pWH&%DS7=-wTX6pP^&dL-W&NHpNqgy(UIb%HBg$$H)g~n1k@VSx?T`uCRAY@B zq>5Il;*c|ZSAX(@1BXojMSI>^xa@7l!e8fZd%Zkwd(;nvq5W%%CDA+8T&ju2ZqV35 zn@rP5z&@telNE}2MPnc7hpp}gh#re7UPA`epDw-ymDM!x{GhktAZ<0UoulqCtxghm z__=JA5TcsMPbHQ)^=|>Z3PR1w$rm2eyF@FC)tNEkg;8f}fZUEu8QNN&@-GHt`7>fu9u3x5ioh7lH+xMnyW0lJ`3U`3M^E z^aWR!KaQ9MQY?@(CmG%Vy&bh&nqB8QB8M97o=JL*=RyGxA!8fD%}K*SEp}h2HTk9n zr#gdr;VNlCXURo%)OE0z;DQNFp`@sa7=l-mScK=8D=^wTb>r7J)q{Th#f2crx&tUZ zD&dw{G;LLJQS-`R^^*rBfTSBi$Y`-qa1chf0Cxl=~^JwFn5U=2YTkpTqyqHNo1pUz=|g z1!1z~(@3;&Em4fT;9)e-CZeF@8y$2SSS#TBQtx+TV=^bE_e48r0OWU=KCgOYeuX>2 zs1fn&>Tp3@z%!lP4NK`LE-*ZL=Hh)?HtYe^Q<<5rr6G9(nM(yuLf!4$3&%bID3Pif z^npBp9(XY}c`wOgYya30aU#L8eygnmu8qR%X&D`d*s+zMG`d3rGx7c(HU* z_Gj3hc)_-Sx7}xxUm31K>MzT?t|0F)#NgP zJqIhw2fC7tuI<-;CX3n$$Dkuz%e}B6Rzh{qbk$-sXM$RCa%*NfF+V=6g+%+8`GRgA|TV+-& zvA~c{@SJJb-JB`szA-nr_~mj&8=%nD#?}6-P0t24UZNWL*6M79^MF{5=S(u& zJ%PE-xMPEJ?vq{YoVY#h^FGc=D~QtIVIcDB)I%KhJ^{=ld0;kjhx2B8X;iKLTw`Dl zs1>#Y8^O4<)S|*>K}zyMtKTEJp8xUn;21CxxgZg8UhYVZLp?wfERkh|`}bsg78OqN zDz!jJp7EKlU%LqM5;mWXM@buqWFxYLhEd5)RKkLceGwj7CnCPHMQK=pQceJ#HKBbE zt@<(*Iu(##*pOz?V@87)1l!(At>`WI-a0C5wa+x5mbZ2}j^YBwoE5I1@Q8R;$KjZ8 zkQ4*}gWLn_iiDVt|NA)3@Se4TS7^ASA3Ph@f_wzJCnAPlca91y`U78L6L}apR<>^e z+{f3AdZ&s}ls6V7KI~>`LL*oOsIr(T$D$tiM4^1y*`?JabDQHQ4pF~Bo0Ab5TS|kG z#fz?RIH@&=v>iR--^H-VS{)LypbF+Z|H+IkmQ4}s16+Nj?pNaM|B}mZ5@rXU=RsQq z0us`Jk0qvk%{waq8f=ob4$p$+zJI^*v1o9Tpt<9j@C)%^r!9Wg&_`EnTKuR7*C{~SD_VYI4MfxEwN6avh6>|fAIE#*FjXei2=j-}*5?p{wPy2G}S z&hN(+EK2?P@%hl+Vsm{Fo4O-TyWnVP@5)lP2O{#BO~{=|X(8rrYwW>@j*b#r1BehM zD)>n#7)ul%-<<(ZPSIy-S2<;c&9(2NO`&<_R>lH2j!Ya!|*t=vz>{h&RY9% zh~_WXEgPm7SjiE+6w$0csv`r&AQe?%$w;!H{PLn6R8UEdti5E0p8g$P6x)0EaFr&T z65h5(EW1!iN}ieYrF&eA{Eh|a^4~vSto?N4_yv4?_>30nLDdr`CrhCUN{|JlnCf!_ zb09$!GVsA4+a6}hD(c8Ba{At=x+SlMzv)q$$08V^FJf_ki5?c5u@bkcbcmPnalZ`? z`@GrQYh3?2h93)KR8E1d)aa_u4RDj72DE4PeP!0t&I4H#mk&WR!M2TyW|c4Nx#m4H z1@bSnU5tA+oWIV^V|*|IRhxpzM+#*}ar|3aW~EGRK$TJV4#$JIpK2eSQO zzs)0^qg6i-A2uZ?vq&PKC_`rebdk7*q(tiO+eHxo4Lq-YWOS{|Dtg@#N&mK#5;Y0D z!!JnLzq!-@1NWE#yLJ=M8;#B?O0aRn5a2lB;&z_9jzrfXp^F;H99=*KnLZ`rFFs3_ zJ^_-?vHK@4d-c6@Mk^l`KaS%SW^=5K*0RzeuD8U}_+yzhL0KeFBjljXk9DDc{_mYK|q`W z9-HEk0z!h-mGIU&&|9@aaAYRz(sY$MD1W9ex1kcvB*_8Mcu2@o-K7g02?bkTbUN># zoxgIg7d>$ZCW9s-R$u|-?pP=Qg~7mvn6}?LRz7?Th6XlQXBpoG0q}1Ju+-~Bm6}6G z^OzB%gHO?T;W4GtD_nf0&ik6#!)HIAYrou%A}TYM_WIeyl04<9TWcp^6-l^F%WHxm zzy^>!rJ&A)o|A4+{K9Lho($B@=&wH7jpV4eAHNlp6k7qRap9TgWe+TN=4$6t^kuo& z0#`NI?B3jMzU&(l@foGlv1IEqSP$@E3Apk)MS|(;60?SdvL5IU4QriE_9=rgbZ(0I#Kv=zH!$^uskPU?(?3_8_vg$io(cD zwxr|Oii!!Z(jfKpaEax~s)-R~SD0@V+f>0rCoTZCLCD%_@ZU_P9FT2HX18N-Kli3I zkVSBYT)BUDToY9C-kv-f6veJb5*hW`T2@4(E{FJ2SB#iVr$46Gxp z`>yoPz=#kM>O4V8^OzzSSY9oFpE3^~f&gs^%y+f6$lSHdVyMeZK?0vyaKyd&bqwo> z-LclS)7}fVdk%7{6qwHu!;ksP`7Gu>lS4(_L0XjJ^P0T{_SIG}Mhx9}bLg*h0}uf0 zPaOAGf%i|`u=qG5Bxr_|7_dIst_P1!hi(xSjo73L7B>*bszKnueR~rn*!X+(A|WiKx8a~I7aU^P;qTfzSf<}B+tMFXlhAPlUJTM?c<(3y4 z#EX425mDHXZ};?%`5lxFE=-095**I%JsO7gKv1bfz{-#SRD6N+dO6@T#rZh%eXnET z@RmLU3m8v9lq*Cqe46z#!RG9emJw}ZnA%}j(D5Xyd@olY#lieYQNR(M0=tl*vXJHr z!#yh2wO+ch#;mG2e5l5o{@R1H=s4Lq;LP-goY=o-B2!EkefQChY#v;) zy<&qur7ls6JNM@%PlH+1Qg~bwWJHuEocbldcc_CO(<-#bK|OKwTv+OqFP^Ca&nUV^ zf;x_AD#qi5GLEZ9=!+qhj;P(6{lXvO%;{gZ@2#Up00@?j1VqbV0Qfl`5Zw-LzWZwc zk&CKz&$EZxjrDJ8^~JEtQ(A3CkGns;^q%~}t%sIe?%}p=$NGV@&CB#^0Ja&$oQxRt zZpk4yGtlqtS@o+qgW3*T*9884vAr>ofs&(VYTWbUWb4uyzgCoj4g{jn%{PX7H#E;y;vPC&Rf#qg#+j93SVb)Jgxog9Z0-CJLSp%*}dDLO-* z-P?RGED9F;HvosIZJIzA%ND#qqmX`q_Q{NAJIYxn%m=;r$R4DS1YA%%aD;ibO-P7h z*!e3m>22WV<^rbggN*=dFJ=S<13@ulKl`h+=`sGZRiAPpa?qIy$V`d_AwhC-LbXr% zFd2swv7C^3xh{j8-Yb7&&_D)5jUJ7NgCB>^*X*gMpaUz0;MBw({9_ezQzT0G2F`5H z?r*+Gf_1rZM-y>b8*aq0h}GXUu!0sNA^lZ@&4jLv7HS3Qgv;REXLrVuRVI>MT6g)7LniG=Dc_8oLSmEFlmCD;E)H~ zUneqx2@Ax00!)Va$sWmGfME@`Cl_8X7HOlzHO&HdFtEaiHguwOUiSgmprnYoY_Y(o zl<>D~fI z?fFIlrE;inFdfRrcQG_ohmHnM5e&xvcF=1F)pWsOsBuW-ET3tS37PiVAhHK{n{|l} zO0Whj#|;D;q}l_(K&LLBOL;l)!LUyzga6`KoArY`nnF6h^=rd^A_KE8eu2sgW)3aLBr+yxn`ki76fA54L0fhja8jCZ%97q&7n%GF>8TxfhyEaLH_*dVfC=+N3w zTPw7kCX()MBJ9(SP`@1gppVpfkt4DP8xj?kC%f$lK^PS1D~`QT7R`!2n{2TYR(F%m z@Y4b)kQCW6anEp)hJt1#d_YZ63n7@^+mEU!)FouTT7-AMZ8nVLnJp!Z&k?MmjuIB(I;BNVYTaO(Tk6=Ww6(MEOU)!2GAie~{n;ziah^vGJIP}Z2}7Ui{<_fObsDV|q`7K=v0 zb2>3nsii(gut}CPHS++&DK`|tQ$-RWmydzplTJd>y6x?;#*(@6xFRr=Kf;YBA~m3! z_aB&`F~;Ag$(6(V13K@?QYL*KH&x)$0C9$T2%Lk@FD}9De|(03wGJHua}E#`{I=Ff zEs-Q(DxiHo(zF6U*)-+@C+FqGGs~j0UObdpjS zB7D81O`CG+O1wHU!Fv~6WL1$x=>VnjEW0HBfTbB)g`00tOgfjE!A6t@nMEUP|53CD z_!zE4@luuOU_g3m#w1f;2({;}@pzDuC_eqFK8YTKls&gyE*KeDZYXq?zhRjD2N!X_r0_mH5@dxQi5$hJo@Du(PAtkl5<$qkDBN5ecy^lI=~ z7sk-pzH~h73SmIoGzObrN4*Z$98wFEny299GaK5QO=3GimMNzNDs~lR4Ga;X-BNNH zeG)VZ9O-71(gSz2DagQ$HyU^)Yss{{*u5}>0bjiPK4wB(GFz@ET>S^jX89^j$ zT9o()P41P_5qwI?CBiG#(v%P)`c>3(=nn6?vrnjc!RNH@V7IoYxU>kUX zIJ#TkmkX|^m6#SMm%YeaMu&1z_)yQA*4OclYM55h27~v|>Fd&DHxUj%$$X1h2F>b3 zl8g)UpbdVViSQ%E1;aSvONUg8XRoin#2-!Cg?nc>DSQd3Ra+gLy<%P1#NQ1D&>piFW zI`c{DlK960caw9;aUSazug&#*R zCi4DgVDaCgnF5TLNnm0V)c?Kk_2oD;YKtAx^9AG%fO^c5ZWI5~j)*u8E=WXop|c}t zgd?Q5an%x7mz=Du#iN}EI4_#)+zYx+@BP<)8dgRJ{`I`m zCO;ys3YtK(iEtOKEU;y30c@?h{_g03u=Zr`(X%8h)Keu`*DvK#O8W(^Dhmu7VTj}F z{O~TV@-M0F9B*C({?4#tr++lQtHAK3O*`LDKVRE}oj*ab;fCov?B$8gl^L-0`W(J_ z+!Y*-An);_<6$i^tkS41^EpfbgqGJ_o+>ZH4miII3;Q#bW04Tl=4y$`(#DT;KH?OM z{gsFkM0qCYLXLS*IIUj{LbXxCDozUlRXNe?<=BHue$_Yy>;sf*AfK23XSxuO?yy>PUqa0CnA^nXaefoRmkQUfcs&-na5_jo!iy zu#f&h$O^nvCokz(K6ARC*;6dt#I*@-?_A(C=1kBbECipcm82E8ImO%L?tKG0F#!mI z3!47DpF;F=+$9RJM2AP7Ah;N4%VVZ)$rxSWB)b{)*US@D$@>;oAWN@vLp^g*PZqJ3 zvaE7UdSR$|`U@P47k&1`WEN>ei{n7Yo`ne(=AWd;AR7zhy#kezDG~YkWm?FAbuZI_ zi8V8}35rE7G+gl@j&m_7EI31m!4asHzt~xk^-EF#;pZcKJmJvA z2KK!e7(Y|c&3<`&`X^NtW?wnNfTf+Lj(oAu(xya=%Fso z^`QIOob~DB2~eUjIS-=IUk#V~G~Qm+yGixOhLR?cAyNP;<#)aCC}3fMShLOw!i zz*W>jLyPD5?14^zX`O}{pcl0UF@N=ie-wj$_% zf(p*MMK2o-dk=yie>;-Y2uegfnrxBZAsGid?Q7Y4>Bln|w+^+Ka-ScT9eBz{ zbREkVcAn!AvdI%bnk{0MJ5+s*lPbL9c!C0fO0<3sNLxu;r#q9u&DZWO6GcSldGiEm z%E_?W+2dZzVp5H(=l9>g^XWIss^hO3V!9-mI9F0$2LOg+piw4)Z#OJ^6B-e1pbzq( zB`7L|fH#7tXW$DHt6m&IjCeW{Wr5rN8_1$2yfmh7q#M*z6B0V(&p2W#`8Be4Y268>5mZqxX zF>;%&<0mz9_eYYlV<>3hc2cI#P!EB)!3{!Jk;DKP8OtJvId(nk5#JSw^V7?>ay013 z9qilURcW|1GN@s0`5h44CrOf!4Vd|w#BBAH+qmqcgS zP$3=_CRL&sOvf=WY+jmKbd)J87D(hG+Qa8sq4*_{%7fo1M8n{xGCRxTlGDcf4|j6vy7YLB?Bf zU5b2r`0Lr1jZpdq==DWwIbVH`u-s1&0rOK=(*o&%ruPxoL%d9?w!sVB`_n1*#7Jz= zdptTq2!@ua?rCr!YJw~*^Ve&E&=-|h)FNJ`Rzu(Xi5c8gK(b5#2aWqta}CjLrbx7| zDmyP#W`SQQ{ekdM*u)($$DB<0eloYIs}PI=d@afvvZz?z#cKfSh4VOCECG5|t&~2B zI28>3z6A$R3!di!X~*JOGK?RgF6#qM(EX}_5e54NFG$cXp2*KGQQu{UqbDv#s2fw0 z^n-XEBjt7FE=(7XevLV_AxrhU3)=mv5^+ES@xo`sR#*lO9kVH^>xD`73JTYLO>7oE zvqCW0ajF$EGVWlrjA_P;z9jcr zG_vW@g3%sB-yu?VAC3C`WR;G6T0kWfRUIw@-^o*E63M2mwfS;;sWRh?fYtjbrhe?} z4ULG6u5$fd5$hM;eNT&;K?6qnD61a<(80Jbj4BFS3ks^H5Yu&KtK80Z=?B|fR&zq! z=o%oKY1wDzHILoG{nR5uvZgH_@o&7ne6J_3vDnYxmaK~ zu9i!7$}(&}SR31ZcSFe)0;Q^gTOgN6VV0R$@fT76iE*mH%Bp1oGI5T*y@+78v&(rr{0S@z<4FzFlM25PVV@B&PtjMWH!e*Wb?Q-AKUGNfSX7y4=* zqgSt>@LzoDEEgJc`*U9*shU)GMu*TW!xsl%)+-C6=WO-If*?r2Aq)MH2r$dW z^j`x4_OGgA%{YR_sd!*ix<}j-o*|5@1f$J%a(Ssuy;KTAwp?ugzM4{$uCsOa+O+iz z5bJwRtKH9#N`$0l@^MAl4@Y=48Mz8^f&sY%CfP-+D-Out8h7Ov+WJf-tjhyhG^`mK zX;TW^ih^i&ETA04XoK3r4#X-Su12SYw(B^H+ZP8IZPkD?^U-FYOJGXa1T;2k!K7Sc zC6hz7&of)Q(U&)&{wywl8|N9gZg9XL5z-1nKXE?bhY{`h^E#mQ5Tf{ZoXx}=VM^rj zeK2osp_)}{Rn`7X&)~yMO<|zM+_sZE7W(dZ2(E!nw_}GmciB>3LET%*-Z*zXRpQ!_ z+$_~dEiPMdz$|Db3l;9%pS=<=3xNH0TZPw9U6C1A_*M?kM#clDT#+jmDy7LqRX=QL z82=`EnRWVX#<5`6?(AE({FFGBOYe-t9eXuEoaBbIngkrr)dP3o%7?K93lG4H;e4I( zltX5zw(1_CL=p^5hbDObtfl1Bwsui70nFxl4qq%@1Csmi6O8fX`s`KuTG3mE|oqX zK0$t>a!GQWZ63CmB^L5(LAFBU`ZtQU2d9grKBDrX=3v}5xCjSNcuX49faT7P2~79{ zG!dZUF3)_@e;Y_g=?AoCCE`)IXP<815OwZ9r8un5d=y?*!^WDyOrnoQ zM6H82QLzKH(jQDZU$+!Z$7et&;;WoptRe2bHues=fATH*MisPO19)9LsV}4(jAFzW zUb98X>4dBGwoOCv=T11C^#yXd{z}6ZM*vi-F{GOLx1s@EV{mR-M@_e*PqRs>8 zR`}7T!{Jaeo3K@7D<91(yKwY{Lk83e=u8i=7&UpA{AM7*kSLC-A+I-kP6kmfQFvPx z%7L}i$C?L#Z#3kap;r=gb>wrh@TZwWiYUJYEW|VY=Rs}qxv9%s5))K+HK=bVHVTYk zfRioJ`b>G57hYC&a2Y^Rg~yZ;tTg(?6&UGdX{3dh6JWO4zPS=5kamPP?9<`d-b7}~ z)wIXcwnqK7XkauKMl=djufgC!l9+RUD{!ylAe*n=QhFOjmMZ1h?!byVu!$9bzwW4T z8Inpm*|&k=ftK?BarGYHShoNFICr;p(IplmKoyLsl@v+(Z|AuTFx{v zqGnahr_WYP%|W6-M&5U$;}O?`BT-5Z zw?P}D3YwkdMEgIopR1XQQz|K@=le^!;qZ%uD<>aiRA_q!Om#)@(0bR2q57Y1tRr9@ z)a5tSzgIj)+FyWuIDe1Jl9P;XACjqXxFyTu%J7%+jI$m0BL})&EYxM6ft`5{Nk!?s zB_Oq+CoFQ0taUP-`2if~9TRtrX+XU+0Kni5zEKmN{YIg){XQFOko=X0I01QoiVQ^ zY1_{ivuCz0qWC@^5$6W-8wR8m(2V5p=LjXG zk@PK~EOLq%roN7Ad>52)Jxhh4V!(k#AC{psiX}jP%yXz-ao78*qQV;&Y4Kb zrI&&-jj7SU%h3aSf?}^+oJarSV2{1m&Tm$DBhvqXrF743bhLb8!Pgm-_ZxKAoB(zBT0kGp+DH*B{VtP!Q)2&HJ^G1IZ7s5Y-TkC0Is z(r9ajXQ2vJ)-s`#{0opZ!left!Nm^9l>|GaJ&Z(^G{_83U=Cno?UWHd;f_$?PFjlGy3tMvoLi_f7 zAbI!*YLiF!^=Gxfr=8?I$!R8sMC; zg1i1+c_04(YS0cz=yIlQmYVQFldSwAQ$6OhYU=0T+%>MB{eF61zw#hJ7Fx8&5H^?{ z?DwqH-}S$gG|0W$-WWe>aF_G?6<+*t$a|9CQgGOdf2*U4LAAv3nsV^+7;G}VL2sv* z3!#8%3GOu`kO*#`#W6PZMm_LAE^weUq~-QZTwhq#DNGu}cK(4g9)dF7Q zK471_2HTvuq{1OHfj^q;faPto?oe?YcTPz{92O`XmJY1`c{Dv@a;O-ut0Rop$| zr#F;IMA*nF89RKXwHUO{6l7OvlTY&}!#lPKj=Oys3IaTc!~I@l8*NAnjO-H-eD&m} z7%)ZB<1k6-M^KW*$QY``O8@57$=2mXX(k7WsBnM?uebl5^1H2V4_+tCVtrxgiZaLA zG6r~P(f`%}3n(ZMya7dJ(``?K91OWQ=eLotsa_B=5C#F#n;!9o{g%C?`xk`4_^!coTeBRg zbHIh^`|$~X*TSy)YLhfY0aPf6LR^4xDLF^-L?rQVa@lM!_5bV=IMVaxAmIw&U62m= z#RcMnC|F3-S$ezVnXf!T8j(fgZAOn?kdZ?#NYJ!}o;W1}!NCZQ*{r=0!gm??E@b_s zDATesyklf_73AkAIn;j-MlN)KBs6rM_KXeea(M%Z+d()fH)4YBve_2E8!XfZHa*;l z83LWK=RboQFo3Ni5(PPc8-y!YI0*lt#gP(39tO`-q0771WVzP}cLEG>=k-tQ7Doua zsbL5GVavsJ7qMcOk#+xQsrSkxf`Y~*dXsa}-tv6GfDPSQ&=gxh3_)4(!lC^?(6Tz!2V`}7RrQy;yZiFO%=c5LHA0W7{V#Nd@{tCd zPT4j3jZ+-wBgHs~HVx3de}=CuPfadZMY|Xr{2N3?_wC+I?;Y8=0MZtn1cnZwMUTOQ zV_p`4M*v1J+xmd{1aYVz2a4>x!+|5ohU0#Rw-!%3QzGf7&%*k(w>MWM98^J!`;Qg- zhbTMKij~TJbTxrm;e(6#9Jm4rxG{V)7z{%3<+uE#*CgyZ1q{||yxD$6gYESfbK z!1trV;(Xu)$l?04UCOB`%rEVw#2&a`2d$~JUFZMr@BujmH>q|#oq|V547a4y!2Z(s zRMgmU$W!h=BCU^-Z`}8z}2KMCK7qF*@3BD3mmFTqF$FkV(Tu^3fV_iB69SUDcY$ zH6V=ZdPH9FtM~3<1EX&S;1BP}JN7C<^)Fyb$lC>GB`h~5!4ep#XR!0rgV0)|Pit6p zP>G%}!ni%>%z&Xd19pm#30TWqP)hqnDGV2?0W1ruOkRHV#bs|^vL9tlANTL}n zL6aqVg$<>HA0SQj;a|k|Ae}l&HG~V&1wG00QwOGch=|B1i{S^K31K{wx@tc7A2;N4I{7^Aj|c>!_PgQ07Pj3swdXZ8nOjKpFLY#ikH0{XqV z=18P$A_uNGX^)vK_M{_y>&Q#%hl|4)>v?PdPIqmA21`%rPQk6ZJj*iOy-^6C%6MO? z3x9W)y!k2U2-N|Su9(a-98P$}Q+O%=y zAKCi5+%k2!K2J;dOvuHTzX7o^z5HA)y5XDmCN!uT-%DLH4Yj;}zk6B=g#2hSCYpIZvO%PM%Iley=Mri zL(TE9fium#$)st0o4bdRhG-O!%ME;ho;TIa&aCu*xllBC9TRV82iV0^BsoQgKr?6s z3!+7G2|EJU9!F{ZOV2RvrXjfv2rmpsbzgQa^E7tTd`vM}zITnDW%7v|**If{5{h*g z;@5fSXmVN&yls{d$()(e83ib)qh?%V(4FQ2@=Vi0St!{DN@r|d^B!sjSn&n=EJ~8@qW}-01bY+rrpdQpQhfFJ{B0pa zdf=oD7RUwf%?QCV*e5iQ^MTmydPE&I%{w>&>HD~MbNK94&_xSF+2fp9I}54{;33(nq~tYAOi+5p5rIk7W(;Z(4$^h2n+yMyP$TU58Y;kvy|UBFF>Pes=Pb%Fu~z zU6psC{`Xh|N1Z6Ke58-tdB3NKoG}dE^@Pw{fy)QzW}JCALh0HH;cTYTY4SZ~-!Uyk zRXivgLq@#wA+<7+gwGOLWK^%hmdUsQvL&*~awGjDuiWMJvVPVM8CjE3V>U76;06RJk=UqJb0w} z+A@?FqJJs>{loAnN$L%Rb@uCy2jo9EQ7IX)9M`OE)@Ciovyemp+yoElSzzTg#?9{w zow*CgNi9Y>_@bTXoi5PU^?5XsFC-~nY|?F8EtBxjrr~wAe(;#F@BGHCgpCz!JtW~% z)rb*#el8F4*|Tb2^~&h9dEjr2eGwGEJr}M>nSPY9EBmWBgN%fg06IYu`#>i5#|w!j zM-Ix8eQH*%$-o0;$NsW0f&WzcO+&bESSSk41brAdzJb#ih4`pd#1(Up&f_CLk3+D^ zV>lVS4I0`-j-B6iY1}8O)v>!aY}_x6@i|W?(62FNoSEJS8BM~&X%6W8GN(jGuHV`Z z&m6mQQNc7SU+|6G`Ofg1>8r zo~igT7R7-Z=zN%`KyVo#Yyzmp?-S(e#o(;d+AQO(+eS-V|p6zuAsuOBeNyu&jKbcv%24LU_w7$KYmoC*QPNED^@Sna0vmf%q#(c$2 zzow2h5U34MZ3WXvU~l({D3BL^+)Z{Jpy)66)P~)K7tRp_Qg-a`V$eI29$@omwa_De z1^O0{<9-?)iU5`Wp1u2Z97@`pew4kv-tc!m9H~_8G4;+;}1`7NbK)`cD?;>Of zNTkx42sTvEV34Jl_&4U{m)$f12qTbi7(r-N(-6w!%5kh63bK2l7R~2=>Fw$ta2VvM ziYu1=1-taE)hUDeOb`o!QjPBFoAgB#%}`K*B-*i%B$6}T2}_n23Oik>Mq`@d3^ceO z$^I$kCRKDz_zd8oJq9#4*4rf>CdUa;UN z9&G@aGDko~@wBcgM+H9e9ZRf_;wiDU%U-s(Fj~S$EgZ02Cmju=9zIjV@$G62gMZzv znS2D8bo7txo36O^J3bJ?)pc5poQ&%&9T}B10J>{&0=*s()AerbT80~dLG*Hdz8F#& z)+m012&Tzz`WI}z!qkHt!~D5RK`0cK_=y!Cl`Q4jP$<}$%N=6?oQnKgmpznT+>odE zJWcI*bbrsl=4y~fzcAMiih$!E${u}&gW$xWGjhPR2|16HUJ)521|59>k?0gln-1W_ zp(RuQzm@Jk|C0&M`49?HEt?WrsLgBECdj9(>|C4Is&UBaC3#pqCV1*o(&xDSf-D)T zcWLP|PIhMMC_WBuKj!*;KZ~#;y#Fy@?&&n@JeH3i_uj7ZTs!h(X#Y)<@d2Oaft}T} zDe!;urarHJ$~OP-oIQ=d`M2}Xk%zgi=C`FZu|$dEHp7{{HbE)mM}5U??mmg7&i1iK za>sjrUry{v4r0GO(XQ~mM{3~!DPBZ{V}?2n?9;bCcfjI%ddt>{$835Qn9A^noD`&Z zS^~-c{IReL*sh%%(VkWM)m7v?B%f)WskY^wu9#f>B{v(WGGzlfzrR=s1jly^JmHw9 znh*$r7>0HVLgsTcEa2j?^AsHBBDCN3>ddxRf}m}DMtUvNcIoT)OxKO5|MN-knR=uS z$BYWh{cTI2j=xaU_Brg6N9Zf4vTsMJxy{{3tk!feITtdus7?d3Ow0@u(#EMp^PL*4eZS!3{T`Rzi4O6-Ot%iR;2O;As5H$GPF}x{i8(= zK0h~qIk=uSN(@ggke2&?8h3p&Xobnpc<7kyi+v?0Xq<58rS|)i;H1anHEDDl#JUUy z!yxmNLuJiz8xF!(LYY6!OfM9#V&9bf+z((!eyGaVq}D+8#b1X5C9_ZjkggT(A;r`4 zq3?e@Kr0T#{CO|dGmobD%(<{C-euAZ`U2ZdJEg_jH|DxC3UK3R@GE}|#%V)k+RB>W z^+O)=#z?ewlG60dEnZeqygcQE`upD2$;5+=%y8qqtgY6eG{!Wbs`O3V2qD463Pys) zfBG=}tp}@WTni+9F+VD&u3vRBF$!yFq4-;)q7wy&x1|B=tg*5@iT?ss;1-<$$kUVQ z!H;m+v3yn{UfMn9&60D!<Llzu`&3p@zX7K2{9jFBzbqg#z4DR@G#FS@4 z=3gVhp|hQw)>IQj&P6$8v$e-B#j7|M_^I@L*;5975Q;o%r7%W+0909+p2PQT2Zh5^ zqX1e$jWNeXR)YIBL-HQ|p!X4Ml3FR=V=Se^4`q^4(tu!&0V9$ITq@#@GN>~U+bMb? z3cU>&?mQWex{}&0(!n>)w`cAg>1~>iRb!Ak=YH^gaOLTRa)4R)4otS4^L=sl_Rt3% zhvd61(ERE`&rB?}-IKjNJ2ZOH8dS;@6T?nHhKBy#OoOn>MAzfU z>}h4|$^cgLf)1<7*^dj}UW&l;1fTTpJbhk?6(R1aH2}*dZCIgX6W}=MlQpz`1SjS_ z^7)S}T1MLsJ1jkXV&t%JSk|{hKlhTRTh*zp3qPDcP`796@k1kIU4-f1y`>yX)GB;V zeX*>^47i2l7CqnylJ8xH9!3}dhghgK6;*AcGY^#=xT`4*$x@mnH!U6J!;1>_4gL8! zY1IinxzqYmV1UeA7E_jquuW_{-EGVb?=^#iZ#TI#kIReY_O_GKo`ubyrd_8%3J!{R zHZJ^2GNUVBu!IMD(5u~euywCs;&nEsXvxAkx>l)c5R+%I0b_M64eY?XmO;G_MZG^b zbfUIHp&03qoA^4}`qp(el=`-zl2ilT+9>ebVFs|Bzmw?@3b z4K$R?+DA{?87#!>{pe4e{=4+NZOHii>GeP z^~#vAsb1DO`GP86fwGl^RXunMUTwl-%6`|Da}emw@>JIl1cr{)TOP1lDumO*nCzS? zbkuyVoZG-gqEnKe3c}nntt|zqNk0<--Jtj0r)?vK01gg(xeb5|#K?$n4pYD}cgo+; z>`s>#)ydhI-ylXxw3>OHg`Cl%Po5V_^TY;{;D+d02a>^DKoK9WHMt0n@BRaB64F!> z>NHu(-Pc!yu9edW#CUG^JMg)WLK4bb?9b{-7fjG0O}^SXB4bjGDp4kJ(RcHmLHg3M z_F0{o+D8SU@Xr$a%}pex6GfgmB)FwZ^hx<>F7q|t!HE;g<`Z5 z{vQo+g}D4?K7OV1r(-cEt%f;N`Go^Px394s6{@!B%|9nI-jXUBads*Ar{y#*3TkQR zG5!^{!Km=!)F^;4ycPMpPP>bknvAG0Gj!bt{+@tPSYYFo;hc%I21go z>UQ`%tMI4;-g=Fq0pACtxCZ`Yf9SpbE9~Tap?H*Ql)5k8QR?53JAlOFc-wq6nbDt0bg&2 z-nez=z$q0IYM4eKh4Dq!( z&wg2&%Jjd@UrgM_njvYUa?!TJH^TgZVj6c1t(PptZkYhrt&gl^=hr^=XDjf}mkd9Q zOY{mSob~T>EI&R_Oki`XvUCtzwQDD1FY-TS)L!ZdASwN^z&rnbT=8Db9-6b}##+gq zm2kE-EaGopCGOR6GQ;d5U>k=8s_MU&8e=`Ao!AOiF_?FCt??}7LU9dL0oMDSf!7>1 zdPlYm#N86?4QvJ)ngDk>Flx}EpC!RX38kIu$S<49iLCF4ax9}@p@b@wm7w`N7?omh zBtFI6zPkaj%P1V}F4fuX_2K=`_Y2i&rPcs(HQ~dulqupY=8jEuM!GoeZ{7P9#QJQ8 z4uDZL6ykRe8V=eJ9I8vdiGoJRy5`qpxohNoa=k zHtfR(pjut1XU^--rF_%lWj0~m?XcTh7+Cdr<$if8fJ~@pDqP!rkIHvKppZg?72I41 z?bSHx>X&)9s-U>HhPs~HI8&^xo?h>{`l=I0KCKvIEBl|#8aMb3%>fQ%`wl*qcArv( z6;18RvELuVyV;a)&tdaGv@OSnmbP95z2PXxs3YM^9udL6#M_X({l#_2zmB0baTR(K z9bn&?rg=~&4F#4I^#LG9!`?_K1@=TGNVFf^FWEkylPu$@4g#r>-kbTFpDmq5 zm?rSg-=e6A}e%@S4lQUjGrg zR(7^c9%0Af%zSY)l?bSQ9}kMO7XMUO2P`-cAi1#03LE5%^am>|XA3BaQ{vgajpegT z)4XEVgUaJ&&Z~1bDw3`g+Y9#g{K|JR@df{Y8s!;O;H5%H7%9+nPpw z2{e(*4!`)J_QD`CgB$7kyVoaWYyg33HvR<>ZNJgqHsGY`b+KxLS65;hw6C4UZNcF- zrG3wVf~SxG?d^4tK%Q^Ok(`5?(x!$jERFmP!*2KIPeE_fl@sG)>$Z6hBoC}mq3Z;N zgXym)OMTP4wy8r01s?KUh@)+{L!W;VLi}J6P`6Ip7@u8@}INkOkZycXj7 zpc*lBt9q}a#w^u(|9C#%k(^fwJDr^RQ=rH*zO&kuj@25MW1tmiaDNkWx>;Nu=Ppfz ze4axwzoFlI1om;ZdioI)e>h3PCM%ky<+3KnTgo#!4?}CFLEPI~_lWl=5!V|XwUSRf zpzvC)cu~TeA?)9$>r%cnDZi8lTLdw)!&@E{$_my3jx`)KGbQ6GKG%WEfH(@1^>eJDE(e{C6GX^x)1cJ!6Pb zCh;F(P9qiH$oHStNLxNOIZ|Jyp4j{|U7^TL;3~*GQNU1MK9)swpLLUc&8u&{_F zdI>Luk4;xR$*=r<<%@GmrL6NH(LK5Hw%l86$4^)|U-~kq_u06X#~D;n{9XZ3>_s5j6Bm{L*oID+w0dq2=qvizgyR zPye^k@-0B46DqPdYx#ri)6DHe2#;GmHPlnCRG2+HQu;c$y ziGu)e;_nkkRHifeZh)$=NgTPvp?%o5}n*>nt2Q*JJy>>(hn{V`PVcV^(zzZ)E--?W6)Lw3_kpp1I%)1 z!+9yk)1k#-MAb@SN2y#=N?il;z6W>R?|lMtpC#I)n-@bv>>xYu=<7|;4$>y;b>)6S zzxCB7q-$2FD^*gHAuj-2i2IoH0gqsbt(9n|8Xys0 z{`x_0f7R)#;kz>zY4DHa&7lu$KI#J%Zxk#vo_awka=0h7Iz*p9qPU;uehjF+0k2`| zYVMnebBCaeM_{L3Kle?TZR3LXs5-yHIgl<)eEDGvRYf&FOvfGaB$Jn}8`-p7zz6W&|AWGf& zpnb>2FQ}D>1Wb3IbA&m6-ts<=`2myNrUBB?UtW2uUSw?#OEXz&e0j9VIyQaZ(~S$I z3mM9)F`u6tpZ-!W14rcePIA7Hl4TGAq!% zH>?5xE+Z}EFpm9=lcu_8i#;BX|Yo=}OJ$ZfiUtp_~~!!w$s$(YemRuCbcV&6ql?)9Tc zYLt;De;_6zmXr;(dt#Jg5bPLvoxu#1Sc{T-douQsPU7qde9^2>h63r4KD;PAqrbm>f+=Cb(Bn(wtbpBi^m``e z4^|(~`#0kW2KlBY6ZdX#DecGIz(Ep^IMrEH0&k2ZDi`88VfhZxx28M*Z2t7;xxDhZ zNAR+-?(WtQFmw6B(HC$~M>ni34KO_)L(S{N;VHgJ;8$Y6=9v&ke;1ZPpb1<>LG+_^ zZ4`9VY{_+dnH@V;3DX_gVOf}S=KWl&-6z_3mqzwbQ3^QMVKoHpc3C~3<3w_UhWJU} zTL>KD$R;y|)LzQ2oB3e1Niijr&CXXVN_7GrSr<(AXYxs!Vf~v(GTgA?P*k#vP} zd*+A&Y0~$342MqJJ$}Pchp+;m#^|^5HUXG4F~nM$UbRB>-F1*iHOpT=BJJi})dJMV z$EL5}PJaZ=nY!$snN!~5$)3NyTA|zk@3DC6q^=l%Kt>a!^`h#SAh-!^$>Pw?>#aXBV&#rdrEv;SRG55! z1%4?5~6_M$cD zE>v4tE){(^_bBt(!z<99e9XN9DN~A==v4nQ51yVYjk~`&Rc`)p0_bJ}uhSKNv{7L^ zvbY41iA~TDMW)?)P30TVb4Gv@2YaK(B|WXiLQ|O+P(Wu?lf1EN!jy-tlfv?;lX~?U z&7jAuwCw?c55{98vw2~v_T@aN4Q$JnF5+zA0o8O$%VWyNAFr+aQBjeryF(bh);6CF zY)7yxV`s{asg_g4;{6FmG5>Zbr-XX-KqRJgDU59IXVEL~ZqDaGRGbX8{`OP>II!9_ zh~HBx9lLvSv1u|TOJznmS*~<%q&x>!>0pW z5I!*>x49#2aBkPs#IKx$y2yFog!4-R;65#>hF=hBYtJwb=TaVuU?QGavL0yI*;OK1{f)>W)ua&{fzEDDt5=9a`m)#M7!O`jhV2 zduSX=CBm=~u2MKHH!5L24U*ZPvj1ML+u5&37+(`Np)_3XkPECxz+l?p%!MWk-5pMa z`(7T~Cdn!$<96a|(lZWFGV-O@q3+Xyp=9*Q)sYbX6pDB=a7H9WUE$ng!kYH84W(#Y zoJE5i6@m_&4&?<_<_nn($?11o^swt*B>23W5L4|af-%`CNePzTXSBv;I;7$PzN+~G zBqr^8avBSlq4YP$N$1CF_QE(Z&5~S8=3_?Y#z&J~oj{u1u;@rtWODp_LzkvjCmH-o z!@(b(Kiv;*?$f7Arg8vsHG}4HWx~q*p~O)``|6#_DfLRa0=hKPPUWy3Jf(4o^ZUus zjNIs{Uz}wmfg)2+moIy7L{#G~Zm*}o6`Lert=}J?H$2FPfK6uKR;7<1=$r44o37p4 zD|Q7WnAR3_vv*=(#G}slf}^AxPyxPT1oithrui4n1H#;S_h-PWLCsldaImCO(#MxRU5>SU;t(*JQ9!+{Ak{=0$p5=$ox`V+Q<& zCT>D^35@$DK3v;U2^BT}vt^I{**d!O!2Udme+h1dBwV=mPXX10Vz&#M+_e-!5UI`6 zyLmmD2(SCiUbXeR@9w?2-b`U%z{TXgNerNOBSg@=T<6Je+23|KU}<#ea-X;k4dR30 zAB;wCZfNFC^)y_y(h}QkkOIgM*ZJVS_*de*tDfL5S~2D{NF?bGRn_nZnRD1Atz=@? zp5tNXOTzGANU<|!OEf|?0UY1~6pTXpjVyD_JUrh-Oeh+2)tHIx;tOnq>BsG8YQyd^N?_dT5=k-}QH~cnQux*B2ZiT?nj|0(?`&j9L7$*QJkk~&R z8alJ_dk|pa)VMk6I|TJ370dV-5zY#Ytn_H-PgH89mj9_+BdQ34{8YqW5 z?Rt4O>i{lF7>zBx40`h~pnQd$(E9C?_sBP)v%GLO5>Z(Unuuvhg*!c~pcHIUpgA|P zTO$uH;f?TiBiw2bzBcLu}!b>AZ3+ zq|<`}V^gwqIDf@6al5So;YBf4Cf83wuXPJ;JHo;@X>{7S#NFkcnGW zE$;fk1KdcQq4E)tif>>$w%E&Cj*+c2{eefZ<4CbM^&-)citfE5ew(Sav^kD#+>FK) zUPWw#Vj?L9k%Sev$yyA$m1y{v=E=g$4>f9Bz1+%~_$-*O^CA61$(~iJ)v|7fcR%=0 z@nH@L)a?*HDCP6pzJdsE>Of(KAQ@QM=$z!>t>75KffCQ%lDgdo(l}5gKe~6n#Vhr&1P84j>HV6ZpN|jkh&neNe|PArP5zm6nxqpVI&G70PS>Cfaq#%T>(OTmV?7>5|F=oBZKazs*nY zLI6&3j>iFO8x3KU!PRj5U7p^gm5yPega%ht1Q1LtS|ero9{@=t=HiQ7M(;73ishhl zHhDudJb)7Dk4Rj8#ZqXS0-3{0#7QfRslZx_qnwCb1BVJ58FV;(6Fb=#Z|qj-PoUeq z5THxSKjfOy0wpcqjI{^E{pkp#8P4@HyDAa$?ubB;K zbVng$+@*L4ns9n9^X2jxKogpOU8j_y`G_{WSYg7RiBYOsz69j@B<~-0`Uu+0-Q~Iq z)n4RW08H_6OozmPkZSh4wAqXtTYukk1tH+OjBhc#BO1e;^v zMd%E~EFT%z`#%<(l{J0o#oQO+x%=zdcp-cAb}p{(-#*GtuiCitJn--^r*2Ltv5+{s z!`tUI96%e4`U~2Eo9R?hEah~;f{}1!#W^Wd#s6ivT+W zf6ZBJU|~QX4V^4KB_kwRfn3kdw-}xt+edo%i}z&qb4U^@Sj-(0keXac;boWx)NVse zcMuaI!CkPk{^*Bc${7iDCZBgbz1Q+r$x(=vc<}akYa(o;Gr*F4)Zt)nWKj`aK>81~qM&O{zf;EQ4niT^lPr)3gXf`#_~$#wEPmq* zja}|dOwCF5J1f-OeH;55_A6d!Bxw$PIDn@uU|0taNjOc3*J1{ACaq^u2&iXEf;aQN zUUbDT$`Kfd3L-pS=%%nIK*)qjc-f&2LO;*=G7`T*YGhgMpwd66(=liGWA61$1Yi^#zO0$I|&u z(+1!~=}gMap&o?5au@n&#e~{r={o&_MWmG_)4ZZy6eU&_Rs(ik`Ob(HUz_ zo^F`Z<;Qa=bJXvo)EYmCYuBMwNrR&MHQ3?ePh8u}#m>~4hzV}hXDyGQxhPMmwsT*7 zxKZ?Rfky7{pyXiLbY3*D`5^-rB4N)Yr`vSTcTE}n6g~d)NQFFyKaO83$@%_k6ZbBI zSawHVG2sIW1g%ur<506Z^Ax$90b6Pohx2#bW_U&y&%o|cqXh+ujA#ZOfrEw2?M$%kCeS%(B=d`*y4}(S?TqkEC?+aW0q~Ic zR#2+)58xI`g8nS<*eui?$H9@T)p+LJUId_@S1GK2^-cnV*NwnYftE&hbU$s0J!x{T z9f%2n`(u)!1 z=~f~ppv>;QJoE7xf7@tM#5KBwoEqRa!f#J)_yS5X>NEK%RoZD3#c%>q__+j1rdp0j>HXf3WU#-UC+uXgfVkpRw$qo=`yeys zfq)U0`)=02WbC&NZ9Yc-y6g{N>QCRie$46*R?Z+QK%rARNEqG(gZlOnG}T5B>BHuF zDj#m-1zg#gUl@RH{Gb7OF=0updX}3sz0kpI=G%68w*Or+Iz7E{#cRo%V)8qwQbq^Yne|8vMWDa`B7+^l(ti(5gz4 zR$AB%RFnb{A~>K1ZZ;8^c<*s(KPZN=stGX$(HCHk2-)sPvF1~AB0%t-J-zyV9K|7u zW00bR7^Z4Hjfr10(mV0ZhO3aKa(k18ut!~4HuPHoL_ShYP4v3T=PjzCGgM_8Agqzq)h%$b4lK&8C z1eMnsU5tw8nXZQy{6T>G)oIxJOS>aXBHq{|FeZ^-S+%qMCp^~}qFhlqyStmy8WGsc z-PW&UdAnmU@&oDo1|ReQ*7gn8Ti#&?zu*BJMdN2x!%M@v0pM}=m%m4)2C!=Qsn(c5 zH3~cfmIeCqMazo`G;4bA#lHs;YJmyVjAK*bq?Pc8yQB^icpfZu81PwtO|W8|Zb)M` z^*RrLCGBgwP5d^z)YL5hsu46qxJa^0EdiqUA;`3e=kXz^1UU;J>5v70$lxr@W4a;@ zR2`>wyJY!&NP(Gt7u#k|r|E~JkIVnW8d&Nxn4br;vhDUxvtFYMCZboH;y6&K0|+j-a^u*9La+)BsmK9cJc=n0CM+G!q!$lMIxHNWJd-? z1}A>SKj5ppifNS!#raQ;Ajp9k>&G#GOq5%PPr`V#O_}ywJ$ zPFz!dIqVHLG*-0c+Px-89`ZeCn1+Vq!lEZeB+=-R|B@j3@tlcZH10Q)g%|W}`NS8@E zgyh5^TyApjHrdTxgA|GQ8$-Qk=ID%lY_p9XQ$R);l4u`CIAqD%p!AP+6mtQL(VfSg z_bvG{3H>eFS+9Hic7i@ffGmbXevd$EfFkocaHh|o-=|-ru{olfox2w)GdqN1Uua;l z%~P!S=`EX>i;Uzy-8wX1L%V=9=D_iox{*FXQZhi1o|arK`C5+fs&b7!;pk^Hq4zZiM!bS-J|39u zQrTm3mQ`XMFm$$u*u1M;u)X}?Nhp9SFAxsUh=_p^%ocX{nlxlNy?nw8^jXTTGJC%W zgnB+ce)U_AL;ji`eqcf2hYiC7;tWF zs?jHRc+U-1D;fKFI{V?L5AOcrihPFKB$}wa#DJDG^lQnj?Ct|5%WVmz#{E1b!8OQ$ zu5R8n^{^ZrMJkCa@qWvrq+b*^k~^6xw}qO&tvi9ph!f0p534_LUoA?nxo&avs0y@W zzM@FoNx>6B)RMAD0D}uRe2o&@GcN2*XkPr;V7p+i$8r$l~2tu{lGdE8nvT1ad?FX z>09Mr@vR|&0fTZ!VEc7Bs0zi2y@@V?={4{OZXOcU+A|0=5kf-FfE5#vkdiA_7Z4Ic zt2hX6P9#hwl2*k6&nS?BR%j#b#Ec?=%-%0{QcN%TW=rm*KRJ6O80*XezSie{a8`JA zY1Tk)DjbR!2^d8SC6|Qk3NQ~R9`d%9*VVRtI8VZxAz7?-ZFg;+LZ=V?w4KZ(4-z?jN}i(AN@ zU@6lz2ORv;>eA-CtixcZx0ky`)-LMp*#f2sFarLJ=Qdzdb!USvp_beHPx2dJXNOH^ zhXgrG6?2Ia&S(#h7s^wO;%ffz3i2p|wY+yn=>V9{jurWfUzye{r3=QB9y}i!m^;{h za^!Q2#>$NvaoY;!XopIN;Yu6zWH>Ju@ovH8+cKch1%YEvd}?d=p#(2$Uh8+1Hr$(V z3vG>$`>lm6r&$0C(r^QHF|}m&)vh4?YgPyjboH52HK{YmlxzbN@EoH9$yc!Ej~~Xe z#BgfIYo7jkc5tnA1BvE_d#9%I-u2%KbE!zgIf2gj|2#Q(>C||jCDdl7g7MYz^f3=Q zP~pRcC~FwV(GeH$$Mu>J4sli28Q}E&KJf$l_3(%cs~lw)(_MG3=gfMbV*?&3!uPF-jHx}pGAij>{uu}>{iRUHGGn@Eayl3F`|a&V<7|e z0f+~H`FU4cS*I8-h#&tM`6rl#@|V9gHaYu8@diplQVx3%@_j&&~q#m znz;*U?J_FD+FTS2#`t`50 z;|;{rCMB)_se4Aj5y5F*;YVaHA-JGzZI}6zB6DkdYMtWUFd1S9IcT<>Sy89#GGO54 zQk%+AUhB3qo{uS!@-3%MIwvTQ7=miwWFI~g8x0lLA5d&&&^&?&VPGiRc=lP+mS8+- zdTwuF<^r(FKDLQfs_`eEFUM1Lo?#V^1F;hXpFk(^2|;=No}ij5TSZ5gh9Q{&NrHKSA$o*8~W zrm1~^b`+76dAOEVgC=f3yZRWEX1wOJz!P(W?V6$_^$5i}zUajHdG`y^4=38B-k=&U z4ob4K3pIN(k~#nKnz*?_BdhhGddpscBd-PnHTo#zFu2X7|C;MqlRh2eHwTQ*h?8U= zErno>(86{|5qY(2UAqShrj{ARcGjz4qKx|)Mh2>IZh*l(B>=@;`*}pf>v@OH6Uamd zE$b?NhuzbFrWN{-D{eTuEd?_}#%@!g_wAspN%~PnZ~LV|`$rtN%7M1b{h0I@ZJ&`1 zUHONLN16aT+}#Q;64+YaUgR_y&ipnFY_PMV^3%eHkELwMAdA$=w-&NWTi0!0j{YDV zIo<&gLB#M>p{HxB&@~s>h+d?}rQ_Wa^320iZ&&0Ubpg-vC$KmuSbg*ZdjMmrAo=Q! zL0W_MSLJz4_w?5oG_fpW>W6SU)0Ojl_$`_YlMHvSx6SqRc7=z2evOcLvZ>Kak|TJ7 z<{p4fqE5yCx;@(CH~^O1$Nq>5&TEKP@)Una)Li0iFu}p1J(+@2NnMGirQl7|(~tLE zv!Qup9`^LUG|it%?pCN6i09<42~BXl0K_4<6bpg6+?fRjUZ-2qZ{x40JIEnDr}0~= zzX0eDeNlNL{r2)(D3wJ&ss*w9(Wsi0R>>0O9Xa%~@B}vH8|Odvrd=t~jba5lbxZcz zn>3W`H(s=I8pBDxs`EA5&XRInR&O(U{z;v#hf|fbWU*~~OE>J8Lto0RZ|`>*z!+M6 zPA5wiLlo3`wpS=5U{(|2*bai%(^( zskRAVdhVe7D4uc#Z%GA`#;Nv#(YU_K%_}={@qEd+ML6D`K)Vso{%h*Y)}09r$8yhh z^0)+Ftb23HcDdu_^H#o(*Rcm*0Z{Jxen&gx4t25%O*63BZ$2?+I{D^1JPb+9uj<|i z!nsd=lhRndJ1rAiJ^X!)nsiHh?oY&AIICV$-N9C~L%#2LieLX(`dQ)q#^5<5S@B3$ z?nk5=sDoU`nmY!(q&vlLdu2oRe{?RsO zWih&L=~#{}y$u5>V&_Uwe+Kn~&1Xt_AO+fLn9jixd|N4{8k`#J5tRd5btv9#h&J&t z%xq7@oGs5C(*e^UM0{k}I0?_bPhT_c4I75Dkk(|72pbqdzRDF$LTZ2vpfk8}%8;oP}G-ASCzil#kPv}X-;*r~qF-t&PZ zZ;I5;^~maEQeNIGg$H-2lUyR!9M-U{q1ec4zs4qge!_$(;!d{vL|XB;po9;dvCMKm z_|w8?VJ_km=%hmCm&dEF=stbM*!rn%)iz#2z#CShe8&*Tl z-k_&r!xo-5`D=6s+xZ;QaX-z0GNJ#*ubZjmN#r9b4kTSPfd}HdH_q*$j$d?$@McJf zytZQOq6e~qUyfxfe%pVs4J~dmvw&FDvum~8Bstn|)(?BlE%DpkTV>vxnytv|VKs&% z0LY4w<=AcP8V)0|qVJP&9}n=wop8GGw#|QDFm=D2CK=L#BKrMeNgn>_^7g<4N5EO$ zw4di8)HM{m8x`q?vo;!k{J?#!f`y07c~O;+h)+@|c=6IYuV zZe8g2_5M$3ElxQRy$Ur>(6QG8krQ0lN)DBp67(d2mj_G7QyA`$FbIK$MH>l5gs=x& z6spkU^8j4P$qO@^IG|neLLe1#c6+6lfg0@0zR1$9fZO*}2uCZXE3LDh>9I^TUO^8w z#gU{El#NF+3DGl~#j(dOFFmrBe^}}!Ci-9br0WkQkF>A{xlq+_(?eh*=>$QD4n-fT z5EU6(@8@7(LevF0Q5kW(b;Amn5@Bd#4j>rW7Y887t5a?=J->u{*Rwlfy}b|A0#ekV za&QT<3_2_pctA=$p&E(2S6bPO0$}D>aGN4K*h9rr=YgSX>tdP|-}ux1O>`V#GT-xE zQ~#fX2ExmrMMr9D5HN?L5%mBBOz88%>~pR8R_Itm4qV=?L_hJSh1tEj{6-nokJg;W zXT$S$icWoipsQn>=M12N8WCb25101`asOu|J@z@oET~%-|Kb9h3<4Ou0R}^copN!^ zh4GT;F(nYmyfcsmGa&Xll)ontcN;5(mJp4wR2(1a+Ia8&Eb8}4cYU#&`aK|5d>DeR z@Eg^1xDqcxDsLVH(tn4&4sbvIOZhP%TnTHo)`dyOMnCf5JqXA@K>ojU4~*Gj-17WY zM>)QB9SZ9twss0(zWVbdfHqBhh=&~-8`#KPTk6gBXHR9{5(~`kl_u*&gBV0B76MLn zUS&3E8?bgvG!soXet)}hvk6EYGj{vs`$SoL8weCy*1qWr2>px8OAXJpi>}-*Bh^pk zfVxK6)OS(Iy4@|=#xV8pbce;AS35&1wq{?{F2Mz6n4AOE$nHkSLWa2o(<3r0Sf8}g zsk=dl9%N?b52x23_3m>5DgUA;zDGX4l0?k@fMCr|b)+Ibkapqk5r02Y8dh;tQ2PqC zb#=SPTy^-{nUW5QuUG&j>$st$T0Cj7XBS}pKYv_2hLUrK+oylk0%|D!ke`+m95ED` z#N2YnIN5L^v#JW;&B@GWohooug^9R5qt1Ara)^H<&e`R^doLFzE;fitrfxeRR4 z{}u=VBk_kq;uBa=73Z1UlnhPU5=YDiVGTwC#1s1anQpE*&CJ$#%_Veh_#(=-=<|hP zTave2+=t+!cm_8(7c6e^By!*&hb#t26{+wh>E}cdp6BQ6SI40*J2IjQ!TGyjJ28>W z?X-Dv#5r&Zp?ED67KxoY`UfIDg#dPUcI|pKEdi)^=6gNEjBlKoWv@#Iw9)#`pl070eN*qf23o^rbue7OH0a{qNe}!`y zRanxq9k7*H&JI(<6OH`;+I#c38rS!2xRn)^sVGIM6rm_7O&S)dB+VKO6~$IkiPA)O zv5}G_6iR8%P$Hrk4Ma2`N&{)uTq+u#<62?+?(gq;-_PgyW?5>q&KDcC*VEZNRoFC`bb@W5h``m%)Atcp@Q+uj}{@Cy0$8ejh8kLrC@;XAp(< z{JmuSX)%TKB!W z9<`kL{E^~M2U_5XreDyFZ-ubW28I8O4Z6N$9TB|d5kTTIcRT8Gvh2i`k)5(}7C?xD zdz=jt@}+3CPk$6n9l!(A6kveMpL;iCyR;;8n(nb&bd8s$u{=!}AIlKg zMu*^50$x1xEbnjk&i;6$zw{t@iA2~J8_#*#Og~cWqj;O@dX#*Qvs^T9b>>`f%$7Wt zL1`8h zBljhNWI~1$th%-&^Ii;1E;H47LztS|zN}z#0=#Fc@t_?-_R?HhWWDhOyCBY(R+URK zCa9M8fKy3m@Wmg$KB{^Uly3!8@^(gNPFRbY#}@3KIeH9=%Ck2p!&YM&M8Pe=7zSXd z?pDtppQ9IfhMQ{yaDT*!IhYK3(?ZZWXYkUNB*S&+VMu~3diMV7o6cXiC1u~(kTZ92 zv;nKeN?#sXTQ92UO#_oo&yeG6JI{XG_Zav2;1o+sv7h`*yz;!r#uO%v@T6Vke z`W05$7J$546pC~O+KzX{-;6A9yT3JPOV(dFfEJ(DebzP^XxLL3FoI%*%KKGZ&U%EEUL?YZ|e;+?Av}yZC2i|sp z)PZj?SINCA!Z~y=1x4=%-Kb$+=j!z2j~G6_$RO@%1KPBLlf)q`X3?z-=T)f1EMrBl zDY~o&7s&?Q1d*fE#v7`0*2kmQ`U3ET#)(IViAIG?br6|{ zdFPgyf|BdB)Hf5*Mm-VFR3z5l=SBm}^1XJV`*KVg+JUagE79|r;a|W51h;f@bM}S%`io4Gv&CTNs*85RrtU14O$m$p@49Vs*p;mdkSVZ$5*N zpQ>eSM_Zt-A;9eiNX1Ti03ouNau_{xxf|v+k@m{zq0aHoG^Kzq@zt3RyIc8V;2K zeTTd0yFqgk>7`?l?_k5RS0Ws3GaZmHBdUly9G1D)<&&A)ISDG*&dyx8A{Kdh_lv*7 zFo%lV)dfWgSL730oE9;GTIItd-I}|3hpCkwCw@L+_Qe*_2R=P9E3W><dE4!L~yB|f(!R(0J;BoH2@#kjW^*P(Kf2v%6 z`z$YCufY-%XXc5AopRGRg*6Hatwt4S3>^e@NeaLv3ucS@cessN&j8ede=+GY_0q#U-|H>3CKbMzA1_?+9}GI zl5~2G%+J-~%V4LC*?vfWEP@KD0&IRRrMm(+8rV~b_UH?;Cb<$<#O^*Mp7RScWs=Y< zEqZ%*YkHw#MB*J@UerijpR+=h;_#=TwI%{5$8c9mNvQ}H{xq`77I5iSJr34bO7RgK& zbqs=Jp-ZM}6g^tg09VsBDOaQdFiFOy(StQ-`8gQQ5W^N~{kJDw7|!|3TgsW!xPyTn z*3|R6)=utiBH2DCs>zAzu&CN~(cb;M&=RcP^0#_9qs0eRc;pdm&O;I$#k4@^w)216 z-7zuRqJDn$o>BFy0O*$yo@;BFlXN0{3*X-OZZ)xa>n=}4i$so!qJx$jB%P=VBRRMT zyUsfpm=!z(u(qdbbLrzP?@#?+dxi{wby=7y2WiMTG^U>6%xjy`RAH)|iqw$aT(S$# zCckO=d#N|J0@TQoGueXaA^k)Ye9?qBSS(4sTxaR5PH$ zWM5-TUla9W5B`m~zCK4C-2@G=d2skvwC7#gt+Ry}P0@OJ4jccU$(bY4?+v76?p@@kh}Uy$MTo8T+cEXvL< z;}`zBhohkTg>Y{6bCS%W{+UeQ$g^Be7dq0jPNp+0v7fgdEM#uug8|&htOVC}DNi4& zTbc3EW-`s?(nk*bG+D>$*ScihEymxRt#X2yPwwh?LEEtebXV~AJuDi~f4G1~2|q_R zNG?7tCTo<#Meupdo-;+7&cD7O{t}lHqsb7E2e+m?y72AAQdo}i%bkn_tPc9HM)}Dy zhK~2bV1AkPU=J*uOf48OL~__3`FM1w);MMZ2mD@+k;%@kw3$pz zVgze71VL|>U8ZDgPlDX0aU}3GoG0{MU82x<^!C})A70ghG;FogM@4%iRa+p=LMUju zHG>R#D4Nkf(1G&*1==kUuip|JEt5Z5yf&p$Y7|Zt5b_Ba2pDt@&GkE7~K4OCr z$a0*gx?MIKK90cXz57Vi1nMr@3weM&pzdChN7Myh(75kwpt!`&<8M__M-{KP~9US{9}KYhxU}DwJBovnHNBM!Sj}3xU(t8Po@*DOyn^uAeeOJ2NXQ# zV*+)U%Dgy;E`!s93~qQWZt@(yq`%4W)vqHsg*OQdueUcch$-Xm4Ww2UGHPt_2a2lH1!H`9$^CoXZkMuccLr`*_nuv6H0Dk6nmA^ zq?^FTJN8#3&Lv_j0v430T?F4@R8}W$ZeBQvCNM;F=&rLKVmWOgn%zgA10+93_P^Wi zd=WEAbO@;3Y0E^t7`r)UV3ZA9WEWLCs5?oRB%FB(tGxvZPJ-@y-2}N=%+1sdT2a~W z=bL_U7P1-h*@ki1JW@LpbxP*8E!A1r#uj(vS9oOrQl4ptmSjA@D#8#Vg4l?nGSZCR zr~kbe`X z_GaG1i}h1l^X6s$hS;8nqdh#ec{}G-@%aS1dX7HCHJBKN!SG%2#4~KIKHihEWGPSZ z5p8Jys=p9%eDugvZIbfgnB0ilJX+*oFQ(Cu<9a`t*suIfD1QDQ3%GN;V*wBvclY`wbjIl5Eq(swK`nIyoj{~35EU*)l3C$dn&VcsjF6S-X#eDn&a z+|Ug_qfKWuCsTQ6Wmmoys_{_Y3Xj_bjM(ux#$ht^X>+Okg{(O6Ldehykf-(l-8l%H zjv491>d@pRLp5Wjk9sI!sg&OM{-76TV>+v5MjIWxzD)eT?@q&EKY&DNjBRH%GZD}r zGj52Ta6W%VH`$4%ypCWk2A|)FOZc+hXfs`N^4|R1@nq5Gm$DKN8K$DDyLsJA`*8yQ zO$7HyJL8ZbYrTB|_6#8#{}HpoLilKNg*VZ$aChx6UMQ4@qLN?|3DCh3>kOnE)3=5h z&Z8}oPy*+a5?PeW(Txf$+0a ze(pmO0)KziCri#LyX_-Th|6IR;*Y!B+CGJ(euVcWyY$AZpc~5#Qw=i~gue+~)FV!9 zVoD1Cy-F6}V1U7YroXBPHg6pZis!aEBE`u$I+m>Z-w%h2n-!>?tkkJly-3j|kfJB^ zOqQMhdfU_DWZ+~Q5{YM{#P|W3CN+Z)Hq~g&EQ2~dvPNuDJ06OFOprq)_Yfv6(hT5n z5pR0?+>;=J|FJkhdf}V_%N5w3uYhw}D2R&1>vcjzPsmmgU9gZtR#iR0HVNbY!+nRa zd+f%LgOO)#wfD3swSWQd6>%AgPIf8si;GY(6qTr<|59<^!MqI?A*~-5lGFP?ZZ6U^ z;5e5+cYdZVd~`7o;ZX3a1Ef6O0O5UpX{7*Tf=>~)7(~vz+U0YBg*Z;OY|_cW8v5kQ z2)thz>ul%N*LuR>#y%KXTM7tyG|=*HK5Pq(K#^jJ5sG3&bcCy1Vj5P)j|Fmv0cnwD z%gF8&g9$#2O*m={djK5nf%U$`tj;NSt} z-eJZkXIRr`40=@?9{JW$Y z_aLOKKUXce&(fUl(=(ES9kT`W>{;9zO@q!Uj}7jtvNl@+{QQ)u%H#iG2~^SToYV3? z|D^gcaQ|kCO>o#QQIM26_Fo^7f1LF}=gJ4YPK)DdZ-UI%tZ&~!Ixy#3IeRjd=W~$A z#Y5fk)$ep#M%YHC?)&S7rrKG0(Y!qT9BI1i%8|L*chS_~Z0cE_N1*P~*^ zcenkJ{0x?8F>=6RSqv@)=hpKG=(^AxXiWOp{A*2nSni~N6d(Ndb*t@3gjxRL%r)l# z@K}9dPp*PikvSW8b^Ju|HY@-_W;zcaUiRfOh5vms>7wQh$bK^d{dWF+Qexf z^IuPgd|=OciUCae_6-M8$X%dUvMgA_7hv-=2Y6v=!6Y%euX>HV9yOr#y$94a1Esn`z3r?!L17YAN2DGyKA3@2+7L8?<`n>Yzm6EjpET%2kcYF>nt=aUpkV*{aKIojK+l}jN8TnP?|e87@tS*$Rw zJOt7dH-UOKKiM(=-ma&!r;=>hsFoOUfCwoU_L7ITfb!cgCtP;#S(jJJ^l`kynzKvG zuCmHUCF9^YEl>B7`JkBmPuz;v|MwkUd^aDo(_620VpS_WPT_hF6BSd{?C+QF-p;sv z^R1@;KbgxPtB9PRU-!I@V3G zJJzO%{_%gl8n()uZ+_WfE@F0@1Au$41G&&auseZKGXeUG=|Pjhxm)p_{2*(87=AI+5R%GB74olj?boZ~=?oFRg z3D4TlmfU&$DixqwxNgrM5zAl24@^B2XGeFBkB%G!=^)XU2q;~@zBdwrM{wh!q!4r2 zO@OAHxCn<|&c33cEd+?&Y9+6MB;xv?u3(LhF42)YC5gLj6!im7p#&lR3lxE??JE`& zhS#CLIy;jNS)Uc8l#EepT-XqQ`fDY@aQXyi2jTW7n#HPP zp^T0!*Hx20?)y&3GGNi9uiLor0r+F(Bd?)bIfNK^mpF`C&0s3mc; zQqX9aQgH_k*1wjc-xuC8rT)=1K1D0u!c?C0lw=foq2|Ib_$Bcu0syHzr04{JP)US} zr!f(Y!$Qi0=$S>5ptzyddA|Rt&?D(5qmR9n%eZsQ{=DniR3>+psC$^(#f%|5>WCR4 zyGMxl5KO22WM%ab^SaQ6rGMnE+>2N3eI=-bu7S&GS49yfsKMfAH!mETLzmvXk!Ar> z7NWIYH*e=G>JR5gvW&T|v*PHvBXOCWt&<>z$T>PI(B2H?z;E+P(QkVz<20i#%RQCQ zkI96G6~|oBZ%i}X5;0wGik%==-5+Nf7YA$R_uI@a+*OOoFLHi;18%liBH8vToYXP5 zOhHQ)u#1i6^s5o8jDtj2fU?wrV|=12WKoY%k6(iSKO3TM?y{|S<4ogqAqB#?=*jOL zBEIuSRw@p_5VI4DC4==tK|C`Z!J%lg#^*cdD&)z;^>sI%I!exQ1k*%m^^44slVTo; z&?{rtzku=3t{vGhWh_&?L|VfnN*OWC-4*mu6A!s|7Xj}tLDg{VU?)ZqzIoH3x`+4l z)Us${-ot-<=W{B=-!c@|`yX1rAhLu)tO^6C$-W*Vjvj;^%hT06Oa{aO96 z1WV9VJ0{hD5_7iZ&DG|CK^AVd0JY{BR?@}lMF+8kSihT|9c^tU! zD}Q7biXX7am!c&dMrJ5+@+=bp$a}yoM^7>gEd5HurLQL6AHex0DV{(3`Psv zTk2%i9)u(`@ae0ppG5;T9aWw?87ce zz&7qDEWgp06zjXe?*PPWmZzNvfEq+4aij>}vg#cK>{$k@c@uO0xm2U2chFxUw4!^% z8juudP9zbg{N@NnBXsNd-3G7c|NP|xBdlQ8T?Fe`2TAo36rEwK->}63BUp?ytRS9p zw4&DiCn$;&CWeg|vtt^1=F4lU+hIe~c)?UaHEiW}adaTVih=~JtA)yWuOIkz%gl(a ziY}$RD%?4S4N!e_R@YL3p=X&b)hR#}f2TQv1fh2%QPcri`F^^q%*T#GwVaxvlBA9rHO0gS%zBpja-6=3M7 zV}h6?7MLY9S1l`0>+?dYUi_w?$)qdnGPKK-{HGc!SX;J(EfuzKF^!$N&x*!kyr7Cl z*~8K57fg#;QonTZg+pcmnEXvrjI!garBO$~rT8}_iJ<+4>C|bqCxe;E{QL&~{7ie| zUT%}}RrCI4x-Rhk5v4!PA*;dEjNn7m++V3OH)Ks~>*dvKBo-7M1LaF=^W8skJ_3>k z@@15iVDZE8VRFHX*wFV=Ej2~jn>C+WaG_h{uVePl{bB!Gx1r9v`yzPPNy2Pg zGbC50+=_>ilMzJH4pnEJKAtR|K4jgNy2z7Qznk_TERjKNwa6NN~9X3 z{J_E00Sb29tR2pj=K%1s1@)Hb1DQD(pZw41#(2X4z;^w~*}_r?aObht3MD8q`i+_x zCvym&M~vik)^bExnjTf`k^S&YpOdc1&bIE`v$MNGERziB%dZL>2E=c2pc!q`^fSB3 zW3(>lLWLo8}D^!MLiUU!dr*SC~rU*7d3^76+= z-QH?Z&oNOUrzNsqHFT}J&(Mmw$~i4;G*&u0mx!UWAFez;P%3koC8o05Bh8DH$bzUK zG4*JtLmR3nT{LPt2duJk`O8yy&7GOAVo<&;G*%5wk>;*|RD^eNRWwYOpDZ>&zMjNm zt;E44!tiDBqs>w5dnRUbq!e^iY(r^y^DKAF>U=O|z+OXPJFV<`&EZY@NmD z_(s2X2{(By{_YB!ja3a4SgQZt6}pR)m&1#L-S^#1)wd_ZK1tDdritVC#AjR$)Y}%sy~4AMDA9 z&$^;z)~sF0KXi@NPUI7XpF_LfkG=Y@nK5v%*uBgU_!V5_kzd(+?;8^WmBvu3KGR9#RDT`-V-o z!%gQ|0B80>A=dZWWORoPy@b8scsG=~ z3amdG0vt9}>r78#x^Q40t4nZhiNsCPF}wJB^DIYcE=uO_;T*nXr{1{F6B{q*t=(~7 za@abK-IvpN%N>`g$s2pO#IpMq&AhZB`WB=2g&|A&t+@W_ey!J+vTU;(wlWjB)~+y( zQ9I=#ubU5hHhLr@v)8E`_y~R15b1gy$YQ4w*BhOnzNN{C&L|ENn0B0D@Apuh@HP*s zx&5d$cb&l@IhSS4G`luonJ^<6ngH!VSp7EK!i-kq zk3C^Vax?{c_39E$<|7P?mZL4AJI-$sB}*hMXC-aX|F_?UpG|C2i^!DFa?ZKb*oq$T zDiYC1mtJX=t>}2?@l<=jrDLNUcOCd>s*IZW__v`yH~Zuc$F5&Rrwd_dr|a;iQ;BQd zS%`I}SL)jbtA5)E!z!n0@C7T;OgY7v$&yJ^wy*Z%yU^yGZlfLx*;eE93C zYay?B95L%Oeh5R6O7FVYn>6h%kc`2|hC(l08-Vqi!gd zr`{WE#e$_3GZj9T)hwzLD8SHN=H<=vs$HJf=O!z#DsKLIU6ELH07UDdM}leFM)%#k{jQ~P;rlu~gU;IV zeFp!2@1(!;DVbuy(8C{HiWOG80E$@|mN(j@pz?}F=S1*b|HOUr;P~T(eiy|d=<|8%Cp*Is^Su2up5^n&bLr2A(=NWsroew7B>2c; zO0$*(NM&W^b~C-f`5Ulgr*YS4|2mHTx%0QeeH&T=Je4v{u{7Qm2u)sHSc@!e7RNqO z5tePCC%53Bkfrg2IVsVmvVLVAC}9R`X>3#MH@*#{sUZ3YF@NFz|NZ~x`$O#$T@@of zm}I$T-U^FzDGxsfRKL|d@m>55DD?wy1dao4o`54}uye6CcdKRtdQ1jzD>Oh4OcyZb z*QSlm+^tvhp+dewEPv8LqD?q^_H1tCmu0M~>=4{9Ub*ApsyuO-UF_cvw3COIFN-tXA5C>A5*`uTqEnkKJC(4_(M~9yZzgnaI<(x)Ea^kh> zlbkm;`!X)Fy@DUGD|$UGqQF~J3v(`RKn^CsA?VTI*A}8J^gQ++6x1maytnI1R%6jC zsD9r(yUfSoHVKAdP%j0~q-43j!4ifq zV>a=F(E~Z`fRB5PV}>5`%C1ivv#|T`9HfJ^dl4fL!m-aQh_%r{PNPo-yezj5G%i~} z3;Vo=HkZALKEqGCrDgx*7L{0mE&Zv;NRIg7c}NV&OPN1XO?0gb zYimD{!(x>oD+Fu@m5~`&Zm<9T&K3HGp<$UcuRee_A!s%F4M3!k0CaV2PK#={4)Wsd z3*>M0A4-`o`&S%vxM{`N0Sce9gQ?NR!WTtDAXF?bY(GXS5(o;nZi9rT5`{;&daBDg z+^TA==zuCJ83L^}wTEjQ+d!LseKR_Dtkc;*ThL`guGM|Lr%B6btTX)xlw*mt)fP40 z7F7Z7#p?IP4eDecPWP~ODYz%#MnI2Wq1C>}L_0;n*uh4(j!GNQ-m-@T-HS08ta z+~;%x(!xY|hW5ANIqF)Ee&+Me5tolLFLb<_Z=Pm);WUfi13rIixx|Qrn{v79K}xGs z$n6bs((~yJw2qTL@@aY-_V?@V)U=`nZMZGAb*K|_D%Hmu)ekFo13S~FUaRzPPCQzh zFAgsoAT$gBw3z83y~V z`Orjr>bS&0a0*wpjJ8nYd%u6L%DXm%Ok7P^xTRpM^77tmmq}`K>CjgZMszOg(VVaa zFFUrFccL&*i9~bLbI3jKN39%yuN3OkjLTJCzOybT7#rd;HFp9*8EIDZS~PGerlqAt zZRpWJg|2iwyaH8^_Ju~FnWb0qxJ;TFd0~%TW`BI9{6_7CZd=5zVql!qH2Q+ISLCfA z3UGbQ#uvxFuL~4iz3#YCUFl;{<@XjHV+V=Z#Yf#sreN-4C>YmH?4o*SPxQ==eAR!9 z#m|d#ORusU?saoR3&_U(Por8*c`1t>s6R%kzr{-*T|SiFep|s@b-V6u_H@`2WfUB5 zVE6fUNh-57MsO5oli?<{v`FpWy7%e|2OS4x=ZMnl-SlJXeV-SO*f?xdJlzAcrP>11J9;GlyUu%PHZCi#VXt?F)TcOe0#-8Zi{ zU~?y(V$6vDUUo|Dg3Uv-s!tu34*b+t?H*a` z#VML$57n`nX6tJj+-@D2Usd{W-0@MtDGUs$cIstw86a&s#<=SLx`Fn)+9>_k4al0156Dbz1<2p5bGQP6?im;q#_zU>CGY z-w_=$KJFR0?^3W;qD!ZMj19HH=RoCXonh@fmW4M~CVr%|ztI0+Dvv^o#&M)b5u^BIoJY1dpzIIq>_E}pGFS;aB zjI#F=V174uEZ6}#7p9E*664C(snCqo7meG*zUP}ATAx(B&*f}4 z>IXePUhK+S9n=={QtC$rrHhEzT?zVSRBEDSy>LJ(8{?GC&E>K**84pEi#naXYijxo zZ}LB>Q+ad4;e^-dIeC6vY$)l+ zzD0{6BlNW>=3GuZNHTJHwUs$r2Iwoh60c~#;W=~~n&r}!ABxLHHkQt|#iptM^5d3A z_>M1CM{Ld{ofe97Q8&GiJaV)K4^n%lW>%Y2@HyJR!#CcI`8 zhk8_CyS#l?(ChY<{NCVYw;U`e`(fc{g*BhcYMP_Z8<^*a5h|X0n!- zdAQ*I$^8hPMq&g>$bO_QgtqKD9&H)UNn=xCOt|_=7;D za~&53SZ6Cs7nW@947|RL>Q|sbr_6zm6%~-$ z`dCPE^~4Z0;eK?%dOf5)Mmsg)Wx>C<+uPylPk*U3yE)t0$7513%E@{QF7iaEvzwmjsIEJ4Ot?t#PR(v;#YYqCK zGG=fl(_UYu(6IcTteI1Av{qcWu$-B`lYXISh|J5JL^+?);Zd^{@5ND@MRW1r>ezC` zYG8kGo)}e+0NY$x9kBXMlXrdAg17NS?dy;PUtup09+VkX@$wq4tsk?rQe1vAy7<7i z@Y&K{Vg)_l*qyX?MrRE)3Qs6@pB2#*tg7Ns71f7P(UH(RoV@pMovp4qBB<@l$YGn> zsLVUtQ&cnf+rz0^`7svHRBnUckJXs3!=rlZ z0g|$8E~6FOSE zZAfWe1#T}I|NJp!-5Zb8jha1c=EYq=ZfVFqXUR^*nA%ai3e!l}Kt1!O=6(f4vOl zQ{5QI^RzBDV+1Yz%Go|W$F&T~V%+UyqU>Cb^bfVVEJ$X*B%inUDvRH@dH&O6r+7vN zoO*_ly)FIzmpyzp+R5gL5PU&?MrAw=8T}ojk-di+qLi)%e=@oM{nr&^q@?OqJSCU42OFxyr zb4Q}+LoUC-E;I94O*VcH_^(Ki1$L7$Lni0z-4}gw^IanSljQ%qsCU~Ons^%;)mF^24UD$qW?6YGqO_Q=M)N>=#)+kYwnvwejCg9F zGB2$RsjI^4M4_DOtc38s6~?Z|PAgS4{y^GZKX|7kZyw9-BXgIFpwjW02UK_~LPR82 z9?w;i0YiT|Fx{JLgF4y&(h5+r`hGq}yI||y$cwX8o2hWyic>hSawD4gk^k)=+Y#yh zU$cC*W)GvA^hh)Np-aZygVTc+(%G}6xJ>K|-po()HSQPPl-5)3O#P@);ZZx8rA@Nh zajVVuL#$m#5-rM-`1^#ak~RXCvuM0`#o)AQ7)B#M614C?ago%FuDtxM9a}b!a3@n4 z)7BJcDYYI6DKiwKzmDsR%dNQumRcw_-RdUX^YDwxltdGj|mK%G;PFr7l zZTC`~sC?ld##bY|>a(Hj3y+^~-c)Qj%x>d^G>IhlBey^2E>EBbOjEHm`Fa&(vpUOL zbm5#z1>{*gw6_+%cO5d(YVS*mP)um`tRCb~<>0b2AWPm6i=_>!kFH(^l=t)1=UqP2 zXj5|idN}>pX->D|^S>7961woFpn`gG;899O!R}Ut(9?UL6LK5^1o|!Jt6du?6g1C? z55F)Gap=|aVqx#EX&MI~YB&#K0vzjT) zd+p$?PS-ntAJZ=~W+((V?7o#P)Ssk~7%uzJX8{yo)EMoSNhAAU=oR4;FkL;?s29IZzQMEc^+I;oiT|ERwx$vsw%tHdK)7&dg5% z$3M?L7QS8D_~V;ma|3F5^R%FYI?Mq0I8(n+B{nUfpOhVPnCf(7A<=)EtoU{qg=D

z+?#`@$zcKRb$N(%jmwUN&l|mdYid!v+dsWA4|yV=KSz@7{an-=()GTWg7@}Oh0JDE zr)b-Q?cx4;Sv(5WA>UUETWxNzjtdvb%6L<2c&F~{5T4=SJaPanBVn$M0s#J6a+NlV z=*dK_fJI3%TO5|@zl)M=5N4%M-6AsYxJu(0*$PtB%0U=D$}7y@f4FFU=rq9tj2A7% z>{nZ#dt!=QBC&%>tM(S;A0buR{`tG+#yXLrRQqi~*>`4EQ~#cNw&+w`u+KoO=d7|z zv+o@zwKG43E2+J{)~fq%{iD}DwGOv@@NJW>Gd6D=!`QLrT^2w}o~y2Nu+TFVW$a|1 zKBL*~MtF;&8I=*!$2ET4$d&c@GOpP!wuM7LubPbHdbu81@Wf@<6by=YJ^oB{-7LA~ zC2w_&QhC2@LW{q8VPh`%JuW#5yHpVdcKbb^o~{2jWCu(7+1oetNqcSTZd#zo$U1^} z^0GewczoY+8*f;MA&rmrnsnyohV3w-u}`VI!Ow(Grm#l)gzjYHRNC>XSz+id zHXb?`%b+a!Eps`28IAzV9ct1g!eor_9#PC!g^d}}rcFsOm0{vDK)=UkkbWQ!hv9Z0 z&(-p`1HwM7r18*2SlaiJF3#MrY(pA5tG#JhIo^a-eG0i!_BUn#b06s43^kg{OPyi- z0?kDjJCoP}YA>{hNXi}#Aoll4p-9}e#S(qB_QE82*}^M zpZXXU1Qi6Qpza0O5)fe=c)-$H)I|0u0ydF`z&0$*ET0Qic&wA%h$VDotGwRrR-ca~ z{%($P@yq#PT4?9mcfYmlwDenj{+kI$zurS@Twn!xXCZlZ4!)(v~{nhBFl-sq{D z8^UeRKKF!>_?`<`FZikrtAZl!6dE$yqr!>mNR zXM5kW!#EydO?qU%5qRrZ6x%rx9B^OZyyG*cY)X2R$e!O_lvO>f<&CRP1{4n+{q|w$ zSQRy9o+0c-+E(y}5Y@Z9dWkBEnV?Ut+~>|LY9~pyPd9R3o${OM8`CDH2oEzdF$}UV zg=8~I%eH1u0LhT+1fnw1RIK(bjdZEvVAMCyx#i$O3gNpgCQz#6$1BCgGp;4e6Xoih zyJ!p6#!BJYd4ZC*EfZ6x`g(oa0o7Q%wn>6Owh@E_0 zTs9b9b?B<&109)eq-reyO|Pb4s6zTH<&H1;`z~B}*akW$#0tg%M`poHav)ZCEXieK z6^kAHfY>?7-~E#r5x$FhrtFp6OK@H0)zY|@oqU{!CE14R)nVjs0345BZ`2m1j=DCE zDXN`})b{H3uCH#-N0t@H|=8 zxDc-^VsdpD{Sm~bK4rb=&wDZBj<0FMG=7V3zn9^d z6RFnlnF^GCl^W~bq9x$?#-khNp?Xlryh?@h?F%cw!fMiH0n%n61fVoI;uaRu(w0h% zb-04i*|O-H%jN;r&gF%MM^69h>FsPl(3)2Fe(BFG3-tURW5s@E#xHawZ=}?jfUsB8 zKcRNqB;&j{PLWDbQiUmJP?(Iu-XnucG+ELe0v@f8O>D#C4()<~TV;ouS-f>fI#yK5 zvrlJ%c~5?rM=0yb{5&1S#NRjlmWm&LwbjcPo^A1A@|<%57icb!{cE!_pq>RkY{ibvYV!0bc=uR+|M1%9Qb5Drf%ehiV)bk9Ffdua#dRpgLMAtB z=&RVTk8D-<;~opU81XA00S!6JxYd;lhqfl1=tyMb=P64ZyFP89tKl{bq*%+F5FRFb zxM!v8OzSY)x z?Xbdk@LYTBJVKAVZVHTUt;i8jN0qLrii3XczM#q1;qjroD4XkXQ)a8&kx8_h;RaJJ zPqi=D7IwjpUx$YdAVqstJotd!xOZ#r@4oAdTljAI-%BE)dzieQoxXI@aL)p6?Jpn2 zSiF!TwsewgC}?EeRdwa&83bbJPa(kT>-rC)K51hF+J*c$8t0rR~K~h9Jj(0iUyLI4Vfc46Lo zc5Q9X&}dP|LZRnkVOhwq9@CiZY8lDjZyXRi(wuGcQK(F8UBXnSkx zvmcQ9J#mFVHqOT1dq5n@>BDM6(A~c*E>MTTk@NnV$&(B>+(HTAOR~6@`sXYgIG#Ui z?bmbiHT&;r=_4`JC75%gTU8KxbcqB3FBILxoy|D0Uxc3*ZK z|Gj~G$Of+exb*i4I}pp@-hXC=cgNV)BVVMlzMl6!Gd^fN;Wo=htGm>KXZguo?QNif zR)XAGL4YAr^nXqtRb@@E9w{+ja45Lw$wq}*SCeb~hXPkVc&55hEZ+-kwB|rGGE_spip*gQq`EOlBm3h`UG zM8ZTi!+4-?$KFV{%t(!Nr94pImb{+w{YU+T+HDv_*dt&Wz~R9`tw8=)gOZ_%{7I6k z;0ge2GWnN1&2*bq&zE_gZ;Z6#b)_DCDc$pV#qSMM&B@PdU4!K7=ie~K*lfyU*nPB= zv2NO}cdc3cD^OVM^5d2~a&qqP@5O#=gI}u8;7!l+>x45xS{aWP!|u_cn!-?1bDQKN za=$Ojlx>Dz>b@7t_zm8`|`^Xz(6r2o&drjHxsb9tz9{@%(O zn?%gE2NUK~IzBN`cw)HtSd_*MHr`7=zw4@ptmvMkNM#uO6W^x!sgL&td%pdK6*r{e zbocjaO}d99HFCRoZP+?BWSft0x;c(diT;jsaxOFeIA9f(|OZ z7z;K)83F02Q9#Nl9cd~}8HzH%NEzln@0jefv;Vm3oO{G@bspd4FRt7}HtbeY=Ihc(07Xkc;|29-q9}lzSCF^t{*Z@ZRd-?CrPH z(}`ie)BAv%hqv3_T?>7kJiYdM?AKP;QP*C!aF4h50WWR>{tmBOngR$W;>)Wrl9g6L3_K&pliR*eJNZ#h8didkrldL8$cKdqK zdoyQFvif-5dn?}i*6l;3z3zL`7o^`ZFl?T2^3LtH$+tf!eo>h*XEt-6{CB59eqOln z8^+W$)l-o_{JN91IK6o!^lG&I=BZO7ui2CY<;5TE%JQk`ZyIee-KslOq1UzjTFt&y z7#G8Yckz6!9Q~`%;q%Bz^vTzn^n1t;4m1gj_wOpukH7semwtTwo;LmX;sa;;v1uk| zi@``-`0o>G9{xQ!|EeqJr-#;xg`NGzQjsx#*MncJ!)PNYJ*dCsDC+Yo$f zb{qGzd#f%xb(Tdn?9b_C4|7_B#LZd5PhI(Yp8R&hI(>h69Nxx!IvZ{@|+L)BZObUoPnvpUX|MXy>~b=llTD4v)Q7bNrt zi*pQH{fZX&mA!ayOxvX*w#mE7e5A+4I3~{b=~a8SF2+#kz>J(e89~ryf0olkck09v z5C2jdt%EOqj}H>Ja=8{6K%Bu?9isZ^zWvZ{508FrgNI==0g^Lp!sxv$Y%_ z9*^~Xx_7Ue8wTL&`TVEZotIoeVGEE!y>lV5Lgbh^?xMef`CQJOoyiRVs? zjJK;9zY+!II5wO=svO;R(m?&}dR3NIz~IZk7qb$IfBtY$n)j>9vKUS9vZ82yRagBA$A|5Sp)=O=ngT`TsqG!OJj1Q>J-)e#i;IiCzCJJa zQ0IiblE;EO>6W9(-yj zR^eQIa=}z=mB17jifskAgj@PJc+KpQ*RmljOyKGL?Bna(dCY!%m$kKZTE{t?&NV8d zn^GmsE^*01gT|PxR|+vdE7p8=r|o2^YJ@F9 z*c=9KwJmwO*WLGLx6`_P{rtYDRXWBMU@Oj&r}1N# z9-dqfW9Qp&NibYnTf6#opm%%Zt&&Y0LOyT~EqgHAK315LqrT?ojPe^+{DJJcy!~;mehp3$3JdgC(qg!C;JNjM zS_G|#_6NG+&d$#G-kkn?4sW(&qsqkVqv`9i`W*eR$fl1TyIZ1`5F2h`lqDEGrk?%9 z^5x6-dU%LuD=eHoeR}YxjGL?hW%)CihPyk7 zFvg7+ELcGCPCfVay}(yy_K)iFhtpRNK3w?mhn3FMeH`QXH%26|k$Jh0~w+ zbx|DR2PGoqL(dM|`qX@HsQbpA?`*Dq=h+YAuPnHau57;G`QjI~VZGtoRU6HC6eVef z0S$Sx`(1}0XaujgZkbwvVR^NmHr;>Ga%y!<4@xH9xJ7DLdsYt3hWjP`$hcZ#UQB3O$>`@=b>H^Zju>8q+FaaPZp zQDLfJ?QFX~{91#wy*kU-Vnez5O?Gy6di}W~w$3@#5*6v&qClZd>!VglbL;fS6n2Gb2>Pj< zX5m0p!o;9Pz)3s5=2cw?zSs4A6M}|IjK+FIvxB%Hm8o2baP>%gxYF(6XxEgIDMqgk zuUxfiNVE+XQF=J?JHyS}uf@MhJ~gN_%4Oi?g|OkamH1QYaR>Rrb(zlP(U!OKlarGZ z76aZK>Hw72$xd(fc+;^VQuF*jewdlp>yCv}ET3$MU8lXj=}vI`2UunIr#j;nZ4XbB zz9~{EXz@Wd>Bn1|;_x|g$8@#GNsl#*5YW2{VWz9 zOGJnAzd)@r&(#n)tzdX~co|TZYwZn|jg8G>^XP5D(|CckESdxYRF-x=-v?v1lG4-D zUB;@fZWRH9>YC0!`0ey0RBby9B6d%HtU(YX)~D8L1i-FgDHa`pyD;h7u#tzl`I|4i zqDz|NlJztA;ncXG4vIJvpXl-zpLF=ooz4!}z z?p=kD6MfjZ7U|Z_iRlGn&HaQT{&9s^7)!hhQh-ulTA*xHYA!y#Xv_x>Xu`#7s((2H zv3xokfuPa3@*+#3ivqK7DKm1?%_qHi;+Ck@{sZ#KaVs3x9Z{HDDVT+Y*e#19zirikK?%^B^U(Qvu8jn?d0y70AaOZ+85 z`vfE#HP+&dv5`mQ)xN@fheovSz}^3=74Trr+GC$~0BsAfj}q|jns-Z8_1|?g&F24H z9la7uqx=5gt13QXeo|guUhM_Os>c9i!dnUN1Ex_DV!rC>*#HcCB5BgTR~N%KKB_C2 z7_tt#%a~a|EN|R;l4@RfY@BUlY|ASN*^$2QdutmTlza?E?k?o> zS1(^)8JbhL@R|7O=<|g2b7mrVyTl)Q@k?yba6`KC`&SMhIdX&@784!4@2lwyw>!v^ zw{PEO(gLg(8cx4r%y&V>_<_Pq<6f-P|LP*d8UN;Q{!MPthWqa$@Ps!}BF+a$(wlhO zMl6AKm|P*_!~atnanFq*M(&;mzkV{(+#ei4BzOPR_7RZEdZkQzQzDya-Dw@%E3q~GFV!{<8O~E>8c-_tx=&E z{5q8CUOiM$_QQv8osjYq4m#f*pRcC{rlPdHBwX9+(HX*WBg2^md3TFc{M%0xgqHl8 z--SVWHT%?Ex^-&>p+&F9Ur$kGp}zD4w(Gc6q+D7c9V_TU;mTbr0QhIz{1SZ1FBeYg zFEL%MR%5_185tL`g?erR#aI2q}iQma!h5P>Qe!9thX#iuFo6@cdpA(q#iG zg)tvx8sXi0=2BrbpaSaeXr|ui%L`*YtpIP@sNI+vY;`J{H)+J~%!s;!+$$OpaE$~; zV{YqC&W~b+FYYk+2-ph5a=Ug2c*23V``(XJg}LGeHmCP2?vd%T9H*NY&MecJHEp(f z&(M%ZuqehhXsE`&v9aZxV&F45)WqHCQj}R6cy0g(!oZ4OW~nV^om01quBfO`03cmt zF&!7teEWfO%pITyb(h$K>)6uKI+yXcZ|3T_?Ep=|OOTFtWq~8n^6P6to!qrZW#qfm zHbO+ql9x{|)QvPXkAb~O+gEcf!cI1OSs2qn&HBJdwAf+?NzR|<7@A_y({L|TUyp#51!#r_5DOce|Pr)pAlky zM68)OSb06OK5(jY%&l1#t5={PV4*w@9=dKn^fzaerRF?uZ|@tTx4?bzMfZ zjCNnw<_z~3H39*8J^C`K9i>M($Q5>p8AE4Qvx-)wq+T$Yq4Nn?#7bi4%+#|k);el3 z-s6|opZaV~8dhUxM&tfcR8lprt)JSsoo4zEH@MXK2a26yP_53@^K1_&X#Gq1uIuea zOCb8AG99nxq+|Jm8`63+Ta8MN=?>aQ^l=Rv!Jp{9JR&7{t)A0UDWe&vt}KhvR&$B> z@01tJa5H+er=_W>Np${mhGxD0UyAXVEU;h8SZU=tje}3~L2Rh8&S}`kpF4LBTP8(t zOWf>dpPDZ88Yodq9g5#a^Z^!pWlKvuQlO=l(aoqYq&>PTSH87k6fV9GGIWWD-S3^{ z7Gvf07-u{RLp9cAi-Z=}R$yXn-=2DA33k!g{2U954io>Lv4;81TT8u;ANW!amN)<@Wijlj3}>1;d8J^^5q< z5&cDtq5Y&VRsQ@6`rsge8o8{Y1L_L7kU6#}e(KIXpbS*T(KF@g^t`bY)ir^5o7*r9&Jxq{hSi2}a($EmYC zpBG!Xou}svjYSMYvG|#>L!%--}y}2xvW?uFmC0$gGMSLZng&$hn)UWdLp?CDHqlbsII?&| zmo(@iDr{SFHg_o5qns{5Gz3vT_L3U=OV-JqMOdZ`3kqq4CRcQjFG3Vu?U>BzM8}|EK@Y?Aiq?0Jk%{kz+plo}JZ4{FTqtsr|7k)(2GO4so4GLdu zzMco{IVcUm!3>2v*)yC8>Q?FoOS&x!*7G*Ruht{lIyDGU%#4R&PKum~BSQ{vue9)mNQhBotcO;`*Ql@r>Wl|1`jl+)vaA?L4B<|KIin( z)Lbp7HhHziqB8BQ=SP%yOj_Q{*U^ejOh5q{Vm;PaAZa9eE(-yh@79n;xAPZpTB^Lb z{K_BRpXOOOX$q5d(rEPMVP&GMLndt!-(AMKyfH4?f;(CzwDSY^*7^G^i}@kH(2%a2 z&CX}eqJOd1|EZ%5OJ&;3SgUlR2O)i~VSx8MB_%HiFk)*8NS$D=1w9RX*OjVtq9nPm ze`hW7KJjpXJ}llv>*U2Ohz<$q6lRD!UAb~4$UNnelLmcXCGu&VJ(hM)DDe3LBLg}G zQ?PhLo z&W3dBa*%>6XD*U0;==AxUYSQ=n-Yr`Iz#`9+0b$17f^Yn#`;vQTf9TQ<~R3+Uh#zJ>UABM-^0za%&y29lopa(aZsbxaI0L&sr-N_tz_$#mhO} zSCd9vm(^d{p307!wehRZz;B^+;xQ9OtCRK_PQI9xrH7%La7P35_?oApJQVwTSufsN?nV2&FfC(ftS-F?maB$ynAiSad|b{TIsAY5sjUrQ9W?qVDSx*eO0#XGyy z@-lQQe1iWxf`m3Ap}ka}V#kRj+4d@^mdtf#5yl>eWGA}>aq(G_;YLxCvE)k>&U1D5 z+sb4`h=HNTEZQ_7<`E9tBaMOrfCAXU74#HW&Sw|A+feKOYF?;*U|2T8c>Fb!g^-LS zJL<+=#U8b#bKI1>KaZ4v2HS9HOT)8X;nw8s_B99TFABjvAC~zx9V|+hPw{al1vW9b zX00aPbP@ZBFCEbx5i>!~i9Zb#-{3un3#5{fn1Yd*Wp>%#p<$%o31pXZ3r29a^Y1vD zHSlODY0lG)oI4(!H7ufNd~*alOqM-0R3r1gK`vqOE?>Sp&w_T833p~0`}|mcfibJH zsmZpDh0ho-6;GrqJ1ktjrTu& zYXR*L`qEaNP8s#3@DVPQa_7abY2|Lz&* zEW?!L4IY;{Q1)CIqT?8vk<}08I$NxM^KHTEe#EqT4OvNK(p$Y&GX|palCzK21yz8G zK6&!wiP2a(rJ8N`9-oQDn669@7-DXM-?@@HZt@UFZmfaN|1i0{J+py+|0lD{rrBam zjw)>|D7|{XTh{$*u6>wtxs@_yQf{rLS(<0ZBU|q$Ye$|dawCDQbOAAihL^GTE?jVA zT&7jxu&^dbGlvQ(iSl!*4iR%B=_0HF zC_vdRy(nzXRc$m_p4secLppM-e`i$sJSAKrBzRjL1Ww53SP-!X?oHL}zH))>+e-?F zl1DD6_v0n4Qb}tUism_qU&>I#cR&%ys`<E;V zHEc3&2v*p*-CE0QznT=^-Svu&yYdq-36S!4JX-pB8PipaRj6utw|frc}-lY#IO%oOEBmHTgE+eQ%#Pd9Js#i_8*MP=O`sFTS z4HQVl(mo%nPAiwVv(W!33?jFSz3xp_YX^nlCpa;IH_=G){FMjAG}u8t4fgVe64)r> zU{+8?+1T6AQeAyUm|9>2%Ht3=Z>khwFP`2CycDZqp?d&#R_+i^+UNfC_FmWKd{oPw zz@WwV6^&!*hM*pc3H}gwDYyDFx{=(~zR-qI0&?MM7BHgFX9}nO8IyctXV1%WxcfuF z%eQN0=-tB_-tFbuD=PlSVsWG8ZUAr5%J# z1@d2GSU4@ZO-qebz2vYyv|8~hL=bt^r2`sLUZY1rUhN_};<4g;d`pMoQ=bv>Q3-ei z(3e=-Mx&AaX%FUz#e09+r`3l(q7O$y9ftpg(8Vl)8NqcmVIGF$Yfa8iRJg0MV1_yN z51|;#|Ioq&Nsr6ctJ}1KMhC%Y;dm2c;-=CElRbi5^IVZBD?zHX0?mzJ-ytg3UWA%) zgI_T(WU6fE?7_|w#uFz_fZ4f5M0efe$B*BQ z6IKN~;fHe;8mY<<@88{p{Gqpys7_NA0LI3pWnwt93nkd~q3>{8#^41EvEc0k4QP|6 zj?Y`Q1f}XrzSL1=Y{x`j|AcyGlcyP=f^j=-%#(VZk>tZ!75OPn4LOWB((_KWDsOBV z&X84o`M8Oi{m3Ir8IHMsR1un%Iq<9T_4G{AcC#1@b9G?{9_zVHM7_ zg0_&_OTu?J6BSsgQtR7?>@foJGVW)J!#DIC^48dUecGjD=W!i7q1zJ4i~?kWktd)R z>BLNCdy&(87Y>qBLaoGkrDQ7MCttX*$aws@B32Ui=uw1JqUi>tf|asVMvvM9ISaE_ zj%q~II?>22MX?pLb)()TwO`9)_4tAn%@MME^&izVN;e4D8=_ZIc|k8>fMTTaNQniH zNnWXz*GF^*^_&q~k>46T3MBHrGQ=VOE$aL$mp)vyuATe?dz0eM(O!2Mqt{A4hoIV4 zB%Lf6E%3eqjF!*RQB@f!HXUt>P)v*`6J7wqy3Qo*I9_{tYLGhw{EXE=z=X~+uu&+I zx!N@%#3D|8&hi9{GNV26=H_Mg`MI@==p`juitpZN#EOqaniz4a%Y8oGV~5ZwnkL!J zsC)FCQ%{7 z>u~qrG&0Qp#@LiVwVkTjx#|Fg?s|lnC&F7x&99^{@U8z0TNa`2X2W%4SnwY!ShD5m zhB+||GcYjFMx2OG{nHjl;otMYCzfPhmh2hot|4{+aoJk9c_C}yszuPX+C?VVbzbGG z>URJB^M|M-bzFTUf<;7g^LE2f*wdf`??QYL71IfhlyjL`NUftN(LzQuc9(o~OW~O+ zG`=|hX>y4v0!^hAyS^nO9_Yd$w?@y>K=dVMyCpLUc+D3+aKFxtHm#%y6F zOp?8Df@~E42l&P30*XGM+DL-?rRSCl8#2J4?!KO!@d%zPFRH<(I^(VO!##0y#)8LI zlNj9%t)OqBXMK(kZKeZ2e^AsrRHV82;;F4yVMfV418p^%NR_i;Tpkjj?o^& zAyd4!)2o)JA~G|#V>tyU1Hb*Ly&$ZddGwgIokM7LPJI*vR^TIz<3fwK(rBfNv>TozWA@GFUv1!auO14pPNY<$#y+ zDqi3~R9RGD1V>Yb2(czOiMjwnutj|C-J+hfQuVx(R8`4x&JC3JtjhX3&oe!R>>TXW z;3z^cAy08yt>kK?lIMNte$@0J$Us6%R>&aFDx&FNv^3|H#Tod8hK)1`g3mGiVVr2x z(55%C$p&xa$7im(Ik(sv~7MBv(j75Nc2N-Iy!6&-CZSK=uLpofSkvJ=`eUVBDbPuX(oXH0D z{HRKNU2f+p7LUB1#9+WDbrzT$)tz+2Sn2|XEN7ktO`{1H(|C@_m5R9uU{>`LM#@}> zU%?Z0z&F&*Pcb+rsWO&qH5$GZR^zY*r!eFR+BWpUg5^!7JlW#kwgl@xZ^CuYp5hNp z=bt8k4K9e<>&%m*d0(*P+BZ+f)`R2XiIpi>B>LpgXa$G*qSi9jn@uk zQvl!hK7*M)9yqBON6JhSp=TWAeH;*&-?3+jCw&lBSGOS7OQatnIab^9WLW)Qp=E`% zif3y{Y9YJ&>hah2tsqJ$Lj?wcbOObl)y^}k<&0C+N9IC80oT62PVBY|T=wOtuSw>L zFdY8h%h*anRVusOKKhG{eNytLQJ%%aE9yaTvC2Jk5Ry@N%>L{zshZ(~6-XYcpQe$k ziCtsIBiV^~w@)?Lu`1)wreuwD#&}JPbh&_r4))QY$mB2!p8AiV3zWg_s)dNXAxcZt z!f0eS*{o8lRUsKA|rRfgs_0egvo!G#WFMA!M2AT z;R)lri68hwE>~*%`*fPu|Hbj{A_W;4@J)TWE?Ig1qN2~w0e9)rU450s&b9rR_B$I2 z_DwP}B2d>yB8>SYyP|C(m03bmC!qyBU+CwU@1|1a#yl!u5|!zkcP@8bp@*C8SntaW zPz6kK3PMY5>8kIOxN4(;fmwoQs%mJ++U!iJa83_Q_w`8a5zK~N$ClS-U2YQJo2D_S z=R5fFiEwoW#~z+ouvkO0%jqTFy!!gfsF<7ZPcW^z8k|^K-Y*}=7a?5xuPr*4a4iez zG~$G-P#YhU_cVLi$5&K35+o@p>c-PTroV7`zwqhE*tXs?1!{c%S!Fsqn^)Wb=N0Fg zeSZf}K}o0QlLd_}E%~*MbsgQ;Q!7v{jJbILcv3EP3^UXL$g$}cF=7(>6z9GQ?s1uP z^D`3ktiu?ZUl`)0a-U3{o*MutW~+`J^3HaJn?%_7+OxBCh?N$!ArlYjL6}Ie>$=q} zXng$m)aga0DSq*vEZt7hhm|lNBy@`S5S}*Vu8C&jkM7{nSUfNgq{a^oJVI;AV*fYC z(_r@#>t%4HPrVZ+rIB3`9D*>;rKkQDJmhwxvVqGfu0Eyb)k#>^RyJ_0XkA@hap08? z3QPU7xF5fF#RcT{i2{q7Vw|&`irya@7P~>pvKV;bbQawjDrAl~a(%~}k(n5hw^5Ng z1Z0@ZX$k0u^|Et}$f2;&Xr$e!Q3IVo$TAo6^785wOeB9-#@%KbFJ;tLv?lFK%Jum$ zMwfd}XXh-njb(6~gfqRmDth@+OiFojW(({c5a2kyG5S9H;AzXLaEw5G@YA%}DMM6Z zp%29&;}?V8+f_WKZnO7RiVMiI?GMc6fkPd1MH&df04;K_pAqAsK(pB zy*IlOeGDXiS0!1fBw7;Q+Qj)Mo!lbT7A-awADi+1P|3ST0zh@>p}9wt*B_)of)onS zxLb}z&Tn2kK&MD4C_oXQ`o3h9AkKeMDCcU-!_6IL{vnj7x6}_`YP3wYu5l?xVHJ%{ zw7ibZaR=HuPpVA=j6LMiCk1`){{8GOv8344h)3xhlUNRpFB&U}{4ILqjs_3PPPjpd zXA^j)uXo{d;&?{k6>>=kB4RQ3nxi6=aiX_UM>#YRZX28KlUDMt-&RR17lMWn71)*4 z)!R^|?z@bIiAu_jY+Z8(5u4b;4;dl)FL-~U(+{u~gAHtX`=+h=zQPq(h#cw`M<>As z%+P!p1fs1RMa(`!d6RN-L?^`u>`N{R$$tLVYy1oKpZ+;fRNaBQyYi*+l${Rn(=!wT zAbae`M~rS69Gr88R8Ih=x&VccuaUs?05I3!;mhN-X+qB&QB;X{P03me41aa#i)yH^ zoMohT@|ax-++Z?|Hy*yip_6bVv@i!gocRpRJtv^VfJnYNG^hF&`9+G54lhWJCs$8} zX&f){Pu=QYsPUIj6sjIwa3$k|Nyg?p7`JXctir?Ou6FrvH&YWdzM_b5Czu%PPk^V( zI&5-vF}e}Lnb3b=8@};oCF3Ub4h9$wi>)k_xkmm6eb@hP zCnu!#|ESmgUF2be)*zr#htWzFwYko-kSjDfc;x@%u6}B8Hj(TBxI~K?5>v>$J^S`O zLbVvd%mQZuI|RG!7c@0d+u$F1#^;eM9H8u0{n6w-lEfWNLg(OOqSUD(HJrh4)9l~L z7&6to(0T&CF%UFZ1d@c^lLa!7eA**8p; z{h2bu1YCe56)BZ*=9owhR&i+o{FBuD$M-7SP1-$Kb0JAPH+I~*r}no=H%s0q%WvWa zu15yNw*AkPy|P8%*7E6c>;LF!L-plER3cSt;N{$)Jf?$%8r=aW6pGT;4lphizpXt+ zU7kea5SElRkG^4`dvq>C;@pz!pY`mAX@vBk2k%BVk3XbQa?Lh@?2KCFx*d*#?ZOq4 z5+g__iD?~ohU+Eq2n6=g2P76zd5P}0D0KUPw!BS!Uesj__1mk;T(?7%APrQ{fBOPN zBHD2#n}h+#JA)%ekB}!BHK`ne&YJ0J_$fo~J6T5)ng-3#ok4U$ED8t1#y{C#Ssx-9 zNJwEAfYz3IBz&@o2Z`cTHO8lQmB(1#-^;l2zOH17!v!03N)qYDEO}z8((J;8M1AtB z7eB)YJ&a_j8HteP=1q-jRkgL}m<_1WYqKx^*}kmrz(-AbBg_GPcjESNi^Z@FEAc_y z-tZ|$J0)0PtF+xFow!i_Oj(B%T!#s=@(fH`ZMHKivmp9b4h4DHU!fPGUHV8vHdS0! zAh#{phTnqhk(GjOmOePnlZ#3l` zE;PRD#XVwWW>#ulw~RFPfOqu}{Sl=K6@Es-p?boiSbdNAXAc403FipJ} z9gj(*B~a0Qf{4JE$y@B|njViv6gv`}A{pEdb$>$^U?RPxGWxor&|yr9y7 zWGz7Hc@EoHi#$_MoT7+lOjrJpG5Qi+#zT86gfa`|;rY`-CbcVQV-gu(+&TI`5jzW) z4wl+aXn`HZf0k^2r(`&W92U(2GW<{Qh=uEh2dgZ)Kp2;jY?e3tbScUg7S=YA?bHEJ zEFKw+eUzotS%{lJVi9!LT*oSaUD`#U<`WMuh^rl>=y-fD#OF8yyKrEgzdM65lz59) zt=oPO)3K+;W)YQUxgPxa^x(lQ622^bI)Oc50C#S&jV@kBHPE*CNo|SAXs-k7RnSvXx3!D z9_=x!HKoU!1>``UeO3;4x%; z;++FKWw!)JPf8zoK}mD$^V;Coj#d2#`ft7LOC3gPQiE&wmpOL+1!+vHn+{(;ZEOs` z!=)>Bpxz1zJ^){0XQi1&ImoTtTJ7TX)Zm%mPT!bO33dhVjGl{vIIkUT>*ZK3Rrnlc zlhvgDySZ%uM}=>RI7MDSR{vPU0tiA%{Xb1&R8Jz9?)EJr2YJdo$KMonfd{km0R0AC zbf`fGBxeswZ&pB2YM+^g7z75CdmVBoywkWJ6~R$#38nk>HG4%gn4rUyq4S%7J0T)t zZa5QKTRD;zk6bTg@x^ybAR)uo$60%GUwU?JS9ksy&nLgF^@kgmH<-_DFst)1O~V{E z!MDX~Do|iNtD!Pe=QrxUmidD8NJSestQfeEnzqwww%c3+pmu3C^Jp*7aq7v2VVDeH zWc%#pr;feB@M9qLxlD|Y7=BnGDTUuc4~j6O{yQ{IMA7PjE|lB0fSmUFb-vsmI!cM2 z(T3DW-~$V>6tfyfO)$`mKpP$qWRo$IEKsB_;tM=9Act7cw`Fv~jv<+5{|N(_0^qK2 z9SVgfqC4ZiKZ*zdCFWK0y=Ag^giOvLt~5)IMeOpm_Z+#boA)L5dB0U1L~rN&84RHF%0D!of1C~0u7}@yNtj*t$EDtF8*l210=Zj^REO8H2TU MpOgg^E}SuIL?pXesx8*xhv)}7z{RL zrQMng#*7jMgC%^>9{j~ zRw@75B=h%IM$^9acthq7*CNxuzxcAv761EN!L0Mk|NeIL?92Ioe|xm!7>x#gzT6gL z`TLvI{xCc~{cQd3%l-G*{ap(Gy-@y-*cBIIYNj>)`B4^?#I?;PjEA}7eHUF9Jh;yJ z=Z61)~P18$0l)kGV{rtIe>$hyts(EZu={t?3#Ggg5;YwilyhU{?R#p#1 zjPit)=Pp=qGl2cQ=5uj>6+BJ5F0MPf=)T#vFN54YE>^$Bl1J>idw2g`+y%w|+XCGw z)7b_2laph%6TjYzN;|Y(DvOp&l5y=>ziQR?XAa*r@9n$sDNdR5o=Rv>T7ZIcN61YP zgTz?HfR3^#nRj8EV&C1^5dS&($OfGheZR@t+3dWZ619_@Iz9=Wzj$$j%1z45eJhU^IPPU!q@tOKvg$a63!EtSnM@=G;Xeu5oP}Y>V;fC|8*JG&!J3_c%9SJXFBya@3C&k(am=0{`ld}F6|WkXNr@x z^OgvIh?H_{o~-x!^Q*n?nWJ8=N5)gz#+2)86@`2z$1ix*{~gbiOD{`i9!@@F@-}b> z?s};EYsO-3Ztl$9pB1sAKW^DN4RvT=s4=3|s3WC!vgwJ~$A(6CBBl;n(RkYzfU&4vvAdiWm zYJTNVQKQeP`I9Sbr*hl}7IAXMa`5kaU|F5=YhWysMeT;rjah6f;<%+8e)iO7>*aa5 zpYa(vrh6#eR88XK$KAMd(4s|);xZdNR8F5h{oJWNXsc~QJ1yrqydER2IextB<@tF*lN)m%o0g8gE&6KMeA3h9>#HKu@@To9&1F;X!o}nH z1UGNi)JZi|E7bWr!NvNyY= zeA(6Y{l$TxW|8lzU1=E80I#m#IdkR&=I1Mfx;&p#+jhF`wRgX)$C7A`@)wTnx^D7v zv&-+9efxv`KCJ(B(x0t-@39|uj~g3Hn3gQ#k#*aT8CxOk^x*M{Vh-CM-#kp&tG9WE zJb3V6#=yrZ(N`RvU9U8|^8>si&(B+G(ck=r_36d)=M$`JpL+DaS?c`f*LS`tUWR|m z;yFfSj&@~>JL$#T{E_Ta$*-{?c46{FIZ-Uu+akYE7 z0ehSElnjDpMMXtG&XxhJji5<6uI>XqBR(eYLX^+XUA*s+oUpKJkv~smM^#c)l1?h# zY+3nm$u4z47o)VaH2avBxSD~yys%1pnWV`7h@=08{H)qEDU)}L($^L!V-1wN_T$Vr z_G;G588gg(ez+ra@P3K0*}TOUyUo{WaYXS!-0YSAR!3}3BCL7^V@wMbF#&M|Nh;l z|6B_3{dHRVB;q?~(fzTOFN3O>g|9a=`m9nWqJEmJQ;Udm?))r>csn)LIHiS9w!7_M zyn6EG#T)hoeNHusIqIXO6@q;$tn4xQr>&)X-hu^(uCLj{JN5;$))^mjDu_=z)v&%_ zbe8X(moHxqc4szP^fkR$vBf+vZ?t2B!83<9U59CMnik^yUk|odW_S#BWIgT*H;Yc| zwC}FX3{6c<_2-efA1-cIxUqTV!i9GbZaWa#_ubl>9I?$dx+x9YK7`M@G0ywTQYCYo}5Wtt=aI+#|M}3|b;;_z)R~ za=_)QSGD%<4{Y%4mHRw{q5l@?Lc*c-tzyrW%a=bQJm10MJ^At+tGYU~(1<>ZP4UH$ z#k=!!^6uXC7?H9WwODrX<9`M$+dtlu_85FX>5@{1cB0k+eC!6&WznQJ#!ZqLJv6U1Tb9 z8;`8_%)#XGr2p|Zm)q-I8@=xq-4r!4{Qf>v<8wZHft!D%#MV>eZhtE#x1A4B9N8Sl zBU~t9M#|<`)JWUxrzX9#%~r~~9X-myytWl;t)_Kz7p*@!VwLCh=juG>hk5-`WYz7i zPBG|??*5#7%YFxaxZu@+uxY-x%0ZGUE(A=kee623dAH2nB_2HfincwRI6@ zzP$civ#@D~1r`|=fUq7v!p*cEpHN1q)VQ%h=Ma+W7Kc_PIk&!ou1n01XU(50UhoRB zKX9;k)#Q0+ z8~RK*3-B|SQ9%Y43~z}=MhCY0Q%e`Dgy$~Z5ik6hH?s4_cW28u{S5S9sbEuW1yBJ1 zX<@hK?^CZlzr5*%h{5v{KmX?0=u0o>_Z`JH6L;ceenMmSu~}}9%woI`;e8)_<{f)= zVb*=-QxPbb#w#o)wm;Wn=&|L~L&cw4IDk|hXI%x6f!FAm9gv;Nj*Pn~m+4JlB`}l1QZo3W~IAE&y_fbtS zM17J-a1=d&IpX!7IS3-MnJO}eFl*swF_xxHFJHZqIR1Lh_wpDcTK!dt+S<3bPpf)x zU{}(i(6~sQ<@&#SLO~bx{yF< zuII=)=>eKp1aB8j=GgmY-^HJYDU@y0&-##31CaT(X$$kET@{bbD(Eh~wN2wtQdLR~ z0$V2n=`4Z24=au+VAGp#dGp>N^R)}I@kn-_K#tDl@&?bHX7Mv$+HE?0E_KJ*SuW*2 z5Wf(zw}~h*ovcZ;n@7T`nGi?6|uP z&@yrLt_zX^i|FwRtZ6jol*^Ajq{#zb5cty8(h`dV)={+5N9*X(+pO)(_vm>|lNYFo zDT-@6HKr!x()Hm28<$gWgB%7}1@EPUd{OE@n?7yFiTlc4eslalX@rC}0CajR^CESN zLQgPX{Qm>plzn2lVJi}bUXELuh+)nHq}-$fv3nEu-#Js0#$ed|0Dz^xA=lr%eS4LJ zP2FKUkhshe24nkWOj}Mt@{!C>`940h=76B>YZZPsvCv8YFwjQsS5=+Eu$zrl@EPUh z7Tbm#w^V`N{HeTXpGkMM@XdQ@1yg|C{;nxVwcu5KuBQ%iP!(peWx`?L1BOZ~!$N!F zPg~5oI2K0M70;2L_VY^(KXlckul(cj*s)C=sYwkHehck`?eDNwWa|WCyza8hUce{K zxnf0Pp7)rv;6g?L4@K><;cgYDA4m!vmGJ?=9GL%Q7ilB2^U8ieD(sG^e{6EapI46d zy|2vWOP3yv4V}Q3MkhuZnbUq$81d*VCPV|}fJ=F*QGP=K)}pI(Q^7OW;EW1KiLCIvB(|^Gr9V_|3=ZCuVcy@~ZInk(T zm8Be7#UvMEZ>6CgXRl7u5gqET-BuBfs@2fA@T$G~Du(Zoj)vUqS@V|#{#3=Khmgdj zFis3#d-{r5+Tkt7Ud~X9lGX+=zMLtFvU!EPSJtWVe#Lvr!G&?>@X|-|A(yVhD5?xl zBl~BHN=hE4ym(*jR)~m!bT9{&V;nc-O)+ef0|C5ppK?82C;E$4K6mTCd*;j;3V8=Z zrZKuq(++=1KC;cZ`>VF1KX(Ok0ab%$(e8V}Y?u}y@hWXXd|sM%SQt3?>gA=PHZF@8 zzFg_}Z@m8*@luSq?9B7aSG6N4qr7~k9xW@Vpr8QcqwL)A>3RUW&PFCj(`3EAq^Sz9 zAK^ci@LzSRQ9x#@dBxq);aXd)+_k|UF~;~2w;P?G^HrudCl*z*+z#D!%JJ$^ny5$! z-*E>0{ZRV;uospT(*QBG?}`KCQ3(<0M8JyhT6mOTil5mJu#Uz}wA z#W(4;*x72mbkl3A)Bk=n_dwW-4Pa<~HspG`lsD#i*V5X;Pr(h`X2YM+Q6WGWm-4o^ z*I)hTUo0~$tIK+704uq|{$h+Qj=AD)$){OnziVt%D1HW(Az{yzCF)A}tG-{AMHMPB zr(dngJz;DN-_SdF3=b3vTZ{|m;~w%Z>p+J9-rbu%eR^aVuu_{(UizlmnlQCwQhqDf$T!5|$QSU((jC!y}e80Y?;ANmzc?LWpzz zQL;Qr)?M?|sZ$=K?eRR%1u-Ih^LJgCUlE`%8TPZ}_Kve!Id1j<5#`DWbQ6T#srdbO zc7k&Ytl5NrQ3jLs5OKdoV(fdUktSIArWaX!L~8_Y@tO1jX;veVjru4`#Moez}-5rAV90rIO!qSrwT#WCsFu&X9gM@u& zsIz(lB4$9HQT{1!>zc=VmTx{`=Kw~eNfl%m9)_W>jND4&ldPAqud_O}8nnR;aWi%2 z_K$l^-rtmM*fi%B-D6gh+_!oHj4Q?Mt)45mN^d=qVR4U@ za~-jf+re)t1+Tld*{saUWqv`+??3&<+;)4oZ~0m_f0>~lEW>ka+^|y)Gp4=}#T01F zbYljufV8w8kcw#$qi^N^{L#Aj!t+OD?3#R0hpuE>CRWh3e*bvoXGBpo)ibS^z>b-l zKj0HYyposqn$`UOUW-3->pxDlxc-<7;v)UnZDx)oe*0e}0WoU|O#4ObNo;!OzNQ^- z3JZ|}G!qZRUJzb#rKSRZUCdk*P3Hmsm<-v)1w5BCa}TE-A4UA6wBUFKD|-6h72UTP zyY~RXFlUHK5N+}dn|eLYb*gr!#IRsy{Jqp3Fhf=MRF)#x@JVm8YuX+qY5$To4?$?W zp6}9dplIN{;K(c2u2uc+Z;1+=!(deJqB`y;GNs2@cV^X7>my(l_R>yV=`(%|2;Z0M z@KdXBif3*dOD1MBwsG+ABm-ITAJ#DiOSMAA<)O4o*8{|T-;PEcJH+($KT8qX>{aN zm>N&7Pxl<|+9bxxD2O8dXWmi~EzBIRObaj`3ZEoIAazxQj!p=IIRzL)q|(KuQ8GFU z7cLCq1N{Ktnxva~JJnwq*_+-^n1S~;%8i%n1v`(`H@<>wJAEbZLE_eBTwHr`1c z{Kl5mkRMY{1HADf#yGDKJG%X@_`&pIQgCtf?uxs6FvNn{X44o-ssL>n z;J7G^g89}$%mvML4_rnB4k2Dj=1 z0)EQ#_7vdTYzS@$BvC5RpJBRb>BmN&DQg!#+Es?WDx0UVyC95R{GkyeZ@r%*ZU$0! zvSF?s7PqIBeaKqH1<6MFh9^J9+1q3-GR@ETi{*H6>~~85LVMY6GrZCkn>tBd;Uxn1UIrh2?v$`P zJ*5>o!~z4&juazcN^I1Rf>Vk#m`b_-N6+dANhI$gws~Z zYn!-ByZ`f^tSeWptV%U9!d}wR($cDP!M@@=_+sJ4BTumo#=4@N6?Gq`Qh+ThQMUC7jG4rPsvMiZk$jyu;F&tJazb;>iW)iaXN58;@*7apKFRO)n`%@h|H- z6b@a`1e#c0oLw7?@^XNmV?n3i3Kaf+Sa`{`<>Gts#s{&Tn!5-3`ww8fJ~1ojT`X!? z7k7@XBgo$gNwSD9JDMqJx#)9lXvTnJhcjn13eia_}&T_ED`$}i48wZCQQK46nN><91@a% z!w-NBz_nsa!o_d#%mdx^1|c)5+LarEu=CdAC&%{Mj@&{6kKrw@w5k68_fD%YzbvD5fDioK>UyOl0ji`^bHMFVbHrGtUt#2&0Q*D#avp(z=MpV zcVm1eb*YjD@V_DN?O_5j55cn%bb^J;mQ~T!hMsDW*wmfwBW{mQj`c=`AmbHC(r|^H zcztPMqFzQK7~j;fkzSP`;zqCo5;56SH>j!48TUb{qKE891g=R**rpeG3wWe|g7wxc zizu|Y&?;6c)t3~FQRG@TP!N> zo+s$bnE#4DoWYQ+!PT9HyL7WneWoT{F%0ERyOjhFC25loicOy3@O>X-JR>I2Q^46Y zpKj2FM8BXk2J#ss=gsTcG~WTG4^}9yY%e&?(*Jau`G@UBUj66sgl3u~)Ja|zFCmbm zpim^A>fpp%w$1(53BsFHJSj~6j)mfS-yqv1JdhTF#u-`*0-in3+Pb1M4htvhKYM)o zWT3uc0B;pD{g(hYf4aM89zZP<*fRpTX)+{rQ5AQKl&;un^3RbRZyqw$Ko&bzi9=97=&ELVAG4UMP)N) z&ZMm3bX=&V4(SZ&|8t5#_M+v>6Ly}Tn}D<^r29CorXt81$#p^La92$wvkX&WrRNHD zgxc@i^@W)BE1BLsb-gCPP_W`{>ckNBV)lWiqCdx?K>1WeIlNw;0p|6&y{8E{S_Xzv%S^ch7JUMwV z+w9ghTN@_tAGZk0+4ntAdDS^q&aMcydGjj4JF%&sYYoG^0flx)u(7gklDuYbh$=h# z$L14nZzD``Mb5%Q2@>Ppw3*l|q{lCE`Nl;HSSnXN<90u_fLHbbLfVS3LP-$$)zDC` z|GbLIhg=(Ax|kIgBZw?qO`F%OSwlc!L9kd%Y7$f@zB4mPn zOJNy1ZtE-X^6nI-U?Dg6L!k8ck3Jg^g;8J zTW4nygfLow9bYq&P*j>Tk(2B+44mCTVhbS#4zW-MNuV6vt&*;nVQ~@(NL}^3fP`z0zT8+>dO&^5R%<<4%%B!rj+0ch${vffX>Z>6 zFBOuIz_VyP>IFOCF;t~P1uv4VNrrjFPKYo2A+auAwrp8uE`+5Bv14bLG?Pkb+3RzU zbf6OuR-mM;AvdH|Hw+oP{f3TV1vW_{mjA6VTANCj_Dlgjj3b75v_-iFMUHhOrGCQ7 z-(B8eKN~yjbBN%GGBww9q>IZo=h#t>HrhQ7fE>C%rlCGVL6Qivk^nKI;2zCqmLHaUtz0(n z0!uK%AL}m~FC7nRK?q7eM&}UN5v@3-h3T;bWLS~AeQ&w-HJz?cNB*9*ZW_0^;}2Cf zUfIL=+~v%PN(}{VfH(;V!%X7M318a2Q$L86Ve_)Fv9U+j$jAsc8onj({hT)XZDCJy zki|sK+`W4jP!FGXlcj~i30m!`=Ti(H?$YImctN6yav9d1GD4lp&NcXGfjrIHI+Ot> zBVAZkY^u}0m;oMPcSjqfw-g0zlO%5Zr~5K0`pIMV+|YkK^m3V`pnN1zSV^B&z{1Fh|$Gz(6Gu5!TQe&~dEw`96(z+!bxC zXjqr|y`1l>xNOt$bC7~~v!{@+Ej~XCKZWEcaDQ{*rG;yqAUmD3}n3YV;oz8q5Z;fBg47C*%=VeelOO96M@?7FnsD_y z>ONr31jGp@mizO&Z}}X371AvYZ#@J|t*Zyc!w@;!n8L`)1-cfLm90yuK?$=#Sh%EV zcbWaA|bsYpHfZA%VYwkt}(ZcfJYx{Tk{?|?}=thB9 z(o=(iH%iK}uwYA}4B$M$;WIPmB~m~_1OYU92s@5Bww-CwSr){;E$}dXFTF+NI|%h; zt)xR6X*ManD=sn{Xe+NqJvZ=W0?Ic9_sdH*cD&ZY%WQ83Jk63*6m4;6d!L5{b00b0 z0_7$gNY^rLK|>_!rr$?~HPMuoYz9)ZsLM*bz`l|SsKQ#;Z!c$(&~8!l_+D+ODQe*= z#PuPRkA&mxYgt%Ws!)V>H|8557;R-Lu`n9X z@h#Y9pv5XNu2Et0HJU-)R|EZUMCpRkgzVHFx4Tdoc7X{7MoJj)4Mo@Ij&1%hMp;!` zDJfmTh|X7UGgWg|n(`^1T1J{VWMw_V^ZY6-$UEaUHT{KlxwkH}F8P_@q1Hb!BO{y!M6IhJAiG5TnQ41F8 zV!0A=tAX@}P3s5?gCvkIenu#We_x2*&NX~RVVjH*G_UVQbs!iENv%ZLFHoPocmEO4 zB8xX1QpM-?W3^>CwQDjxj-Y5m9k8Fg`(Dfz(tGmY@*=^zz+VYKmtXUJ^1-Vq)7=gc zYQdC)#oWm{jDb`XH!b-9f!Jo}W=SFNI}l06j7PvQkcleN;K#bj(N0l0P#%Czsl&aE zsYuH0phUiA*~bF?CqT9%$DwJ_3`PMz)(PdT5TaJF8~2X%HdX@+Zb5*jq&W)J_e6$X zsXwb|(F#0_sooRwJ1B8a;zhou8DHc}K(e6?Gd})1tw&^ui2j4AiC&+8dfN;=iK7LK z#X?$2NL+TuH%oR}rygpvkb?2I<3aVX2y1%3u>*b%yMdG5x&yeNC_ATJwXq2ZMNpo54^{Q!+F>jT!L)}dRq$OZsEqt z{j^R+^bdnWWCrnt)096J2Ma9b;<6l(?LB>T9TNlpX}%%~l73)D{v(n?k#4IU%jMz` zf1#-T@$%yK{Ns$e>igS)SB~wY@KAx1Wb+1~0#e_b;rIA7%S$aXscuMq$FjXOdV#K{ijK>a0G-rQ-6M;r!r-S@LTI};v_$e$%J zTs}GaV!8nTK6j{~2XHTEz=fi+-Fx>^RC{js?F?t|H)Ssrl$c6`yW(IEtARLBce~}l z_Xwj|L65s)qxdvIBy&cS=H38a>*_kd;=19WJ8&y~HF*3f;h-W($dU_#Vxf|_lw(m< z7w{>iP$`gW=%1^Qq+bDNT-Wm_a&TTlymQ#OMwWmyIjLMq{kgW4rJVmfZLLXh&>pa> zPc645B=>&DDZzu^@S# z6MU{LmCKT_|Mec9@cVdQZS3s?3O6!2BiHZ?2%L=tXnF#EQ;xhLQSBA67wgSV7sz6R zZE|YRmJ9+BxYzdE&w-Y*)LTJMtZFusnTrxB$~_6^4lQOR-GAHHW27e;tU(yhLYMUj ztXpmB9$5E*$tWnqCk6jy{>1{ z@pGknW#@IEfw=)R_%pYi22G9)_wf5bX(&mFa#}6k#}!}&Cz&= zQVzhe8m!Deu1gf{?8IDuJFFGW`+axs)n&)3ttQ9+kZymLb9oEMw@(CjBVY+kdvP+5 zTQsNd%=pB_;>C+^v|14-nC)UM5Vy}A`p7|yRFLdEZ;X0`xS2n;a!1?=C4Y>=1LQ3z z%Ur3q?3BIWZ_&TJHZ#|(|2RW10b9kTvG@rRt8&V&pNW_rYu8N*NDpT#S4o{Yd$!wf zdoH5YyGW_@7k*ba**3`5=eSp<)S${Ue#Pipfi%bnwQv8(k4Y%*ao0GUv&^^i(P3d~ zO8_+)@>3s=(-O6~!v@jNx;nyxk_Xm#+c{Lb6|ss*cHdt5mB|i$Iyj2x6&bSrJ5W+_ zPYuE#B}TZQnl@(fRqi1dF4)MAh)N(P)!R{9Qw*}Rv%8x)z$vGSvXf!l!Ez z!QKKBFp5-6{0saZozL2$4}x5{0jrI`WCWw&z_)MT7L+!E9RgjL1KR%H6U%Cmq4r8e z;0?GDU{nQlR1K><5`a)J$Nj6(a-QUd@<4Sw1gHG#+E6G9@Q|tEPU3<*+}C05!^^7R z(UB;Unhl=*1g58q49h%KjDCW_MHM5nabufYLoP-&EW~Rdf#1Ok$@jN_CQgKfP|m^V zxTrtyVI{x--^AGQTi~GaKI*`y9|_;qn8iFBy0U>W5`^2spI_sxYl_%{kW;{Q1KxIO z7PzzP;uBa&C<_pT#E!TDXIOg6y)eM0Bos-MQHfstS1G~SNN+SAMw^yF}{i3HR zA8y%>4|mS)n)-oCo7~8F+;;2+EsPJp@|`<(R-nWpZ}uO7DM^KNyw%M2ghOH+doo*krK%Wd>@ZP~}_vIUStOdy`!=PoBg@N+Pnhu!)96+H=%RoK^`7NHqRyPC> z7Wx%4+%}685B>uNJ)1&)Jpc>^;Tx(Sq3zwOG^j0r-zY2YWqs1RNQAh$@~;NiC++ zbX>qYRv{5$bM1R%3o?*Oa(Vc$2$7Ys&(4Nal)e@KdnpNNq}EaE2!cvnR<_01pFatB zexfP|F?|t{9KHf~#0LJsi~EhV8J+sGhjdNg`%lM^@UdBW3Nl$cxz#|TZngSy8xeQ|oGF-U z|B)e-XExoIEfWAM{Kjc^_o-;3x7aU@>kQ8Eexq9zbX;YSgs@*Dx<>d0M=<;w-z8<*ZH zN|W2L5%r$#d0iwx3hZ25W3PQ?Yx;K&G_jT!1I=|s*JoIUQsEGg_2zlJTmU=KJH##n zGIB<7fzSYh@^h0>cD#H{!=<*5>3v=v3!+uZUkV54v_r*UaYG4P-89DqJ}wHaXuREY;0^O z5o$POhv7`RwCz?1m|s~3wT%Bq*ToCY=wN6miJ&`a7Y9drf4`w4`%CQxqL-pT$`5&XA9OiW zMO5T4=KLr;HQFvv8Z9UD!sG@lJzwFE1UJa9OnCxPliRkix>^T0Gnfy0g{s2D;K8~) zG|hM;9Z?gS9|u22h_&wqa)1FJLwrY?{&;cash{>&CRiAn=+LM_aC``$VGcwt?fBy= zc})Qnm{|s;3+iQ&bYl?JXYG~mUzx+kRu#BGD@K3*iaL;-5D*|fQ-Ox2wDl-p~T<7 zYRDb>d}Ob8@%GCr088$=Ciz{uw4b(~ZKM2>tFsxhpHa~cK?jp_@j-GxliWkx;%lze zOsHQ9=#N;lb?eriln_5_c6RoFvECql73!>zcK;Oz5-ASbb3MWqy10a}ZW47;Q?L}? zmG|~*3;<&em57&{|BHM;GO>Msdwo~A+(;zIh4#Ms+0(@900}@4s5tZx5s8?+1&v}Y zyI>bpcXM;QYf`g|n)pyiQM?j}!^oN57IRz(OXvrnHXaXEM1U%Ey_}e;m9Y4<9}^xl zF_M*y!R&x2LcML6G*X??*S=7vPy)5EJ0c3rH7LN6p~WwY#M-f;&J~Q{SBY#?E8egJ z*;~HEy~X04t^KGE5YQ8gDj^UKU(Pw%X+hOMbw&P&!fd|L^m6%w*jN%EU8)}H zR=z&RkktlH??i$Co-4pht~gpQ8>YZgZuU>BO zd4@?mL`w!;Q{HB2T>jIAs6e+G2jxYE@hq z@|-2acGIHmn^oap06DMXvtRcW?cJk~MON6KIf1K_$z zz&Aq`J}m@dO@LK*!thF(I2O)JJ$~Qdznz2fh^iTu@+eyW>%kbxpcZs`8*JZjQNC=i^}HFyUt5rWdvUz^DI!mx68K1N}wG;GtZi|i{&B5m%@_8xmm{0~s*TZ@ds ziC)YCvm}F;Pt$@C2q}(i|AP1a$9{8I*K!T1EB zO;zdUX7Ev+AH2}kJ%8VEVa0rP#WoV@_yX`wP+dd$AVtVD4EOcfk<=4}R)9>mFM^u6fIi7K zb^QMB9*Y0vTyIwqx2qzWd!pJ3#d!!Sab_n5J7uvhS*y7&3ygRY+1&vLYOImY{w`rV7FH$(xAoKD8u3g*nHrH=%!8VqAeviH{R->Hm#r#Bu962F65`v%2(mv zNChS*x`?%madUFxb@E(d$K47P`MwD6Oxyw}<&n1&*kxq)3Kp)yR50RX;YAKh!0VFz z57GJouvUv|Oz`KAokY-Qh<`LS?*0twd*!LM$nf#1f+BjF53n zA^Qo~St2B%OT1WnWs58AKB_)Re}RSfF3`g1M#7pCm707@997>M= z8|Y~RWpywpL_mX=y5e6LQVw?Y9qt88hr*xzwc9OuwPb07D^FsPb7HPvI|K# z*8vNC>4=$Y-ls)))4myo-pZy(HWKiy0rz9Sc3|zoLN<5)d~)1yjK6fi#-j2sD9d;` zBfb;c2IXgTt3D>JD%;ieuiVNgZ>=&5Q`SV_)Xw#ArUC{gxI@vh?s)O|tf5jXNFBSd zOt16dh=>n02d23_gPS;6|CuIKn@id6dwtMNU;$;qWw9mAfv@7g=u6cg0`uQqT?CIz zc75B1I%Juq3Zf{0GCNuV6h4FQ1Suw{{0oPI0GCQQ{run-I!s%N!41DE!{$EB;SqA4 zPl4EYGVkjGe-RW54yKRzn$ZD8OzM?VZ4i+H!Az&AZ`*CLF$MC;=1om{QiCDsDhPrk z#?VO*_Tm8e!Dx_7L3m37Dq44cW?&eK_LKiQ1km)F#I7*DpF}TmSI{a5kRMe-_dUS} z637g5J&KEpl6rMpZX(qXd4^O?haf;x&?I_~kZ0^SR{cCLT{zkQ?_MCx5TzQ^BA@}K zO@>BcQ2ET83QlA51;zO^eo#SRR2K6@63jCC1gsegnn6lpgYRo9OHkuiV3)L5$6#gd z3l&L5=_CZZ@Q-t6cR|9%i);kQ6>S(svNneud@d{N0o2!O`(`UrCpku-8boJ{wGUZW zKuLDKVpoWp;mk=u8^si{IC~Toi>!SB<%rHjHKB~scGKU^w!TrXs?C7key5FnlZGas{qS(w3}AaG zYdUD88brjBky;-88Wf`zbmAE%;e)n+HhcZH!&Nu*ux!XmK{Ta+4L$P`tj**nCMb>* zW8#@zhnkd7P`dlcq+1pEP8%KT&4-iX?(UV9SakqFc=7t>3#WZq4Kjr)O$QMiZ2;!W z32Lk&NG4|_UcR*2u?RRlAG{Ez*!G=i zbr|gNfNy%!dREPy!1i6ybf5}sa7T}>;JdiC{CjW-;8WI$RFM+iyl@$4dG!G`h_ZZw zSfLkAOmE6^ZE!E@sR3!20CAo?X07Ehjd!LyeYm}Y{)=?Io*LAX?_nvTVIVdbwi}ny zQSgJF6xg#dWAa@r#u@PCWAxvi=n3e@Lr#IDB9 zuK+rgv*?b`Y&=z)@{A$}*%+uXNK~x6XMGm(YsYu zuM&BNI-%~HO5wBuLyS48MnO-2OL*kHB#Zyx+DFhR5SO>)vsg%6WFTCQ!QLt=KDfd`}mK?L|;2BYk$ zK#~cT-QWpMnvMvfH9gc-a}W}Nn$vv@Q(gZe-(x)uxk=Pa2*V{9L^4$L!=?21PEtx9Qzed8`r@i zr(zc|0B7{@H{>C|bdm!OdWP!0PzNNv`-Hvm_@o2Z4b!nme0;kh;00tm)kP&6WFP9y z8?&jqc8J*Kz4;TvTr;oSTCW**>C~U^ONV;uiEH-DOhtl+tl%BQKVSbWa3^L_MB-h?Pf>IVD;%w`zScPHUTA`fDCTKzsiv7I=*2FeMu zeM>U1dGV|0EYtl!#$>_Tq-p+k?na075wz(H^P*}-L zIDL5_J&@rXCOt~t?Ts1-Z0nydwtb3EwgOb_QWBSa3Y;C#-T?Wo9u%(`*~__}*`BZyYiJ z3`_=}BC~oiL!)izd^jK23N^F>RAALpJ5vd~t07Xhf zy{pNrt9y@`#$tw=PBERQLdO;WdBU!_yKWdeg-}I=r2SpYH zB7z;s2(0bCQ|Rf&NhC-}Y~eE*1)S9N4g{<0v<~J1GL<7zQGk$z#O_kQ1oj++J{%?x z)Cn2$Gl+4{D2RENJ%+nrLMtHaBdnibe!HT-`^zyHw%e$a;s?oT$-3! z#}*h^JOjU!JO1nataUpbtm?8VdTOBIbfSroj^a5D=L5PQ==ce=#6z(lk*i>LL5usI zW6Vi=XEPl>#3xCQjkkFU=aZ-YM(QAHiZ z=RvTXIo?DgAF<6PpbTrw_i^AM3&b!aM-JODXuA&~#_xwHZ<}!>C4xDxb z5lg)I8H_TW1LX?US@tcFf$t7eYa#$y6`YF7nm7f=%S+Z+_ZOpbItfEyN# zOL+_wSn8gGF8n3epNRacY-fQUgy{%5I3y69Q9)SRt!e59dz6)nWmhBT34$bB!TQ1g z9VmkW>#1kM^)?)-AVN|`D70<|+fQ_rZ@4Nt6NRi`Y zD#GEQ)k7bYxZ0= zM_mE(@5mVykqzi|Mq+hz3BLuC1T_j#>|4B1Z%acS%H{TJ+ZyQDio;hH+#k3sQNn8m zPWUn25bz>s{7EyN;`BzYtfBMgv}H+zu*yeqU>!t8CMbg=6KRI5qy_{2vLonFy^gvK z9jY&SWPU+gu0w|bD^hX=P!!1f_1!h;icq+P4nMjbeQNY%dhClG02AaJLZem^hOZse z9c@Sg7KkPAr3JQrhug1jJ_;V017blUtdrgbx&{R6d#O9~T>v#er|sNkQ@0;QDF|+Ho7e?e zzQk~1E0c|#Xbb4`>p?r37M+PA;{kDH_=b{G3UViT`hqo=cLMm)xr}hxp)OmJ3jyKX z^|cpqE=s}117T7>;VTJxympbOYe|x^=2~?DD_2<8XwD_a9>a$H z4#k)w1c(Xj!r*0&8k0^g1MNf=H>sFdk&a{H+fxm)?}KOS#PNBo!#F6<0vnJxE##fT zGof7xtsH{=l%tRxc?$(Y{q`VWec?&sZ3SoVWRTv^?s50T|Otpv@J07U3~5KfMJ zvLNYk$^yk9<+4*aqmH_0q5|K!0X{$X`t$hTvkY*qpgMHShoF)Lq^PeSM<#w|^$XOL z+**%T+bXbc3Q#W~g!H^^GnF0s(uFf%$j#fTj|D)+@)j1U;#c<^_-?+pcg69p&pUcE zmE3XupE)C`Y6av|Yn2Wka?dHQ^xlmY7|=54S4Oct2ufsGWZ^OtG6ck6^r%j$0=PP9 zx5l`uKD#>QvFhlE`^epL)~36p@S;-sA|ZnlN8og+1zXEUJ%uheOg`qP3gDekZ*ovG zA9TvE%mkC&i}T0(9;6KsE+gvXFVKQs zFC;L9;RRk(RQmqtn95g#%y`6((}Rw3ryhA#atNWI3I`cv z8kF!9!#By5ZC3AG`W#sJ0X$fLOL%Z}Xk6F}=Ds@`;gJcHkFHpC5=HQ1&mBh);nCmC zoCm7*UCQMLO2kRxKYh|S4y|I_k(FFZQ4;8)+L6G?LT(GdH8j|1SAXS=YS|7EiDEKtc#3z8OBN1$D{$ZDV=UKw%hP&&@pFTqzaeIzA?o#Y9qBwN?BF^(XkXk+-C5Tc68 z2D@u@z>>Kf7cwTFBVt4q=sqX(w;41?0!Qy_YXzmTR8UMEAR;P&$eq!Iq&$_! z-i4DR35g*8hDVCI%fm)70iF@ZEz}yDp=a+lNYuCPcNhgMZhMX$LPz4FsTm)z>ZPTn z_e`lv8i5fEfyoN=CAo3@YI|T?q$c;ZivC)FaH^_dUNF&8l?lJdOj4W?CG_j^kX}hD zpp%{I;|H=6>3m**Bs!{i2pbxwRm<8K;Y@`=7{=(71763ijJjK~sVj3D7-e)6B9X+@ z6#(6Uj*WQJy#ZFf2DcVAYL~E?^7sWVhk0NZwAf~A#F*#Q4@lA(*H$aqv8wyRHXnL; z_zvC_tqE%yhVjVe;3MgLP4d=!?mdeMOUANmN9?LXP={iek>!mDrvuQ-#MUs1zYbwE zof1BzA+=I!;cyCP%bY83nk(WT#>f3@y@9!!+Er`pc{`B+sgoTn4~+$sr`j$hK@m`j zbf$+0tdGP{0Xh;CuSwHn1~;s$PVD1%Q8JlG4_0r>r=`PpNmAF}uKn>9a>R`cy__eC z4pfv2plT`#b}K2vJJf;@MBN<35s{w_ot(V=UVHcM?Lfi)8RwUBM7>9A4dpdVhoqqH zyHRlbS`e(k_xgY;)&v@G(G)V?vwOEWwmLQCQa3MhoTt@+CGZiCG@|u<-MSqP&uTmG zXOEw{(mH@nY{`jb!|QR-APRL8m-)NMxQT@wFf!{EClgRglrqFWr5GF`&dSJV;zny1 z1~?f}LvrcQ>xZDHSguv=KWb${8%-JAS0f(0L_~;)i4&Yy=Z2|vIq~WPQ zCISL1P3>J$*+a^v2E`x_;s0RCZmS>a9NbF2Ww=2yu&>=}&z?OyR3_7Fj-zY6-p*L{ z#;wr(JA)B$EJLp3y{3LwYmG9Vn9_-3#NeBy;b6XvUxLS*mpj ztQWIRb6ca>Gq*j(b*}4RS!mCwvqvy_FM&}s_TNYxVb)K_(0yo@DWglpK*eTn>2D13Zn{GF2VLmO<+U# zO|mlrf8~w!$YlQ@NeI4euE@e?vL-w187ZLCsT%`S7F16ZcrG#bZb8O_=7Cun zY9_|WSHPyuQgGzah44638-n00N%BF(n-Ufl#<$Wq?eHQVp6+u_4DN*>fDoI_0gad# z9s(a&4;;X;7a|xAx(c%E{whK0qD#3b6dzzgaWSN+Xr!N?QLYUY%;s->aKO~s*miF7 zcBpm|IQxq_iTujw7<`B}>ibM0A)64bLxv-8jdUa0bz^90^PREHX4Irv-|dcF?A+zJ?HD&|Aj$>p&5JG zTI@@T7Q!$TE%vR25ke$V5|L%1K`0bj>?uT&7Fk2Gl%yg_DJ_zslC_@q-OPEO=k@xZ zGv|K}_4|FlpU=Hq_jO(O9~g_hjr_g`el>`J1CLNTB2~XzZ5d9iT4D@tBZeNS*!eZs zL#J` zOH5;cwR_Py)$jX`;^>^PhbXh8O7}}Yr82>`0)9z>BkqvN`FufPMG$D1>*5UTBExbZ zq2pknlYEh#st*@kwwN@KCZ|Z<1Q$4JLE|rb?%y|ol&hai!I@GD_9%VOt~P&b`+~@3 zoVUvQ5S`3)#|}f0%H`yqESjMet}2NFrxQG*|F$1X9cMJ zf~r!U0tE_mJthR=rzzziY${cnnw^*0<2iv|cDhcL+Q z?di7C&A7X!+!&$p;NK{eFRV_c@XnrqALnfRc^&h6+`Qmi$h1bV9$^5lyE2w)Fq#7t zV{26`#&*)$NP?AtF{p`9&?$C~h~3%1lzp|MeSH&@ww#sm3sKuQLDv~RxueI47K(_w zOb&5?Gp%p`R~ytgNk3~(r2Ij(=5un>sAEbwcLBw!bDUF`0#`DO{O9F$2A^Uxz{#Hp z1njMhg2O0t^>(YQTAqRfNF8w@v5y~)w!_r2_O);X z05{)^)M9SvD-fxnw#HsF>6ge`hf5wY-8nF5p0Vg`EhZkgRA&{gAtYP!wC=ymy9Oss z>@t7CB>D!@zMmApY&XNsG5c2>4v2}GhE>#hBBB<`kDuUv-hyyTt=&{}l@GE62Zl;w z!wE`piUwY^q};}u9Z@MtvF$GyC%(@gWWxp788ZNGr0+@cn6?{@iM__p^^i4N|LYcZ z{cBN|2Ix=s9v1aub5b5H1>muJ1F9Toi=ty3@1dDj7zoqzrHC>21KvbX0QWLRk*h8|#% zgJbO~l`6`(Wy~C;G}fgg#-x2E9yq?$0QQ2OQ(O4Lela(#7%vDHoL@X7`S&UPl{_2E z+?GLx4DgwnxV>beJBU7=Bp1%GOfEHC^P^1YmobkN46yW+zuClA&nxmf?Hm92s;^88 zAwPJ$uj7?FkjrH}qB>1!Pmy`j>EVZ{fQ3~j`cwE@83H?tBPws{RQ0w=a$SUDDeg#e zw*O}(;F`}g7>EU>+9x&=1BpRJwI(d6xRc$Yt#^h^qy8`T~mdSu0U;J4s2pJXE~${fg9 z8LPkl{pQ-A;E*%uYhr6hW8`GLMOl%Y*T53uzmtCB6kSyAXPzyiF>~R`3Xd9gnYa|m zOe%5h38hEAQYtZ$kHB-~q0FC}YOhw`dH0VwP5oyaAEyk20o6(RJ06%GhI@+|gbl)x z;=B*hZ?*R_bElUsCqe=OI+_Ozz6Ap0tA4%N@&1iH3qO9l-M>Db3Lfl@mu8(a+LYP|S1jldFwJ_+*>i!5-a=Dpmz0nlY~99) z)D+bH&6V#WTW#T^4 zrcpv8Q@Oc`((zTC^8^%TGRb(cN^zl}#vx$N`AqG)ZVG+BYxa%x4O@0!xAA*9)m?4* zOZ)ll3cAu+343ULaLAa50UXh}7w2zA0IhCBPoWFIEYx^ZcP39cq_V(C%un#woeW1+ zHWGLMvF6PG#i=Kma5>S=G$n^>j{L)vZ6~zRa6;c101pe3W{Qt5Y$qP^jZy>$W-P1u z$1XiBr=fq7(t$e49kOw|{?n#%_eH@-%+%?lmUm5>2IyI%ZfREXVAF|U!k%35{Nfn# z?(WkgZ=?*Um@2-C5?tNAy5tzINo0t!p`;bQqRPMbnL3V2`O^CKo*$_m#qX}R(Yp`s z%MINR?z_4%DEBmHPp%e*=HbGB09K>Io(epMz|QTIa47hB-Vq(X3cn9j7qVqYVL?Gn zhh0iuZ<D9jP%W$k19Obl8KZT5wP0vHDsIgN(!u}@?D_hRA= z-IWY~njck4&A)iUmd4Vp5D>KtX2B#CTn=KSiJ*I;N7N{$^exJ4ncqgu@L9wW&1+wa zj;KfJ*U-odp;b*qM0CZH?*)kh^hH~84qu%+keS{GldQrwn<`9fH<}jt zNo>*3oL#2mBn6D9T~UVo*1moFn32@!(uK+D8qosaRkfY;188-E&s)Y<*%R0Yc!DEd zJmki?MjyJ%F+{a1v;*K{^}s+IF7G@7wG8x={6z?y)tgFMzhv z_s&sRdJTQlwYsudC5PVJqS140WJm+%UVZ|M{^r0U-`|)plQ_g{j1h%ipB`QJ!MGKU z2wX{#XB1rNfOw8H9w*9UW}eSv&Xi5SvU{jwD&rVA*2TZ*n9!ls@QA}<&91tefZSIG zkQ7Fu-Eq8eI)#i^BUL(s5oJePCuA_!kRD2cPYO(H6uXnOQHtI>om@~LLjn6hn%_xs z2u(|;j$g1g!aSwFr*=VZ#S*iN>uViNr*d!2_(t}0%@kfRzYxm`KuB6j7D}l+FEp)b zeE3eaH=x5!z|5Ro6?rZV?K^!I8g{S}YR60}+MxXp^r`7Gq@ARF7CEl$2;k$0i%5)d zRKYRuz%pd%-YJiQjAlWLUj=I$W|zeKQwter?^lwh>^`3t0jj4=n%JyH zIoLpkS>>q#b@b)6++4Dvh|)U-Ht#clX$H9V;v_{vHs?q+u)MN2iA-u4)piEksZ40T zFx)Zdw}B$An``~0pUl{@YZ4lpT<0N+j?48i@i3-o=#Uh=6c^MkCz#@yJo?ioy+>4k z2MWzN@v?)7X~z;W6&T%K|_ztv9F|y;9kS4D%(BcIwTFe-KsWmRf+Mr znGRcOdZ;=>&<>v0p{T??7zwLvnoyb8xL0L-X>eDAVQ?-0iS@8n>Jo5YpIbNOU$Ey# zlkZ%Y8nEnT(2dk<=f1H>T1*y`xmT23!w2(QSQ}Oi@F5y*84Nc7R?~yEsXiZ|@_I2O z!RJJMNLAOkZkF-CwQ!oiALSffx~f}He9pmnjhad3?lq$l9OJcd`It*?XB11}A;faV zHr4p3;LEmD;AcL_47T8jbc1>R5ToNga!Q{UM(3=LOEj>;6lF8mF*M^z30RGbwdo!D)x+s_gys%jAh`v$Us=^{Bh zaBqt~cdcxP%WIWC$@+<2AFTWRv|8MOrj@G8bhRs3ta_DmrWGsH{(sx{(U-1$yw?RY z{VB(Xl1SbfZcw=W!EsNgFHsF*ljZ^ZSxVa4pRMN_iKCNH>PP~NTBnPAM;s6K#5xpm zp^&EKjrO`MqtpCil zn`YTvBrDkhlZl7EILW~*IAA%TtC%ZtXNj7-C+V2G@}_=5iTH2Rhj=6K+#kN5?e@q2 zM%K0Z9%|kNzGkUll+kQ*kwin0C+z|h3J2G7zeQ5V%fdD^Z{}+piJGnhe#vXixjD(C zOSWXtulP%5k-3>#OUwJy<_(uBoK(t`8;#YTxOFecXjpL%16vh5L=eG-+WT+qLdPVn z8?W63^&&@y0#u19y&<6RmZ+7oI7;SZ%IY2XUa(pW`kj7R(CnYG{0`2kd5$Xw?$u{s zUVd28V&I|jxi9;XBE`}OCP=}y>G#;4*EQH}IaeWE+80uxZ{UC_$F~8)y%|z=7+JSy z$-n;0T<=zMyq-#o{(A;+T)X{?n1f^jK0=E^Er4&_nFhmQ2}U6HCM3?`y@plZ5t|^s z6+={8DO~Fghp%=!B7=UAR8E+tGzG$L6H*OM!h7NyE#bM#7Zzke#u1=hGBxMYh7uP8 z)CT=23;^(iSzM)zi+_!kG6ahJR4{N65<$Cp^?rxv+764!Vh1!p$bm_CR%kTOFyRij zy%w(#Mr$R)3Dh#kp58w@chiqjd5XyT@cO^wkvfV&LxkK(UU~vK-E3m>n|{#Z<;|x- z>20@PMN%}aLN)dM;r*>YudZILz4rQucZ}4@Qv~w>KGtrzr`gmm?+&*f>0}XaAx!0*;C$6ryw9gyK zu(83T+)%99gc@z?t#I2(OUhtWCpl_1leutCUc<@*AQpi_uNI>e!q~-5lB=YLHH#S@ zO7np{bWbg1r-5!oMABkf0Rhn#PPs;y@xT)ZwDprrvY0t&eRIjZv57rv(NCos4Cuc| z1ZjvYP1Y1KgMNq0nfx#rsU%vqN=!^FSn;|+aKSSVXUd!4K^wPM;}zrRc`NZOSXylMtDE;+%Dy zPI8;Uie9MeK36`vRDZAu^R@#TfQLP9Eqw^K)v#UGphu6rBM3KHqyW3D<^Mw7j?23% zl!X>d-}vrDRH&E~;+rMo74^vRPx(US!8S6FaOiKH&NR2cSbsxTtU=_qI9~nonJb7Z zCH!0$mXWX;>obknO5cQjE6AJG2$c={OnKmZva7I|UJlfIbHBmOOT}zKpr~*^xC}u; z@b4zRypK6mugqGki*-Fz-sUu6VF13>?RUQ27m{f$t~9P9*Zi^_oQ{tiV@i(jl#+AiB6j(r7K>#W*jbR+1yM}$TU zPkF@ZdQdl6^#&rEv|?qiiuvBI>yyrtR!n5Q|J&I>h>zLSdflsS zSLI^XaBl_npUch&G||Tdj^aLw`)Y%#;ZA*0uE+M_GwSNQZ9276XYTk;iz;?MP`@;0 zVVgM*_6|7e*=XSOVLf+joW11%%gaBjA8)>;`Tc{}>^uGaAUNpj&s%#oT9xW=4nAob zyr=9_{NQ4>Z!JoL0u!7=zHb~zp|oyURroeGHaxzgTVx8oAph?VK{Ykov*zfl#svTM zIn!!oAI$gAVRjz1F@ad#-otb*fDn3$E=_e|FzkEa)h;k*s@MOPuD^* zWMZ+J(-#w_38yOdb^$Y})^Ca|t?(ACOMpQaL|#9vR;os|AhK|ac> zAM2QkUvhpnbCI)%;IvLFEf*pdbZc=O`f-9QV$5?6Y z4P3W=eV5#ymt-hLnoIWH`wZC5dcpaAYn@?Vm(=K}MgdfYUb}n}(xI%4K9_W1_Vx`94GqmNE)ljU z^9FN^CU;WLcUkPaA7e1NqCy#!D?oKv2EOd=9DXJyCI*7wF-W9SKn>Q8o_o_3r-FU9 z>)sw{;sAml3K{cxpSHnSOo#-+;!4cq6iUvl2DM!VJ<2;}_8*@v;=q*{O{5V-ilzj?)UPzGC^;#=X%~_pMkJe zF+;7Nbn)KHmsXUcF7GD&&Lrn7#>N`6{Se&ztW0d(g;;eNIuBITWMslbH-Yn}pEm16 z@tu-3WZw=d-f3lievoWRv8(;3YUgP>DhKB2f{Cl`RoP)hsu%xqPU8EpSH`GTE+D=U zhZ-;Ys|u6O{2K*{H;8og&E2F+ilEV+ka{Zmx9 z%cNoIX|ttCYcBqM-hY(Q_qR`__2Zm3aBE)0&mc!jiA4lT>@eBnApE{lRQ9D@kZ(W@ zQl^Qc7ju)D%99#(y?8ozLSGNv^PFnAcB8 zT4ltzMd$L&sZN7NHsguij7Xr!q zsUA8(E6`w9>LL}ZR75t}w{pL1C^P;tceoe9dI?y=Hv(-9kZu$ELX*|mf46TNLp4}} zkLD)=5V%RJLDPc*gN!}0D{sF6_PQVo@MuAf1hzzby-Zw>~$Eu7;qJdaa-yur;eQ$`-*wE zoHw|u-ouiEku0cKcZhT?pW8~!P&e~%GdLKtR*fvw$>S z4(kR6A*Pg#Y?$jB%8*VPG;YpicCHBPHtnM#_6*-9j0@(D*f2qlC<(IM*l18=*M$$i z9*GJrlP-AJ`9tr|?NN=m#fRq}XA*D^Q0~f1Ow^s{2DnpDin5^uP)}@>q~VZeN*a3l z-VZkmO%rM0<}&@Tb| z;_eKbr|^w|qi>4U(8S9k2d53V_I0zucsVaUQWR>C&__b?ur(yio zxjf2*;&NZHFrszH-FVDwFAQDS2U92pc2>C&S@Culfqnd)6hd8&`!Cms9wxp-+TT5_ z#IC%40~m@>T;eUk7&T1U+!LeL?sk8EIxb!5^d+q_LRpfLGg@ms<2$)7UHyUSej`!QE05a5}4)Wqj=7;83yy$ z*3h)NIY>Q#n#zF@jjP$gYM~?uh7Fn{xRJ1c0Kddqo=oQYEp?t#E5}!ZCmqr`#og%O zpmsJu`xin}U)uz?bKggVU1R08#~-(K0aS$m-713v^Q=&}NY-qD3d3b{_rI`)4iVNzV{&;`{IbzyG@&zU|ki(;QI${Zjx&pR(Dod{@@J37T$Q=MNFiq09g30 zUN!d6eaZqEZm_-Mp1}ZL&6qm#4LVWplk@hg5Av-$c||^mD zf8n(7TA}!4T--w=)Fr}viMF}IR1&(^J8CjrT3F07oXWgjpyAOlh10p|+)E0{z7RiH zXL-laG*(E?%!DY%LTwke-6Q9h%l~hkB3BXS@%#NPQWGgC&>l?Yd*IqK$kNi1M>6nf9g!)J!CS@^odDp!vSDuUY;Nb>j_ZD6oZ3CZjg_e}Tb7 zog}WsoZS!Yy4}w=!?PK61mC$>NeC$Ro$MH`_bXhA5eS&>N;?pO@K6=rze8dB@e@crVz6L|Bn+6lB}F5Z-C`O{CaB$FDnbA?9IrHHScCXVHBZvq+Q?c z8+irK5GTADSqH(H7?cy%MYfUXSs!`g=#k8*y;$I6Y=e8{9+qs4B<^#|Uo>tW)JqOr zx4coxZGtI58jR+kb4r7)o!JGEvK*louZwCGIGcJd)1wU0+ubI3o;MT*3 zlZ4&LC`ul_K+RY-rA5wvLMvR2{g(FJTAn!*@&~QGA4!ce)~K2{I2+%z%VT?X|4Rnt zP*U2RZ^<^O1jm;1PfNW82hux}<(`H$-(^FyN){#0i-hi4AcKLN&jU+dF~kc9+P(0W z%{{HW{yFh~9sHGxB9sQ9f#0aFJIi7<7%wHDv@@ZhaBoJd5JiV3xQdp&-H+1-21nSg zlb=oWJQUDma1jLG!PZ9TNoHT2+1TeI#RU(WGLcy>DENZaJ)ILiXFK!-l{oIg9M9tW zu@PiT?t|`hmV2Ip#~je5`QSVTVp74Xo?p+^c}B7}(rA>^rPa{JGKHYj8(PrZ4vqmVn$_a*GDQZlF zQ@XkZvRg8(hML6Hr1{O}R+b$DYnmh;%t`syF@J8(qUE<;V$&wkCf=_FFeEW!|R4p%-h#Z2FscU zVfT!U##qQVBqSu++jHBCPuZpP^<=;QbnWZK~{TWxuuhQg}L}!pQ##iEBG}Gu^udo z?p%k*!3Nmzv*=$`GF(fZjDgIkW3bO)`HLX`pbh)FuE7J(*7n}@BV{k5v?q1DnNQl| zos%NPY{7f!`=s>rX(D(b{@5G`!KdmK#QIn^CtIk7TH1}47n9w&97Mw9vi7}Acs9nrL~03|GY2!uWzsG>-?A402;~aBk8Cyz&wKtM{6!yn>>gjuUqrP z#G#7J@0}?XsBDa<`cjU1+cJ%6L?C6IA-g?fL&EC~Rl7xb$Z=i9jf@9hKVhfo4N4&* zH1A9?T(-D6^N5kiS7h}LYG!M(e4_B=9B55QYLvGn=bP^%F1v|ui{EoH2X$^Jz&ff9rh|pyzF z=t$hA1=fXL4`nFS2l}loN6YEZAwwrey6LDeV-1ZvlgDZqfILA1xS+eHWHJ$caAqWZ zQ#iqoFu#A=g>qpL2#cTO_0QUA`*>0)Q#ZO=c-f2W!#sF|LFRX%k5A{~Nv=kYp>z46 zhN5GBX2_Y~4QGbA$C*6Jt`DBAa7tioUc!7`tNhYuJa<($5$6bKAA@L>0nq)vJ1vy>g3zU-o`Bw(HhAykYK$2=<2Ka<*eWspDXJ%tJK)<#A z)JMNu*)4O}KHgtt{}Ppleu{H8d^K4gA}iCn?(JVn$suL|${%hTQJW61iGSu3R(Vb= z6gZ51QU=XCnY25KPg%y)(AA>p%^7pfeZ2N2b~6nWm(xMkUy_R!lo(SH3DPFkZAWhW zy=E2-!AvY&P@tRyelRd>UHxU;7v))V&fZazdnfhX?BuO@t|GuNF10b9eA=QDIe2*8Yqd&2L-u|~6=@W;@7br9`) z&OGt*(1!Y-wRF@^3)*<4h)Eo{ir)0~5D##AdjhziE_9UqxxteZrguq+BINnEl{hA3 z>A9PL_b8Jl0re8QBFFxraGQ${)W*86_ELAq*+<=7Lw+p70r?q48!(F7Kk#tDKBe>` z%vtcxr^2m}6|2A}52XwP-q@a>&7@fnY^~En_6*pQKBvR98x+*PDcZj8dfIhx3vXAu`TjG)wxFl@^fqFWXI3xV;FjS;SwZVh*fmPSqese1nM}$wgQHqgnLk#BPZIp4SD?h!H`MB$ z{8?{Vkc+vM)#|H>b{h`5Kc8jY#ZYtGAUlP|FEP2A?7Vx_d8GSgq5aBAER-WtV4HBq z&zCq94r1cV{aA+jnM*246&9qDY>V=$6*=Zo05SO^ksIY6rp^=(0ys&bSTX*Uv}SaU z2rKDy?yUa-Tq)CKLQywiYymNaivI8PHv;G3{dbt#ynPDN-YUbe?88&WmHPlc^B;;2 zhXU@50BU7xX+D+LVc>;_2lXCFpD4rcfTo^ToxV#4jRaJrl~SNLOpxt< z7U$<5<4u-v<%Q|hRjq^P5t)YNXH%UX4rpRJ06jC@^(_97%;A}o8yZga1(NNil4XIZ zE~t#w>BtajS7}(DFcA(zRyiSQb1PIVvPOPvv_Qhi0)@Lz9-sNu+=tp6t&nD74K#$I zLs|vTVotZ8t(aq@*a;8^U}f{0OxM3YTV7L{kS%* zTW4}ER~-K8n*)xa`E63HcEYu55II{)-9d%BX1-xZG4Y^*wZOH-Auwq``<+-|mOSe+ z`X@d+UJl(xxXoYCu8ITlC*6sjb?W!UpJD)v$pw9H)fCA<7zFLbkOKzNEkmkY3ST!Z zhJ^Izjga5^PQSmoR8f0NC92*82CIBS(Uftx!>62R`dCMiyk)>{)i!NxbN#M@C(C7` zGx{e3y`=#0TiX~+^ifDa(BV1HBHjv(#!T-?QI=Wkh)94GIU#AincKk$_>u*=WWw!^{nigopS@>w3kx&tZ;F0;oZ8r1$*CDNYT0BK<=eqevx&pqx zb}DD>gqhibQPP775mCZ6rHo+r){E1du6@F-71Q0cc%G9{jn^yz!VqH}S@MdP6XdF; zX1&wsdWa&q)6Tlao_^wVBi!K9(oPl1!c)k5p|`eKz)`9QaZnN+-`1zMD5Tq{5fjB9 zBqd~2H+%EZqZ^oJ2>G5H*gTcZgd*(Vmfek8B`dg4yal=^O^a>6)_s&xpi;;g#Z7Nv z5_75~_)9IyTM|WbgKPux2i;Eg(k^X2+{uiN4|G{EsPtpADn_(ZIRY7Q6hcWT@BZ#! zJDL7npjlqzB#Q2}YaZF7XI$RdIpv3SF4}(T{5@;SuZi55Mt`|uo(52xoY=>K2Gb;~ z(?Y)G0utb4kqt-aFdEzZl7Q3!j5nqC5rrmjayXMlVMyn0s`n6tLhKK+AKuD$&w2Z^ ziBtPWxU_0BPc#tvwX9lEALRJxoKEo+`0@mnPT5LBg=_#tL~ZJ!vy?_MHa%e%(39U{ z2v6@=HqGndF89V!jbxG4RL{i$8wlwI2}0U7r*<-Sp*~VmOPo&ABQqJ&=)Lb+zR`TR zWxN|N2c>|WYn53M+@Dh}&SA&0k%9C^w^r2jwzG1J7CP2fSuTGJLa+Wpjn~ z%L|$)CcJ|qaV%as6xho^YNHcXoKykaMMy2Y10X3;8*r5U^XIfx_-0}^2>tJR69*|9 zI0&~byerQ&z_FQg<~i5Ce{n)AGb3IjzojR#gJPVvv%ntgT4WBg*mG)GQ_;vX5tUh@ z)SmD!$8d)-=;T_JKigjTmMi=YuLa<|Uc@6I{de2=GXCccO$ z0PyVqnjnJut?h0%w_59^ySkI(YEhRnIaCD{V%#;3J~o|BcMa&Th#eTeWQp~RSSAxz ze0;v<2-Y&ocHN&Mz@Wfzp%9f}!ls`!{_NU5%FLmJkm2K_yj5uPL<0euV6!EN@c{Et zsYYf(lobyc1H+yw()x;i4>PB)VRrD!vIw;qS5{cbprj3(z6UxosE`;6r|8Z3uZ4b= z`+200#2))3E1J+30=Wz4n?~d`*kE5AbNFm)yzgFlwR!vY?b0E4>a_HXF~dnMZJh}` zWb^Zu7VO}t*ZlJ5Q&MtreHBCG7y#yY*KN9Y%oz_3UvV298=Vp#>&^sIroEtW z+G!2lHmAwe=cf>KkHW3L*-b?phP;G6?6A!8C->m#lf*Z^I7r&O2TAs#myQs zv|N*Iq%B-{|5v~C0DFuwyx#GpKV0^2Hwgb}<`hGwUu7Y(G);x$iUPnH^Rp=%0|J_) z3Xjwf=lo;YlnH2EJ%9}qSz{7a99Qzc$Ye#PycB^V0DyscL}Dlh$G|Yx*#LeC%}xF{ zg2@q#Z>^_Mo!8u`|2gPZXOL^*vcUawop_*HJf10lG-pra)v&bto&~If0To-B#G+)} z-@unBD9q`;E~@6M0fRJCQ@+@f!CS4YE-%@~hlrqn*2^qsEb)|jTR768#*r6Yb~nx( zhjn#2b+jO)RBgLlaMF@tijWV*^Lg}r4 zj(ZbUMKn_s<^QhgD4zfF{kIq$1ok__RfSkBC$LKVJJu|i9=~R(YC6Iu2id5KkEpm_ z0F(&-9z^jJf%6Qp8^K|YP$Q6G47+uh_QOh&Xiz)NYXDxIB3LGTidVH@LFcLjuoEwb zAQ!vFYyWy!aqdo>y5jj3uTD9cQc-xctXo)XXultiF$nMvoIJ!ksAXe?V^7K)X)2{& zWLuZMp@r|ox#zuYUBBHC6g0^Dpf%{NHE5#l^p_DfMvRJ%1m5p@<^6)rm|jXfL%V&3 zlGke)ZB#hJ$U}k671qsK4UIid4gX?)cHu&v0>>vf{~M<9j4UtO&_c_a7iwxNvAyQ> zafwSyW_!LgAgAR2eHX4wjyt*=jyt*wUgzC&l^9{q?S@PiJ=U|qQa0z9 z@_to=lqrJ#6p9UO7)8WpzW7W!=~fxy#zN0C%wV?x3>!uS!^cKbV7hwS+U zHM$)|DwNoA=cK2kKy$OLC)<%UaG@Cw@OIGO-=EZgE+$mOssu70AOD3Q6taj1lwy*M zJNb1i*hM~4b^$0suCOrTMQ?xWF!^^GV_DaU+w2b@u@cBDEgt_&!=Gym zsGeAnMWJkNv2Y-{n|^T;1Y&VVmA@k{#~4FpaCaCZcpZ_5lsmi^tRp-2}fV&$4Cf%bV>uG73s=xO1&PmYkX~c>pt3YSb$}Qk>34cTs zl3e5LA#3As#CM9I zBOZM+(WLPf_etdPhKA}YJI>}G`qh5pYjOG_X|%2QD6Ks_ybNRvE9N@4RlKo_jK8hd z$Rtyi=z^~R)OouM_Vo^Ed8&&|qJ{x+ESMJMH2>6^`x5A;iRG0*Q@9+}J#R2_`Bdq& z+cZ&%L&|=Y40U~{n~O3hu8v;S#}tCiRPdly8JR$JX^+)?&k9>y)Pu*e<&6+{q(GCt zha@qs3{*!r%F=rEIPlea)$;g$vo^d|!L^VYj<^k#iq}rd6W7GvTWgkV?L(`qVzbfE zt#Uqx`BCezz0(6%EdTU1(?g@;^|+fpvV5H1HM>RoW%aB`6c7T%z0pXf9DzEjFX=&zCyO!wc{ceJsxOp^SX>GRX9S&vYFW=Mk|6X zNwV#1{A#@k97c7Zed{+cd}?Xa=XoSn`oN!%S>Si)8Ia=2g}cYCp=!nX;ZE1IY> zn|{hWxKY=1yuieqM|^%-n>4l3cs6^pvm8Zc%qOMsb>A4p`zIjDI^*dy$c zJu|(ig;IlOoJ9?XVP0P&&8_Dr9_$apmF}|tw+anr$RZ>zC7z0yhfE>eTj;gGJ8E3e z-YJ7L-n;?W5C}D}cPTd+%Vt?&t22EbsGU&e;3p4TasRJ}Wjdb40!AX>Im2C+-huWm z48H+EVKon%Q~!t_Rwbk8{=Th)G87uh#Xk=#xmie$b}XJ*g?Q){>bj{jG!n(93hm0v znb;;5HT}a^^m)P$IrvZ`)A{65F9#y9gOpZ)t|H^~&Xg8Y zxCH<=drwjhgaLSYXVRcArP^>cS?I$F=ycd16Bmro;B~BOnT&u-?z9*&a>km#b1Ou`26C93hUp8KFT||{Abb2q@<*i8YUBEn+k}A2#^l+p7I9*$|>~E zH4vD^_0?-}yuxIzj3Z<#=}2`d1ma!pX|;}iCpZC1Xm(^!g(mO9h;^R?gAjyBi29;+ z>NEAE6YP(f%$MjfC&GA~OwNs zXX9ok8waZU07w`t5=={TkdjSvfAx~T;rZOF8Pthct!Da$nQN<2;jG7qc zkqCy=)KooNM$TSwXmR5aTfrP8LsP#@oT>ek+!v2^?Xhf9wF8l^sOhB>m6eqxqt>rq zZ!}mrc!K1GE$@VUaJ5cV-TCgSuY4%kC5igW?6ND9r)5yrK#ulAmL^ai*t(Z$qPHBJ zmQ7nLi*;ySPreDaBjOyyzQXjl3k`b~I7<26`^MHEJ<@FqUOqRA2wAzW+P8LP&%I_( zW;Ip36h|TJLV8# zKH-<%y${HhSSX28WCQ=JnUfVY>og#YcIT@;eR>K)X}^8k=-c96O+x4x{xffD8#9Zo zCtazCMLLOY(Dl&UVWismZmpsSmh5JHRygi+TihxrM;Wr%G)(0S6i!ogALU&kt{*IM zt%OS;fq}3N)RkHQG$O+_@#PW+5!ynLG)zA+zLl&bfT|jUfrbcU-lm3(%9Y+#V)xd9{SjeL(VrQ1@3h z=`5ac`|Z>)w2z`mI*BuiL2tFZ>+<*-T6M;ggqL4E1Vq3pQZ~Mb*n6|`=I62i2H`K> zNmF6M?Q%Is`kM>4oUm4Sbj?Lsc_UmkKKsDTavp0s=7PuQl(Fk@Xg#r+m8`Df!9Al^ zWkX+0$x9?mGcVYlm%GYoYHim1X2xvpTt-@tyzKv1?U@otR<8+k!#T}bP(A6lXq@_x zrG0!B9{zvV+w>{?hTYIkLzcYaX9~^NNJD3yaOSpd)imYO4_mQtb79i&NpCmFScE(# zT3ycM31o{CCg}WPm+m5#x?~+OiW9C2EG~V+cFQZdt7n0MxQ!DpMu6hegKiC)s(D^8 z4>GG)8F#8;|4?_n643oQf`az!Vo**nX%g5!-OHaW5tqORN}=^Z#n z9V3F6(y?;9FKQE2RVAlp0xLUJ6^Y)mfrgkdTQFH6zf-O1*SwDxtiakbQ6>2npGsac zfbY=Ea-mLg{6(Bj`nx@*)H4)vz$6)-@r@UF=y!wDC2SrM?LcIAng2&#Bpn4Irej1* zjdf3hFu*>Mu*-}#<<%%06!q9)#>II^&*?QF)so`^(<=Xx|Ifx3Lkc}s4fZT{1#yw9 z#cc2&=k{VeiOP8QSZwT_gwg<~B$N24N7&$FJWfjs zwvx6gt37)aDMG3F^9C*fH-FDk5ANEUuBg``D@@p%Sm5*5X6 zL999M#kqw?U94Gn>yYI@x%FfW8nFeIYE{gzDc!_YrZ2s5Ym;VoT#5Ea-Z9r)F}0n> z0a*u5=xSJ@3we~z)&ljfu*~I%5!@{hH8DwflvDb%Nkk$5gE%WOyel}rj@2y7=VmMU z+;aF;F=4*HS?qbzX*ggnleEzZdUPuX{uRRgmBe-@&gAJ#?cst?(2WUw4ZmAk22#`b zA{m&fQH?fmbwH)Agc(y|YH5y{>Q-H{Pl`@(gu7Nl;a71GWXuMueoam}A1R-UA)GQ6 zi1wd**@W?mY}YF9pfW7#t=?VuIUJJV!sWT80)z{iqy3!9lIP9*XRjK#Go63-<&v;| z{RcX-k_{f3?3)!keld4DyvW2=u&%^tp${@F@m^Y)02`^e$&p2tK<(OT=CgeplD_7| z{e!2M6%-Uy8-2Q^XBMbGg_*b6Wk*O!qHJRFol5oY>gB*nfm5&@0ggSd%G+J^u=5{R zB8Km`22r?sx=$%!(~u#pJhjE@6*=LH$ty^4?QBBY_(-kZCBlW%gQAD^7dI!b5QYe5 zt5PMRG1pC)@+TZ`I)tT;-ADKnO$4T(u|g!r3omNcD6f62#?V8t>#9x*94588+#?`E z+?h^uSH|ufSpjnn==&+Pv()5F90d+1o6k5t%{PXEpJ7%hH7(QrX*@>2J58)YZ!a2k z63?+C*WV7;aqey)57)e{CvWpj7MD-L0z=3K+#~8jmZ)(5o=X z#?}EMjC>CMlx$av^pPdhbV+eywkDP>LzFgm%vod|@5jqoN`EKvNc4W^>s%gO2?D0a2+edVH%PJ^7=mnu6K)UPZq3~e z^OgXUGOhD*c`a{@;e;Ppukn|>ttAh)A`H+)w;rY?@Jt!>Fj^SfcQ!m4fH(#1Cjyg%}W0pfsGBeQywg3_TOMzh(rN;U0=X@ z5mcTyq2x3saJRN9V5+RIcou0lLDpzV&2jAe$fXCFXxc!5XPxOj4e@Lj5gL883spYu za6K}AGCL9DYItYqK5+*vK&Zr)G?|W4I)E2_I1g)wpBiS6Ozz8{)L$SYfjR=4kG4)o zNRTB?!jU2!otRU!kaBow>=noZT3V6axQgsLIz!D##@2nTqhUmQFSCdIY^Wkf0-Kx4 z8Y?NIAO}7uvQU^Mc8XJN3BQUHqiM>$*z_)z<$h~=EhigA`bf?Mw%=RrHm0;*>MREP z14}=?Jsu%A!N2r)is+dD<8+l>fm-!0PkRDFkkU;3<`@~gfrzm^c+BC!e{JCt6qlG> z+&sXj5BLAo9SxIZB$f=qN*Fo0j6x!2sd;~WTTq%-D@LaQ4M1Ja?$LIB4oHwL(N?JG zBuKFo`){OWm7gA|3hzANWYX(@8nCRx*oBM5xZ%bhv1mk&+YcBKw-Q8}%y`46Sl<>1PxkP z!^F2~>?st%gKpXEI+YZ)xtU7G`Jt$cWlEc$P1P!6cHTueuZ)It<`x&h_R#&7`zoh8 zg2oZ`S8dUw3=ykoDy)XGizvBb$vxq-$V_zmIM4N%B57kWsAZ}gVf413K=o&F!0T%7?Fz3I^Y$5!46*1e~3ckY*0_dUcD zC1K?T{Ixn3$G8y&8pIq#A{L|Sr`>4gSw4G5b{y=&=ar{E0P;M88TTgV=r74*#oQGd zieO2~nW%cF`??J>y9YC5VeDt-shAZ-@n;t=fDR`q5MEf1vdJscK8}Keo}XWaSEe&3A^ z)cv(zd)i}$@#Jk&DnyyZ1jqj*ZHp<0;0~0rn%`<~ZWv~753>Jo<2kEKDcP9UyY99qN3SwsG@W*6=^tzNf z|EQpJ8h}@6ZRczA@805P5`X06a;`x?BVA4W%hwbu{b{o>r;4wG_kc$-Yd!5T?R z_tKBL@9Sl|pU7-XMY4I$4wPz-?ZfU7-x0`8A%pu=T~~M(`yuRR&2akUayYzYI$n$b?Igwh79Q;)C*ClZ8S&?CWc_7s| z73qP08K#H)xFSI(lU^P{d1?5qOB#hGE%WuK6g&u z*mdaQU8Ke7mzPYDjh+^JnksUVsA7Qkel~F+N1T^MMHbkyK4pj|&Mi$GKvEL*?K66< z!^rCJJs-6r^UXP-qR6MtGdeYKE|T4-u#HSjrAfNa@;#>O{&^i1p-g+iQE#P}sTk31 zV6vGOum2gN!jk$;I_JNU#?#D)n2OyN7R()g*3%P;DVC&q8I^O?WY3vYv)WqwAQXFVk&Q%xOuY z2$zWrjf~D^FAdL=euNm=ry#YSE<65&FrJpg1TBoVrh8^wCtvxEVThna-@vrKv&U7= zmDu9aGT)8U^^O`GKmKJ@W@4SF7$`}XuwQ`Yct!QL<{(AaAft5#&*2wWu>2yG_P;IaKf1QqO3IDYs)kADc7{_sGEYS65Fz`D7 z;fQk16pi$b=qN2k_oYxd%1-Pte#$qvKshav{j>|OlRbX6zIlKLxRm}+K8c_^+;2f< zq?iwM)$%n$u(D5JR%zy`z&LPB{-X;kDk`9&42aO%r8<>j+|RdrACW`Tsb_NTW#tDw za5z&X3JBO8H_tyAJV{F^lt2!~RX@SM&LhAZmF@u(TH2|RRjExm3}mST@SeZbFFmM~ zycL^Fz%EXJ?!!PUa3wH0?b43}4@VrO*%KNd-Xh1N$$IW|!{vKhm}+7KE9K}3*mpa< zI(0AQ9LNqrD$X7#Lq(X%9KY~RN5y4_XV0EpT`nXo9A1x8pvoi*Y&q5+ ztn&HvZqC=t6r*ojmz7!E94`Y(6qnzpgRDwDLmFO2)yn9y!ocbS&@1&pF*6B>?asv^8Wc(qM6t=&++7kU z?Ep`TbR431?kQwBG|MU((iqB&J9#M&>_N%*WF7!7t3PbWUW|g^MnQnYr$fzP^_{|T z3JtN8qR-xUEIZ3~y}76c{x>PI;uNB1S5#gWY1yXwI*FokZwWs#g7@lh)*^*M*e=!; zz(7lD2r7W}vW+{jMg+KS#+-GLbi!W3ko`Kk5kB{>bzdsQul*EFRH^X%sb^)g&yn1f zilLDuqjIJ~$KfTejIE=g0Wnl$L3BICkhVH(QXbg)1(3xsKyR7JP%jsu_()n7on5V- zf38BC;CCeqeV2CLE*V)9E6#v0LMeYeE$QKbexaaheW>IG8e2g;m92V=vVSZ4Oi}E> zwE7$4nP+j%_RUT;RzD##Fo1ie??M)x>_Nr{fmB2+#ok3ZqC?!;3R_Vgh}2LV3j+Et z6|?%3z!#M<`C{cL0@lZmziZ8xjd+#XK&E=vBR>M24dx%>iFc5&4h>L<6d5Xj8p519x z@~#NJ0ABSVu~*$+$QhbSpke%c(N0I<)QX5R%z8bl&QP0LF)sa|{$iy$y`l)4Ar=W= zNi?}KNS$v^>#4Wy(?U6ghcMWeaSzy**joz431MUyHDQ;-ZyP;-$!`@F3~zJJFD-tP z)=kK3uo3T9`syUp8*K+f1FSmetlT{;jnE~n-{TvQnY1{*fje@dVbdahWrG5~k1E*FgukU<2kt3Y|J z&Ax2NDa}!&?D?}k|Fa-$q@@zrnv(OuKls4O<6?@NDm2c~&G^h=SiNuU@VdCXsh)&LFw%UFiF_gj#$bM7D2u|-A zKqgh|W-6nf?)>MUr_68vGeHZ3Nh%7;^gVZJy-KK-yvj(XrR`cpk*md)N#xylHp|Es zpdmxt9Y7FNvS^vo``|REiwCrjFTEoc4Fg)oAn&O~m}h7jVi(2fi;HZIGV`FSw-P4o zkhY!y(!YQ?&qE}+!(~0EK(IbBvm28f{CZ!n3CqLL_YLdg?eT-xB~U01*IgZUpMgWx zu!%FRMJb&kt}WlOeBcOkgM=qyOt)-n67Fo{+Td z2mzW`!fd)#Vl?xFX#lFw!n@BU+{k?|IsQ`g$E~{=FAtq=Dh?&X^lsH%wTmAr(T){o zkxd+AsWO*K?D-B1s5nAn@_n4lvq(tLAIHmdMCMtfPimgrv^0e&BT0p)X)Y$PVzWKD z+^8bKPE2;pSf2oF;hhOEE_ct>WPddX>$8)ls$-+M(=tgRVz$LAnIzOHJcx+7kPDDeoI~n8Gt#}%N}hNre3b0>lg4<$+cN+M*Zkc z-!`sHw6r{+=RKx8<@dgBXQThq8-QC-IxX$nRUnBz$7&Pl!>nc4GPdWrjV?%snKvAZ#Vm+|C%3}zqE&ich{j(am-hRo-mF>p&=$0>gp+*BF(`mWu8r@(VBaN{3APCh4!}5MfCJ-|`CbZrLZXm@)JM7txxExP3k}9(`+Q6}+&D=js{6sQ`x?4EodV8k2U|Ny)zH5`CixlFQPOX zHKbHh)2MbI>3}n-WA)4N*aeF{DV1 zK@gO@pL<33-sipE_d4e~=Ums>e;n7ocJ^lFx7PaozTfBjJoj_o_ro^nl4g6k8>vA8 zkQVH~23H-qBXo7Uz>C=(&@@<3DVOX?zM*EJCi{pH0(tqjN+(}wRS?lVzu!bSkb%#d zN;auua2zCa>P=279H=~JfLJPvQnb>-HmmZRO6HvuS(6g(K zQAu}F_wxiR&4d{6@zVZjst?q#r0M>i=dut1rabkLG?cMa>sfGLObpx#BuYZ%l_ni7 z)r%yn>_hj2O#=W5#GIl0p&66b!EV~-DHszAixn^W=bwMhy9BtqRmP;GIX?ghVVL4) z{lptuTn+6=jX&>sAv|o6++~2v@veLV>O08)b_USJ3e^D%6$d+g{xM#9N8Yp)6G_dr zfH`Lpp!eWr7e+4fD@=xh?7+2}Wb*^a7olAg)$~i3u&s;eFX63q;Axg*!tn4;%ZPY$ z@8mP|!41QQNf2E*&b#k@!1q(_gQ|MuoZiNphQuEEn8pN{4gm7kQ6rOrM2HoX+);CS z-(vP(Pns0ftJ`|~3XECyoOg7a0b&H7c{rlX?PE?W6i48;?%wKp%gMpWZzJ{~Xz+(S z_uqW_m*hRz^X!Gw=fC9{-FS6)@P8>R4h?P)Pp@CZJ1CE52i+^DFIAl5=##rsR^#fK z)Y#aN-72fT zvYBTkgJueaq#-t;6S?_|2{qTlQtMQkhql*f{F$1aKs+52MAM{}Nu&?zUpT=D8Cn=r zCo+Nd78&mmM;y0((l>574{t$%LroNL-+8X!kzCJTel;uWvq4*N{%MI zzdGglU=210vIPOK$nKLyG!;<1`-jV`lQh+Y+!)==DyU zKVRD|<;>xcM08KuvZ^#sjhCaQ*8KDy=Pz?3h1Zz>IYe z=~dkZB(VjIvmg7)8%BbPZ^|h$`o+yh_njQtcvtD;wuk0ff61*sM^d@-9PJlVOwTYz zIys+SCVFa<(sng4*gH2No$;__ya~v-jJ_W82tNndk{gEON!#=#1HNU|y)YBqh9yU#dB2P@vGqy@V;3C$}luSD`#SX^7k zpSm|sk7inPrnrZ6t1hA`FI+$3N07Ls6k)gWs&1+ZTaAp| z;^$49PIIf+G_9u0sF3mPwKj=65JP74Sc86vTFRR_as1hNpHxpO%JmoF>LsS!+#EE7 zLU<|rao@OWUs7)l)XS33C~;-QI_|t3TvZ|SvIR#u#+6)u33-bx#Gi<}d!7bYUVAjh zLsw9@A5sAk_iPFMYxGhaAy?gbQLR)LN}K&MDLIoi4 zSnG2Yp30aGwaBNjsx}>a_u77|@-5b?0FY z{MM-qj8v2*f~#zj?I7VQNu`p}zLGpYb%tCy6n?G86w+puj|&|}v@Z)57&}0# z&8U;l96d6{a_3-P_F(|)b3f!RRD8B z{&XnAVeW$!0b`Z=zy+BUviG(txU!VEP=n_0PlZgS?p2#M%X4kht}n6Io3FmW65aua zwC%ZwfF7J(pvJQm<^-Mu4vN_v zIf#ZjS!vkKCH;_M7P@D&{zY$-d{TK1!D-&4eb(8DBv(TJGLHLg$E;EKxpl8Fw*vIh zYIfFgK&Cpo?1&11AfhZkZB+ORms&bhz<^Je4eAAT_Y6B4ToR8x@j+WV9oZvXj<1BP zpxC`A0bt&yaj;ZMs^$}Rx!OI1kTgi>>xMeMz0Rlf8qbixf4=1z?f=tMDJRO!y#1Jh z!eQrY099`<|7cQhjSZeX3bb-75qSCPcjwmp^Y>{ix%e_BY3#N+uf@NUZkNesV(wlK z3!Jh#s9f>kkZd<=)~po+%fH%v^TqhA+m>q>>+6tbInLxn8Rs*F6T-`LdaPgilP~TD zul4;cec7o^|Mm(*yRLjfSF05;Ph2M2H8{wd_+CQ8gh~~TRU3B3()AaSBx`;*iTw=- zx4et1UAc0aMJ~@WD-I~drYZRoAbwfM%^n4Lw;o$WR!VT8s)O1ipH^q z&gyZ=bwNq0b?oX&YIB(u%y#T{ybrl$bJ{h0xYR*sz(i#qJ#~GAo7=;B?5~I`ojP~E zqY8@6r=+2On(7;bNFC^z^rROHQuP2jkwW{$#PKnb#BfxaEwUC;JXK4GhGMnVl{(Ag zfSPCi^H5GK7$g2^oo?kZpoYQ1J3xUO(z&wKC~^iS8U*;M(l_U zSy%`LCG>Ez>#t}jj9biLuyRqomY^s>f3>Q!gQeV5dm=;BI{4HoJ7$ksMgc?YTY*k0 zi7zH3W##a0BY_r~&f~TB0Z5<1dG$)!b0DQDD<$`FYxS23XzuvvCYhm2=CytxQd!!l zt3E`4{wu6&@2%eQU6!(q`zksR#pN>U^&ON*En7L(n%A|dKFVC+=kuGwsuYzrF3G&{ z-mX0qC>qKDZy~z>e*8jwCvTIGoAFaLy zx~EXf-8v%MUWgo|{{rx?3xD78rY)qnDoU=u1o6UQ%kVvedGH9&v0u4RsKeeyBh2|D zCI#AI`AQe(HEq2j>07+^F<2jgrfdT^uAsOMb~ec`G;|EJ= zZzT#)tftvooEBJT8BB{!ai+F18mB-p;T~lo5|D8@Ou}@&h)@KI)RW4E1RsLJ2-(FkwlO)xp!T9q;qKL%RisY@Il8ELUfPQYqM0uRs2 zf+jzZ24Yk9_bZgQhJf$Q9RC{OH29~mK9H?NN`Sgsy?PlVr)0a=1wLc1Cbc|Wy)o$h z;LU@#m)kk5xiV%y5Be>X-!ZU&x6`dgtT z`oZCEbhfU>c`F$j#Q_{;{kNx3$1c^cXe2vK0b5}Ed^x?jZ~^!~JoUN7$B(HVs!Uj< zjeGw{F)pDg)(tu8y*Hy{*fBwIf;jDU($+N7nvYi!LJO#u+G8vqM4ANFV1x^b+;y52 zyd{g;2@UH%qP3l5e)-OLz{RnAvRp2)eG$J#K0-V?$B z_9Rs%rUnDwBKkDGw*v-}w%f9iGS>GzAHdEnZX0TGAV1lzHz^(-V_A%Ca$C~M&V<{3_)W&dowOF+bEv-Sp>=;7###kh;oY8sJa%Xg_+;Xn;SElUFq&{n6ta!>f5j zR$bNpams~~mb!tCtG?Mep{B0|O&^kZsYUcM>eU|XR9fqWYc${0x*#n!m#eHCJT zv60^&Tc-p(_|z?+;#f>_>AASxdU+MLa?I)b_TEID7=|3dT91}Z9y{J#r}(%3`-AGg z)_VL$*gu?p+9szRp?5ubeCt-FOgxxgqRr8RkV{IJw8JjQCi;@bnato`IuB;R2`si* zP9Un{wyYm>_AEF_!^5priF+yj3Hai?XLH^a5E|M-w|8k8 z!Hd&-P?s)-Zx$Gf+NF3ZOdFRNF>GeMovHhL?^=`n$9&Y%|8#iq^ZoaZ%J1{s4YzoD zFL$`yy-Zt^OYtR29Jdd!KmOgZQ3(U9SGVp!!|-taPn^n0)vDtaeVVjG1H1FcTUs$Q ziTXVTrXl-DCPH>spQBw7S^%=O6MI?@i+F87jT&s`Ln0LY!zpN3nmyey8`kd*@ycHo z$zF?0PC%tpCS)9vGpW{YKdpqI54B$|<>yWNEqz7m2&q@(=_%?B^~n%=X<|`GB_Oq| ztQ*#^wK4U3R%2C@@CWn;_JUTE$v1>)PZHgL@$`CYK2_bqJ^x=p)TaoAcE7G!!lU!* z3BIWXD)es>L@$K|hVkfm^eZ|8sms8X&iQRmMWO*IPzo&)lQFCpvqLH~F#&!EuG?RD# zPOmnKKE=s}b{^eUe=(-rcp@Xni5IO^y(Nl%-EYuc*<@pT_ii~Cx3*s|^fv2RDVc-9 zDA5d1oJN?b#?O0xNc9M{7+2_iC7jTzn`@%$9}Nsm7Ottz`uNB%HbR`bRMaG5*b#@c z;a(JW=je2f4xXB0Ml;CF1^3^>!3h})T>*5JJKAgoW*pUtn&pB!TSIS zm^4%=ljhk*bqm-wS+HvTuj~gaYry783V+VSDAXhZizY%ro;i=P(-(K$--(JNZ%V>FNM#an-5XMZ4_zF{@h|go;hf2GYwU}UMy|GWbRgVQY zP7k?dH6-k^Ffe3o-l8(UKl*qHA2ywv08eE93){!!_|E2Spt&I(@6D5K8y2*ha2FRq z`74ZQ$dspj%nRMC!I{l22%h#^>Wb7&CV3VJ0|4Svagw6*mk)4Yn4|OIs{tUkh2 zu$bV9wSL+0Ktbrf36#l_2bwbpg#lMuG;P|8JG{*F6LUV|Q~my}2n(;5S7QqM8I}(M z9hVi!Qk&vbLzMe)td(m!B+Rg7#vHE;{5-K0a-;>{*)tmuAhHy*$;# zeQ}!ff98dOzG)$a`JXe+rK6=cT<^^fIKd+W!@LdOX)&q8y(l}+uyPwhVwEYaXZzX&5DX(wOtTOT)-z71rx9Gl! zK26n!bSy-Nx{RvhOnQg{6ZkpK@_!J36!t4wl?1ccFU-l|IeMI}p2G zUMqUDnR{CgBSJ`C6)EB`v{cdj=|00DO`&3M;fw^Tp%DS8| zYOSb8*Df}#ZdKlD%BZv?o@%FX`wt+7!gTrh)Tu^?4+Vn)3-Ki&uKhjsbN-)#p-Cp< zuGeY?y%XuUs=M>fo9_cWJ^)f3abz?zj?bRe3+JUsLyY+H!miSlt z3GJKqgiE0VAv1T}xs2$xA5PH_0Y~%#^yRBg8FXSojT=vfb$A3FqD?~oP=9Bf0wJq= zTCn`gIC3Ls5MO}&)>06-R@+c@Cl6*9RgR2A@q_Y{hcV z?;6@qL>j2@_BE64$b*GL+Noal#DS+@(yvv;mb3Q*F#r&tk5unG%dW_zWl-KG6Q&`^F5w zpS82RTVm6EGFjIva<0i#0*)6Mn{$@kXZ|{-q=jQ`H0TvO7gL6mpwX29uO%TPZ%7cHCej`ygpGk z;0cfJ(XFtrvNz3{Q~GZBk^2|E_MJU@Hq2$SW@W;aDSZ5{dA7p{gJd78XR4QeM69)~ z_7PRhI$ejw_rLMFHNcprGnzF{hRW=Vyudj#XUfJ%!XSoyFx2JOPVRr$J~(nU;E8$B z3IF(%uYd1%BK=_h{?#7b8IXEw(VAyuO;vtsUlcC9OCuC0$ZE6+t#GAK`Acltp7>n* zYSkFom1=apHp8Z$|Eckl$yKHI(ANYeUHikSMd@1r^@c)F>|l}Nb1VJ%Q_pK%e@w)W zu+N6!XWGgHB)hEFFbV{B4Ey7&6T~d584f+LKI95yG4sbAvzc+C>MEKQi%dKYK+onc zJBE36Z@2hWVd2l$u3fuzIb!>_Da)9%hc zPNlLdTHeHYW7^PabUzzjeYs`Jmb~2VD@V5fRG(-O{OB2o#~Vq)fQ9Vgi*?KV?SoGS zHp?iVT_g}wQ?f9HRH8_-TIHut+#+VKXzq#!$Tl9K3~!Vnon^W7PmAFhOnn_@&Llbf z`Qs`%?v)%@QJgI^Y1?p-@fjodzY9%5vEwH`Y6t;|LSYvYNhxN-XgCC1c}Q>Iw99a{ zu45P41x*|=KV6nxL@c{ECz!8S4^k!88ezTKzMp90{NSC4VZYHAl1v;LJ#!N&aKsoT zLUpw;_rqcI*q9}>!p7Cc%;_FRg37y7=uZy@S zvq0Cg!TnEOM&vXyE};r$4S|XqglL)F!F`ZjxZ1*35x3x8qVv6E_%o7NO=8yYY4)dA zNV(nIkGp)YB_?_PA5L#fzi}rVc~y!(^5FWU zQ+yqLWLXPC^r>^qy?joE3^(W8BV}FMG$h?H?8(nQdl>$C^J=GQ|{qgI`+7(PIY>D&g^^$^rVUfj<@A_*OP@ zx(qjhZ8MZ7-xnlUDf!Xx52Acq`j6?0WviHL+%-8#YYXXE;GKHMdQ{|m^@boje^Q!S zC*9SvCx6wTKDErzLG%R ztOmOVIIyvP;Tc2s)v_;mNCPowLY3|3MokETS`qOZ2S^jyi#eGQ{q;nhWgpi_PPElp zZXo$qiAFzQZo7%(Fnp-no47>8L_CpyL+8)k9}m; zFmaJTX=V}^y2Ou?$Lp0IVD>@%m}bW+h`LOP*@q;yFX<>pt;O%CToPo+Zh}_YEq-Mm zeGih*I1s;dns4+BdvKh|dJvhdTB)o_i^yqY9P;Ww)pgv*9jDz-0q%XUCFqU58(+4e zTrZ1`Rmi;yO+?m~^Z|5k7d!6`HK95G5h~F^8bu1Yzm7V6JLQ}wDlSRGn1RqX_mCs^ z>#m=`yY^6Q^VSi#;SCDvc;sq9aI}l&(=Ysmw7SglHPxqGC5|Z4&ryne|+r4 zX1u>}57PTwpXTKM3-?3lKNuTKs$Q%TjD;Z{otOKH1|7me!$_G?d;?^q1^bxbxDx~o zVKNcqZ$oV3$kyW{+kO#y^TY}tDJk;Jr zDX{I6!s&)Q{iWe9)5~DKpS2R^ZFAR5x_WxhxSuwX+m51SWMTD*%Vmu$QFBCY4Dpc~ zk!FF;`~KZtKc`?g*D~W0q_^!5+oWAn&%M&XKDm@I-uZz^c)`wo!W$&kw#KHE7>*>R z((z5lU+4KH(Z3kmg>%7JC^`aMWE%aaIv_ zQ=VGrYzl6%%oVx|o*=P%ze0st;K_LoV`vV7j`!G5t~tWbqmy-~DynZ5QBvY&(TbrG z&@tZDBp@}9s^j$N#qx53@E7x-YAdDZI!u6Q5>qtypr#RgdzyLzg3ut-Rps$;bGWYG;YK*j-Jl&_DAFPGN_L z4%_*5q?i3RBmm@CC;ov#_TP`8SWmPv3no2JS6v8;2eXYxZ8FYpIiYqx*EZXG4=57j zXhv+XE*9)#d84vFg9-AY4_+5N`s7*BP$Iy2)dUAsmlVJPEno%y%A{fXWoYK_%tiQfq_2RdLpxF!Vq$JrY>Nu_b z79Fpg;5>;BKWsG)PQa~&`G4hC4(G3&=Tqz$Mkx}f&&0=Phf2dv%;?eu&^p3wMW2mY zEhPeijVd2Dx!*{K;ADn#vS~mmT2(iet4&;C4x&qqu89A#A!VVkQ%#bnSDAOXSIm&8 zl*2M0=zsRGw|Ni!y@ z9_M>|HQsX0xz3;GT<5xaugmN4{KkEM=jZeJ-glK1rM8pPkrNRSZI_Wgqe?_Xf+Hf@ zR7$!Telu-S|CxvgyTknSX=TgPQm1XKZ0yx+FBo5vx^(%Hy}7Zf)F~pO6TZIc`eysp zsl~(dGmjqraHAnE?*5Jy{-7)?)sO$Q46ah7J zikAsp54u)$UmiJVkv!(Z`7}%UDfR~ITun^`yWqu4s0BbTrT8 z&aRq{q$x`g-)X=3DdohwL*18%R%ptf>tDm3Tzo^;Y&1t!CSvuNv77RBHj(C@$emxG z*E|Y5e#cOfgEi^iN?GfjEdxw5I@m1^Ut9e|`4dvv4pm9M6-W+KWU4Q|vFMc}*=||Z zdPB)S^Oy&9=cc@w5O(|EFSjY8)O*_;@1%2?XO>f}UdlHon`9!=FD$xgPd+JLW~_dt zX#b#NVv^v;(xdSWk4z~#Z@4FzOeYh+KJdgG;;eI$m$Fvro$zq{>?LhFNf z#8EGz==zi&9C$FMCtgMq>iZV=@*lTRnq%jw&IB;-G{35QK02P9ZqV$>V654bxyG*1 z&R1;nD@3{HELPr(41PRzDsGkOYi-i22{U!3qHUgTX30*qWG1#u4Lma3GWT!H?LYLO z_t@Tp(Tw+xyj8n+@8U;c*&Y0q!G|0!e#`&Z;6}`(8YSpcY7VSB3-4&kP3yb+)Z+ z@!aG!(yEcmKf+h7LGDptqgy8RO-%8kcr2&7)rHLHr`r4)3z!2{L>~FBg`}pNb(eZ) z-%8xKd^>yp0E<^oN3Zyo4-QfGQFfiz-spF6*&Es$+8uC+lCo%Uo8Yq?Pmj(Z?>7%o zX^T3g^NCZG_2NyjSFc}Plv5g{x%Cg(1#Wj|!DK4m-TH-_E1%h1O!i2*wmZ>b^m0mO z(-(3euIpvy4x&$2iw#y6m)$+SZEENw$|J09T4i?KT5jA_ z1p(s3B`p~f1qC8@_?eW5__jF_7Jedz|LEX9A|ea{^W!%pIKrkMKW{2UALi_OtwKbE zBa%6D@|-L2X#1AO^y;5abP4(%rjR~$id5{$4GLjm74IN_T8fyZSQ#mb*wZoWw^)i< z8Cfx^o9e ziZEH4prplMNhug{*NBLJ|AAVW;6U6OBeT(G6s%;@*9s^$_!b3g$~COng+h(j8+{l+ z_n9g>lKOY@#fx|TLZ}97D zxCCXP~y6Ca4VG}Gj_%#v!6}j{^+8j&%d;eXce_w@6xp|{sV{Xy}5OG>H zTkQGIvaY|r{w_yRe0-FraEIsOn4e~bcFMpi#QEa4^^Hb+`-hxE2WzUcMkAVYml>a&APo5KIcG3op7sj zAUVCneH$HL!pj-KTop`~&=coRUiAusnPot~e~$C_;!qHZ*E!aMqgP!T+%ng{qvjXkJzH!^V6J7E1Mg;jYs`Y?f;kyxj* zY(sY=KLnoz_%&?%-38Ze1v|V|`dX7<#?1}P41b*zOf!aw|HeiiE`W!8SFk#`fhQ0c z;WLsU>GvDDRtdbu|Ld=aYhDOvzf$!n!?F7HecS@Qt2l$zUSL} zLBkuq;e6(*$P*?T)Rf8xqP!U7IJ3{C6ivO$7>Wx&8^WcpGZwme>+`^kcHlFMasqbn z#!m4)aBX|}$0ss^@=7X<#g=DT({4Ou4|jRmuEY< zt)pBz+e4nt#sc;hSG9|aLm8d>+8!c{BLW-WCqWA3sCgzh>a&mrb2Sy%lv^zO8tnwH>u_VuSr{;1U%hX0fSDsyu zZ0q9mkXq(yUx*=BYRH3Vevy^J`;-K8w=Xw$uM{#rWv*=4Z?&N_3ed1tAC?|cnI+k+ z_v~a*qFQ`YTlsv%#MO8f7TYCLXJqwF6!9Jj~%y6uLgX{o+A`TLfTN0Q|~@DOQYte6Cvi>-D40FuKN_JYn36X zFsNzhp{`@YK`dM&`YmWCq^B-?%01Fp_Ga~TRCcq0$UB$V4_QYwv@boBmTC2uSaI#w zzv&iLVa#d2NM5f(cU%sWHmTk1V0)7kVs-h%H}avQjaK=krcoYEQ#a^k2&b@d3gP{; zZa1eNTIA>vGG4sYHF(NI<|vPUy38qTUKc|-Jv~&fyUid}s%syWG;cwC)Q1R>%8yb9 z^m&_1Psz#TWmSvKwrywVNY+fRn`xLgycEwOYk4O~)n z>f0w{f8T?rZ#59&{xJ(%_UJCVtD$V8)qta4$-`IpJbIG%oaMD-Yy)#ue zS5*tV_}!PAt_ryvA(`JJgq_&G%N?YP+l4iuWHlU-Toe>l<1J1#g0(hau}uwOE}~T+ zTum*k@M+3yQPX8?pVv0f8@WW5E=euj?7k2#zRYQHQ27l0(5kqN@2UjNapEwBN|Emk zYCSeyi@GtreUp_348w*z`nMK&t*!)C%!2iEn|7$X8+M2{>p3)z+PvlA-_op;4`ysp zoLm@oKYMk)#>=Sm8nKhhxw*o(4~|qq+>%Qj{1`12P1Z$j6E{r7y8R)K=hED(<$X=r z*mszr*NsqL=(vZkNVKLKzL?@l$C5J#l(4RL`*6!PyINlT%0=y0L4CF>+FzVKn_0g{ za&a;GSVYXhOpXA1tZ~J?yCoir!S>ipJpzW*5r?0iFM5pSY?=5rwcUG2?p`n#r^NGE z)5q^CV`KU*+@{x%^^D^Ytq~e{y!k;?A|2bKN5S?_GpFO4yi_qvoI@cO-OS(e^cfdZ zZjf(kb1*k$uf_e-SL3zv&2{FpsWEt(pAT07tA?Ik`B}-Ty_2~e?#VAhr)K(sb<<3| zqRr>Ne&MlbNYFBQbV>GYjU=shj7;@*!M0~vt0jx$$-6@; zl8RPW7Ufzs4cz*|mN|vu`p+N5l4d29Lg7TmB<07U;22yo_v|l=Gogi$F`d(T*$12| zV_Iu*C_ajz_{wZ#e(Lv*^z0^`Ko%zV9$&%kw8HVE%+;jiGvTh3(n zhKAiprC_XO$M}m*Nv9MHCuP9qSMCrQrI1*e^p~3m(XmL(gJ`DPx1apa#O-}h`HoCL z-T8zeyVP}oYuJrSr?evnUJ0rz*uqEH2XZ}m@{`$HFAwMGg zD%FXhm4oR=q2*p}2*#09<&=zH zQ*n`#V)Y@1qP$kzrpH=mTQMnr_9W^@YUeop)TN%h#F9E*#0ORHm+-vW&;9`dxucXz z|0e98CVrC|8i9+s7S#A|vTAUU{C$o0jqRh#i2r=u+q3~hW3}zk_E^#&k^+|rhNEeD zM)TI0>EAwx*lc4E&HH@fukU0)KjYK>LPv_AjJYyV?9x9o3OWB{tXxR-B<7ERi8n%h zOr~MBH|`+GOsChXmSt*om~|`4`jz_~p?*FTNHj-mo(ghpEf%-zaR*9D(xNPCxF|A6Hx}8ZJU3 z_nw{EZ=(vrn<{`PHIGZ}!bUaHb69SZhm=x(_z{XJxN_*AHS|Ifk8Sig+OVmavUfLX zYzf`i!?>eqRp&xCdYlv}>a}Cb{xn(iR?2qp8BOygcKMASM*|x06xHrOwtwx}5>CKp z-Xq6pSpIM#^v8_J&?#uJ*=@9L=N`jntss7ke^v40}I1FEM(20%Kja?Ck$@>4> z`2WZ@rcAMmLOHQV$o`^LMmcT9EApddP=hd7rWZT!_n7|3V^SUZ&N6`RZ!0->4;hf7 z`X!C&D()BeICI;MJAb-xJ8z<7(WouYZt}fgXBk|DHvX}_EJyKl-DKB|of;-R4Pk$| z2H`ctG3Pn1q*3zmta?Sefe06YmOC{Pt3^SK9`k)6`~D7K$VuhE4|UlG@=QoBm(2I) zEzh)u`z{VAr+34RE(<9BbsGqnMc`#_K8Hrms0ezI6lFtwrAHaB3!3>wLI%&fBY_Pkp%Pl2e|`_PgRY@aE@$GnlAQ z)*r${Ybrr&;QB?rGSdDX+ec_}WmQ2$cj@x(sti<4bkI7*e@KMa-TmCj&sP6*7bVTeY683Er z-!l(0BJgU*2HS!oFdCJOe3YKq{qO1C;h#aqK7&7 z{>lNhbQqSC7TYB+QJ9h7!8HT`H}Ie954W+9U4#~+r+Bu*$1*LS#dFffu{lAMiZU;XaZo zpDis@2VO6#mcsb=-;>In_P2SUR|Fs&*@4*=x+ZJ0o4q{mpABQG0 zxb-;DaQ*#v$H2R;J0F=l!wrjAZ+Ov?1!i))z`tUEe4=_MQZo39j!T+3v63^&+qozMp zmW93+U-Oaeq07+d+@>Wkhy7J9n0XQVm*#pMNFd(ODP(XMM}e2@ z!GEm^gw>hd0YuiT;>w%;dVjc-$%AXyL96TP92;GB3{cmW6%WGZKOY+XaWxC<{AX;k z)<&0YF@$iiyolSrL2#o8Re;USB-6;)=(1TaaLqI6*Xhprl$PD4>bbew;LdbGgQ^^= zm6KwJTGr8bzJqJ4qK6y0DD|sm?f&b?>Mk(PN`p@6_3iXFFg`CR0+;0Cf8MCVquFQ_-vybzh;^Kl{ za(%IQ!IeH>yRApapm9E|dExhvHFyl;wi@-K+xw_|Fhx5@nD@lUkaI9nSIe|W!(SR;lqh<)x6=pRKJ{@zy>xH=QtY9j8}{h zMnsb_zzLRFj}405%MDi-nzb%HRR7f}vIgS@K19f^uC9)|yl6FhjnZ2lz&l1aX*A6E zDt7$xNNwnNGFk7MXW%+ZJbEU)R82hqa$hJ2i^}^% z)+2F(Jbq<)vGVjzG3wp=jw(aEr`(=Km(%KU><}I#xB}d56zwaJR9%tybH8x6DF<7g zSVSMcNj+E>D>n*QXvRodVFh4q#*of5&&eFeTKJ(vc~Pe%e8}Uh zbSuZtoy6*>mC_SZ6BAS9F)PpBmL2{#-k*!ORzs@Z+(-AL&NHKeg%h~oO!@1Te_f;H zH0+L8L&SrPqN2bqh>BDuM>eQVa0D?}w${__LO(b9hlRn#|Nkwq|Az}(YmWzHjl=VM zvSGRKND38H2!4$kx|~03Nyi|8>BmZ|AF9okZApCeYZuv7yHEkF@BEn=F&$wGF96b+ ztmdsL1EzrDNQ9&6wgcitCQ(1B7JLDu7bmfzUl2g;1uTPW7ygrTtF>`UmihK3b6{a7 zs|;6;Bc$l|etYQ~JOV!o>LmSApk|@;koXxRZc~Rs1ur5eG#r4fyo`t+{<$3GG@-{XoJy<`bPZ9*cAuUGi#+ZLZw}d@-2!}_S z0J&rtDeStwwF1Ihv|7BPLdEAFRC)r!P%OsW#(q}ygI_W5Ez>s0Lw3-&N&-zi(&%!V z-uX^^q&xfOoeX+5QQLp6%Ic9?8tjjE2XCj>B)|^YRqQn_BRle#0?~3;r$0)4%(dy% z0_M!9s}xV4+imef$S{ZqUHTZNbH9){oEpZVM$83u-3m89{e+=vuU!M$1($JmqmW{R z_~hsV+1EGva5IFI|7*TjAn@#coHK2xxQBa8RC>umQiNq45KRKsItqB$IZnMr3p&%- zVG zB;4`xYOsFd(#WB_qU(qVrj>Ss_Y5rt^7y^HCJlTkW>Ga&UdGLrjTMY})1Ytu$D-<) zJ;rfqZqnMVML>jiE z2=Ap4`DT(sX;-?t^{*=Hhvxul3(fBEsSO~&|GO1DlmzJ1emd{3AIJfL(fO3tcx^p2vK?SuRr}&Q?sVvnqTF}|E{!3ki`QYQvuBz1+Pi< zotv~etbp2UJlsL2@NaBein=C((0YkMyGAfobfGik}re>*% zLUG353Y6EHMKm(O>WF!y#{PN&a<;EP{FXnv@EU=7zB$~?l3sJK4-`;ksT>qpdvBZ_ zA~{-fb$-M;Fe-MeqVQ169ua4&Olt+1T6l(%U&U$$#3`S~D4kyj5g`c+bWyXx73+S1 z)$i$EzCfY=0_Dz?T+{A4`eJAHHJmzmjD#M8``{DTq1X^3NVFN%$E(V2?Yq1Og>rRw zGrqN5Ptd@FKU^$W%pCoOBv3%a8bd3>Z8No=XQ=gHN4w}#+_2uP$LxFGoS5sn(erwz zL`r=T@TzCsv6lhcNzZIw*KrW?Fwo$?YtIYb|6uX(j&*Mlz6X(7L|!uiN_}nY2hdeO z8lfKsYApj1RQqj9iS2;kGGUY5_OC4}6X5}5D~Db!B%it1{ku1`o+liNaQ|)?VG7pq z-`8v;6$LsPWhMUBj-bQE(98TP=FgSj3c?-YBb?v01&rl(ih~IS3mGu3-(nu}%)`#x zIyiy_R#AMuSDK3cqW0N)djgr|e?0||%EJBdj3&DGZ&l61g17&~eF$1`f%0Lc)Pu@e z_@KF>#qmPk+zFsj{ZN7R>tXFlHgDTQ;nHR&71LZ19JEvfq^NPAB&|6|ne+Pl5a3EA zW1sw*Qh9iU{9i(=q562GXo1I*J_*^boB- zwLM84JpmACgU46K^J9;ktfM+?em&+xMEk5tesNO&nrEDEBDqQ#>U5f!@1X6QgSX4} znm$%JGOsPNgqSm=bwQfBmhe=ngd+hgM-iqpVr^sf8ZrUJjm_IFta8`!O&p%2u1uP3 zZ&(G%!zB(|DNDMwU3|j|T-YvIEl+$U!xfGX601ulJAw4w*#rOC0I-eUwBrOL?<+vA z4-EMq*!u6z{|xEM?Xd2R?W>vD-*+3hUg)1nFP>@HBY0U4pyNiiXQ*QW$g#t!r+&}* z`@`>#ll>9=)ek}tplNRt_my|KW}*)OA%l|W#+Y8vW zc6H#fgAs_Jd>F*s8?ui2?h3mf6{2S^1HfFm$(8JMJy^nw3OdU(VP`D9cD?)v!V|=f zc7x|9IMa>PitO z|A-Rdr{oR8{){D z;?@t=tyY=uk2fP^I^SgOgWj{!Q)DrAM)i9L2fUW-qQ_)iC~d&-k?7&9angm#uU}p> zwJ(2eu!pw2JRSO$xKpFQx{0;dp+SPgN&QcD`)q4ZZh6R%`(E|6;mTA(FyCaA8Sj-M(|~pPpSngii(e(G=zMI`iOh$N}P)!D6H{ujrEUF$b9N z91wGNR6FQ2qY%c&Ru>V_m{$aLlOGoGpZ?_EOoS8J%I9HeAfowU$mig*55gm5Te*uU z;O)&sK{ye}lBR9{mYJ!2{&S(rgb|Aj)v(xMmzv{Ye|A}Xxo8k*4rS9$dXr-sJDOk(s?ukLdjpO_iZ`43qH{Gw4`1?_UemC~tBJ9}7JPAZ&X1j2%rjo^5aIjW z08hiIC^}ijVmx~IcPApoJmdoN8xl)c!6wO{Z&cUx1#P9c=S*glB;Y)jI#HBSY)?X1 z+FD$Dd@XY{M`WAR^n0LX^F@8A2FP}Vw;_?Uc_*qgfXC>>(eJnUPn|@t1vZ3TFT{cZ zbPO>fIPScz>nA3PzI8)(T9Y3D+`5Nt$aG$VQ9(SXimNcl6LP?6StyUO5%7IJ0DBI! zGFtvBRnXN5U6|)2BopV~Gbvw${@5sNZ%17b4kA3$vetj@ehoTg*O`nKcfBh=TH)WW zbS@AKnZ_w6?nlf1+jsx!KcN$!?5V6o@>EcKPh87ZWByTs;bl=f+}ok%vi=+Bqpw1{ zf|Qo9qs+2B)H`9TrwgE@t9$__s{7H*JHH z2s>~*GDxK)`q2z2kA76J>y+ZpBCXZ}$81mB?u90~mN)8>wekQe}Ns8{}C>fO;_z%4va0w)-v?(3hxL#fqn zFoCma4!!^JL;NeqFSI2-{6CnU+6-(k;0<~-I)IJ-hhlZ}vnd@1PpNNTg zC7or;F2pYF=l*dO+_lnba4TLPSEY6Qf$^9w34#=ncr8p!3SiQnd%PdaekYvqaqxEG zbs7FYSG|!0mU#zYm z!7+kDz26J8a`-{Ga|QVw-QAo=M0jl)EeLx(s5pb#Rdiu?!ca{Q{Lt8kGv|)i@`zyu z)DI0-xj)PY+#?pFuj@|eS=(jYE^LMGzTF}dMGkEqv+Yh{4?3be7lvYE20;cz)n4F~ zoY@Hlu!%m(YO!9XP;%-Zohp!Zdk|ZN)KZxSd6Yj*hIC02COcx+_Ei07zNIhyuU#5Ps9?S0xtCUCE3OTvlBmSHT(<( zpu;5z9eyIeBv_E@ew#}y-LzFMf{IYDs5b;7<%l<<}c;D4euE)b??rA zJY5d3_kUa+cYX%4$Oi+%SQJ2TTWGWZS~7w@>4RROf?zwJLrUo|jVn-3#?VjNOmWpz z9`F)HiVfsV-%ptf{dzV5(8O7vwu(o90p5?<7SIOMB;|O;i0*`FzjxF}6ADNWvMNnw z#h<%|p8@3}u-oJ(oC#*13X?%CuTe&Z4AlcdR%3qEETi*wk>iI8fOQ6I;bCv1Z8z^nH)WvW-RG!UA z=m7yDZ52nR{JlLqhe}o!Mug)Zd#%j(010w;b#`^dFk-B6r5`$IU#REf`AYf@`EXFa zzO~&4F4hlnOP?CatID6k51GmV z5-XEkx0~kofgO_&!`|&PSd0WwiGP^2OE<$)71J=4(mEaieg57 zOCT~s8p@)VoA;ern1{Z#2jo2dV5mnoZ>Q@`t05nfX#ANhSc3s9TE|iFdxRa$xNbs> z!e@|+* zq5GHi9y^b-%5K!qK2?4$qZBszk&s(1)a8|+mDVZO3HwcUjFSS!b<9lcsW{kWs3acb z7L`Dl1SAGQR8N>TyBv4^r25fk2%&*Q)M~YO1yUdycKAcdS{n=r);e)a4>qj;VXFvf zN;S9~yE_kds2m)W4u(=}p0SBtnYo8zV%@z)T0mTof>@O@YbHiK+kd3 zimy?`kC%jn-T~cg%fW(^%%l`=n7)EsqGG4#*BfB1W)3m}G0Q+yc3wn-hM}<_-)23cgjs0EkNua@2V>;L3B4G@R27o@nbPu90ofL(k z_jH93pl*@Qc||?Q?1A^ag6|+ML{X@Zni{L4z{o5PIdln;?{b&oxDVBZQ2cKGq>kr^ zU9LGdM5=IOu)}1Ks|#NCnvRu1Csc-}ejspM9DDzJR$GhC?4Y1ct@CTP!aQVs28C#I z;kV2u&M}A0=r+~=Djn9VpMQr$m3c7!Vl!I(1#vuFmHr2!e&SDSxgX4dQCS}HrO`~X z#xB;!rI2Bcw=ZiKenB1ESS~z)88e=5*XIbAj=e}SCOTbv8tDbIRNs34=7QI7BU?kU ziQg3-N?$9rqA-)WehGvOnNL`}4=WdAkTdRgtUYN5+tPdzxzm2TvR!r%2Bn(Q#B~~8 zPX5-NLWZ^7VpiyaCkJt>WZ=xqKJnu|+JBdQ{&;o5N$6^M#efL3LO+(u%otS`n_Yx4SRF3gavIHxC0nNCpw~kMjTYv9cYWtB7DUSaGK6LJU-$PA5*vRzHP!=wIt!uY< zznL7=zz<5TbK8U2xJY6%Tqb~O{6m9&tdOMo+_A!&50w~imu8vQcSHGn7n0_YI*uxs zq40BR(mvt|p&F6w_Ce>`YB%i^J$7r`UP?5*hJZpRI^pxB*XBT(w;O~G`fCysSXJIt zUCXqrqRICUO@FTtuqGhrbJUpLFGrvuF@OdJp{FPvC#emqYwFV=&AT25Br`zR+5A~E z)dppKS3u^BszZ4Yws2N)JK<`1~uf>K%B& z&a0V0rQt&J+TxmYO5Ds+=`h_k#ge{ywDyJ9YF&FIh}WZg*6gQ!TRD|8)802J^QMa$;KO-exNrW2dmJo@?Iu}klQ zphR96Wi5DGwV%i6%zn4tK;N7vP~r!g_!t7t_NUr*3`J0e;SVx|;8K{svnaOoY-IYn z%g}4t2}wQI6vJq8YeCy0F;@10WbC9WCw7WFhAi7pcsOCL%WYNzZH-avLk(}<4=0$Q zc@Hltr#UX(-ssk19$yZO7d?u)9GTU}GZ1?Vp_t)Fq^nU(#y!Cf*Pc^3`q97nOM(?~ zW~rw0YN7`*7G_#PlW9F0?WoFHsIK`Q>e|goQi! zn7_gl6EBd;$;c}$UIEt2UG(+TTI2wwF?7{!yC8d+y1%KQI$nFO+jFm8pK51%RR>y&eck=!Jr6LhrA>|^;Upd+LT-?9dc@LWp|4>1?By_nYS*v-U+pH07XmtjJCbOWK~l$* zi(D)2EZ4JA3{tT zO{0A3T#==KChhUzE^&RZT`u#eA#4Q?z_9{*HG3m8_3R}3`*JikVUwxUB z`BF`aob2UdaBuC`)o_LI{zx}+91{UN@SjTOS{|(Y^#-1WlbobwK%wjgu+p*! zWO-{4G~Mgx&^l!xWN`C7D+;7YwuptO-Fq3v(cXGcZaJ5N>lgu{``%crS@x=K%BLNg zcE9zJNr>XJC^UF2l2i(be9us&swN}z4Ym7uiEk||4txaZ<{myXWz-Wk?2>-1=s4WK zrfS4n^&Do$B*P}#{+lNsGDFOHH_V;QtlWsvKH?)Q9e%mMe0sPsIjNYh#2m3e569Ck z3lFyzyQRIb@qhk{IzuZt28c&XhgjDVmh>X+2^iCteU0IB!66?4jo9-V*Rp@o4f45qiS&l zkV=6^ScTWzXv&xe!uNjWtv`hoYvqC8q4V2n{pzTOPhP{Z;14WyZCR7XaC^;Hsj6B) zvp<0F$!4z=YwSb_W7b+`?nz5w;F z0qR|#hP($DDQ5>1=b@m0H1g$dx&xk=!53-Qbo}R_MUwjY>A{a{lh7cX*!|#$k{@%h z)*;k-NDK04k@liVprb62Ywa||BE$~dLC73TI~#;Ox`O28)1l9A;tcR0IABL@x$xVX za}_Y`isrceB$kJiCPxfcg;h^AoMQAT1!vul`gz2WI=!lI9~!C(=dBUtoq=Xjc(Leb zp)#kzxLqBTN6Se;b4$*aL6==WgA7P6>SO%_9jH@*)mxhuBD^L8Ns(v<6w@ww?up8M zXgoL8F=POebldsZdin};(a%6zmVrBdI)Bd>Yq1qIo$%EznQx9^$>aM$Tm3z*!ULW;QfETdUvI znQfttcqo2?zj+W1a-ur4|JCRb3eb1EM!&6T5oH?(^<_fw+aIVKVVH#B%4i15gQ!ac zKF3CxBN693M;_ub!QbCgt}#e(Gz8>jrVjuLRV!3ch36~dZ&FITco}%k_dROigW47q z1|e)36zk!Wpo5*d+Ft?z|B%?nO9um>8sPJ}zXzO>8pr5sZVtF_yGKZcMRh?8nKcJC zj1o+BMTJfzCo!~T5e1VLn^dYd9B{6NK+?3N=0XOA87J}TjEuQe&^ERgcLr?9hU4iSDnl)#;P&g#nY;z0P3SkuWsTS-{fmx$Gc&6xV8F;`m*?P zq+(A+Doi_ngrW&G8b(mlarh2AuIS39cylzsQ!}1yG+5i@QQh~3Xeocxxgm7SWkB0N zeiD0}G$v#A8;7`3-^ZkJEkFauy;6_h2&EXP0k{<^>;YM*fcnqC!hGSHEg;Du;(77f zG|6s{poDPXf1#Ofuvxo?S;OO{TY6&AWaE*f@=N${H4+jUI_9x?0Il{wQe?AcfT74X z(34I|tbUWofQg;6bQ(`uLe}b|Ir#^sF(TLNj04S&7Y2!ng9sR@KJUORZfwh=EQ#A| zk^-nvtjwE+V1%Q1dcq3gc3_G0%I6wS+Ro*17Y8wg`#lY($j+tW7M^m~bbmX?kUH%5 zkSKM0r5Okka(3H=q4-Mk_=u*9Bc2ePr04|WbwU8$5`{iDD1ROWlYT8=D+5ftlw86u z=?lOK4=GQ&leD@DM$&u`1g5Yf-4+}=Xk0njC{CK}3qrV5?0{2CCGDqS<1p(MBmhB2JRta-QB39=yg1+1 z!25(DIZ_~VQ<-e%zTB3AlI=K6uy~ZqI7jM3GCAcuRXr@U4Xki3N|~6i=A%n8Jx^fB zK|%Y}*1g}*B!?%+G6Y(4f|M2g^R-F&j@ZIv4eHuk^t6Wj`yi;G0o6u8H)lB{raB&< z347cJF`)zS;5SF)ldZxQv+m2m1s=S&mwl*uF{1F4W_+JxR0G$@%*sQP=;2aF`Iep@>?E-#+M~VWWB}Wbr*GqxJE5JsRca} z1MX`K$;4b#F+h3>1e}?F3Q6(j5Apx5(~f~A?TQt&SFvXXP|7pMJYUOr@L+m9bDFtN zo0<{7lzIUn9wZcq4RFXlWOEhf1Xx``jKTJPQ0Jt&M&k~y0Fxbx60{gjnm3D!LN-_B zMjAi*fp&CW*7z&L=a5H9!7N94v63uFN!w**f<@)L)BAe|(DWWUDdfg!=d0kbv3J{$ zN7RMfxKD6Pw^Y9fBN)|(iC!6tfvMEJ%YA&usnl$w>L>8nCF-S4eQ!GkB;Pd z#7RI0W6CumC9$B=|LG7(T$x&d9P7w^z4|j3X)(TJ99gxeGMaQO`Ev?8W<;9}i*Fpg z`Z|bBP1dECU(jF@5dh}Tk0ZH5iyTxq#k~W zcPJ3r*43q&Ra6iLFlPnuAj&L;$2DBHu00C17Y-L@sP3pK3NhEqH^2;Z&C*2HofK5@ zn$Hn9toK20gs3_I!VnYD2x(k5;v5>jGc&{kuf(iLQkNI92EPo3V$3OX#&TNI-o8VD zKUPXEd>i}RhiTF&fTWsxBO=VN4y=LsfD&A{G&8UyjgcxqU;)bm0vy+LcUmaP@P%ip z-8*j%rka5deDdYM+iL}moioQ^+0mTK)S~iM1gc1NK`WE?tt4L%a8eD2gEMPTzX+M* zP+crv;u}!kFS_?=%#62-+}e470iiAGN6x>~&jjUuut`J*XcUH-Q&BLLHl`SV_IgL3 zZ8|oLW)8(|nA!I#uKZGu^#*Rs0}U5tfCN`iS21wYl;?Q$KEsP5)=W5pHGr56IUOIM zV#R;v3UIkK#Nof~!;GxR+SCvqdjQM!&!DK4lQ4fC2%YG$elU@_4=yECLuqHLaxrLT zzRhhQ0v%T+t$|c<(Dn$|$v1#)?vi%79@py@)_1ibK_&2(iq_@)zC#|w7w*1U%;&Wc zHHJWw6$~-QQilCDYPZgu2b|Iej#l7vu-4FbYOKy!8>uIFkf5qlS|T_O+NHN6DVd7( zCub<%91LJND=QIPfEjWafF!8xVoWu0b=(S5$psu&GDx{hkEXu@Or>@P10yR=#Zs$u z$&z70E}&%a9n1NJDdM6r0E(DKFPd}&-j6b`Hd?dD(}Y@=YjJz~>#84Z+Op#wYQj!- zQaeD3;>$}fvP0I7ghxv`(_tpsC0}ms>xPQh8!=+RaHK>X_cxTl>a-M)L1l&D+~tpo zO@&-~1oGG=C`rBf48nd%PjC!){wA$xKG8~4D)wG5AH3FY6vk1ChIFc*;x14ThWuB7 z(B&}z_(b}~Il&w>4HJ9D#CWlOW|~ud3_A!g>@E}%(J>pbuj}^6BW!AD0B~9#D#a5| z_ypwDF13Ir8UL9%z{UAJH8-(vq5J9lb=(SXv=ynNc-*FX=K#9@bpG@JnhybcF@DeA zY-Rhx7rDt+dgK*7vQrPB`Pg_LB=y(27$|83_@O`e+ov-Z zZtK9 zVLE&74hWZma^i_IYGC{TO#$@4%$GN`w%q-Ip_^1u;RqaGQIaJ z;WHHKatBzqWhlQkj@^YX;%)Euwdu|JrJe#D9`&?vrX1{tAFFbLOu#sdik|2VI1PuV zIJ)#dxy{g$;#SbZ#ff;Z%nUZdlGzaCF3kr^90x)fZYt$|k8fR7qlB&|8IdBpppuu0 z=pCr8jI&Yq2VLGH!7ECHNSv`tX7kpiiCaaJz7LImpd9P1{ooyR3XC5#B(!?AFOf!N zh^HI0k^<)9PQwkZFfu7?{0~>jTzBjzXt|`qx)L(_pzG%vlO=1q6+D&4f?$@@h1N{U zN{sE3^O;f0DIGJn1c0Rznyi!K=Fh4U!0=vr9*mhe z7;Cq;{uZBr@o71?D{j|gZW-0(Oz-g+lZvpc1oTlecJJeG*|H|T^q}uSwp`rxaSE2l zKkE4<-)aVEle;cE^pebjD-c*N*+F4tO18UR5z}W`EVjBm{vb^qlQhD^qRGue*V@R~ z!lr%OpWnc3!erkLkr^3tOBGZW3n$HjL+mnj+zXCuPrY~$1S-=)^%LI?&DuKUrY_Bk zE{iKQ7u>|{BC#-Rm0a{NxU4iL&_DM26f2ClMN^v z?n&{+rx`#DFL}ja#BG>87^d)H(|v*&hEHH_rxuHh3gjepSp!&1pHn1khC`*q zLx>{ElXFB@ObfQMx2xnr8xkTbzqij((9FHgyY~_3cFI8YH zU3Rf5g4ajg(UpcY=Avz6?A7i4LT9a<$T?mtO$Cl0^8|5iH=Lrwy{z(}WDqbgr|v7A ziv|GABnn^1`tLCVNwNfGmuvlF`B6)~M*RP-0Yv);G2EmiW2W50H2Cg z!|Rg1BN2j+_mgK!0}g*;RqiLcJrC7gEheV6qV=a%>Qm%@L?fFqO4LbZ|fgF`dV1eno*PfK@P zrRH_BvfWww0!*9|hp}b_KADMkPYJY`MXO?_p;F*#Uw-7N5?2_ndi{BZ?m$)R07!>e z7UL544g-DjsZM@|jYl_zd6`&6hooYQf>;zpXA#+x7k&y)|KR+SZq~d z+>Q?fP5tD|$R^XsV$9IiRC`Pol=o@hKUbwrJHx?RZVOBI#d&iowoEu%d8<*Gog+ZF z^ctBPtz&&aPs0@;9v+W1TM#ME4}ZvBl$c~#j$!M(FCHHs3)2!+`7zq_nAc|G3QIlG z#yzpj9$z{AhqM_?vmOsVp8v|{b5$oS9PioRQ>x6sL7^Ju9u_ z3MfphF81p1Gu_)SbR6_0PwS$`w+o?z24dfv8%0lrM!_k9tkzc`X3+^Be%BgakeT&z zlXZ#(9z;M~b0A-)SDC`s%ET8qjUDZU*b z@PRaP#0bvlOen5e2V9gTp-kyVDp6l!bYfs744EtQ7Ae#4n6aV1E|;{C;nlOJUs+Pj+{?MXhIXA zShbH!5mE#Pn<>BTdZWTY-ert021hsp^!c22+2Oj2zPUXAqP1&x_9p5(nis1Xyk(7+~;+VcqxC z+OuQq$tkMtXT-&(RzL(U6}I0T#?1mN?6VNZ4eUwNKE)>)J@wybz?bub9@}tKI74ZO z+L%3~f3~tKYs=Xa?VE`5~Fq0Rd@?y@(X08O_>o zrl!!}!_upuUHg4ln!p5Oi_S3}${|VAp}kr&VX)w?@on~An{ssZ70u5io4205Eh%g`Hm7-Kt z9RcO=hFaF~o_CUDIjKBIv(XgE3HYlX1g9z#gYmAFo=6JjeYw4$aa~_XuXY}d*f5`* zKzbNJp=l3zOsl{tZGvkEHbA6LVW6Hqv)e-QM@ji}CK9K89%Mg0)5Zsn9mN=W&R?>6 z{+1<_kcS?Q?~!$(ogMw`&`&Y3CJo#~9&?vM;npW&k+To~T}=EAZlGOu zbV{L)=8IagQ;IOzct2U%|M za@Y1mVakhvf z1(0z&>UJf;Bp1Gk@{PzoTkwCKk%o6aNrr!u54~d7YNiWAm&!TAeG=sVbX=Jbqb8xI z7&@dM@RUzw^^o^{`Z~mXrPMedc-{ zEn02^JpjW6hw9_~eVA_8e0v`**aw+C2;ew*z%ma)pBs2<`@VPSFIL!LOn9p}<71w` zo{s`O-{AY+bLja>1JQY_EcC*T0iY*-2i4|xE{@rWPVP5U3s9H|Cv6#905pu5kMA6u z+06#?EWuE8zJn*Y^zu4MU52p~ObYrv7IEP+o44&oi~Re)t_iFe(f3)GfSx00fsbI% z`qH6+GW(%o($i*OI=w&(VcRW# zzCysY2})Qim(G2D_t08(OA>W>gCgHA);RF!^i*F}u;V6`A!wBYU_!TCD4XB1=?#cn zdm5rK8(eA^Txzz1%I^-kl<1*j9t)27&SPP*;#>wrteO9Vt?!QKdhP#5pM=QX*<^%J z_TH=P9YRFN-YYYEW~6K~OOm~kJwjHI5t$)-M)iBWJLkUdbARvO<8jVE^*EpN`MlrP z^}1fK=eq6c7%Frvx8kPgLhLA3Qi& z=dz@NeevQOZ@0Np$In&09~T9{(WEM=k$m)hidE2Ixvm1uO?I<-;{VTwGK;{6 z64MB)E5YhzM<;oC|Kp2v%b_e2{qN<5ZweRtQdDg}m2<6se7RTU`&N>cbl`i0iNC1- zX=VA0HQ;k$r6rK!)gmg78>oq?c+1en~&BB^YPooHi{U~82aRhKT6)Y=TU zRdSR5?`Qgj!)LbanL07UXF3xgsV|E_Qajs3!fB?6Xh@4pb2wUMYpnWHQwu+}`1`Wo zu6e;SBc($n=2h|h{_|VU^dRTpu5y~nf343yYqdol9>o_QNg*m&qJk)mndwq`o!O|@ zW3~@}6^2JGL5Xn_-QdtI?E%xm%o^&)pwGctFCaiOYQ*MSfXJs}oX4pfUr_tsD)I%X zB91NBE|X#>NO5AMUAvRIw=&fIdF=;_%zXT1;jcyvtw)x9$;x^!jaWc6n5uVHu5Y^Hy@VrWZpKd*qz_EX6+HCYx;DOH<35WlwT}0dX7`;F5 zKDlf~Pgv)9E#Y2!Ju_KQLIS~5QPdD`jr!O23-tEB02lJve4sac8_*2fR}Cp2kR{vW zub@enrI3e?oVqLWvFnrRynb; z$1Eurxg_!8ayczG6OoY&GjkZRl>=jt5(da*Y}@v@AJ>*&pR_K#0Z-R! z!M$o?jGl0+_rjW)^z&E#@3Y+Y#kdjpoc*;&!D-yuIX)BI+wS(Z%*TTGt(ZZu@kO6AU3+7ltdN~^X|>`Ln)+FHfs_vzZe zh0N)Ni~jG5g^ds#0?*~$j>PGEPF)kKN!K2u7pKG8j5gQFDcgshs1;aP_K1ne^_Nwg z=&<|Wv%RduNFb%w@4dGyzhvv?(dT!v+nXWm%B){*Jm}#{{Xc~ZP7tXCs9iUDX15En zHiH(}na>VGcBs0R>=^q6De!2R)vstZ6yv0YYw9c!ck)?(^l~2vIg60Wl?k(4=!)gD z=)gJwe%`7(j>bh@_ald9UTD>WDLvq9xOx*9Lg)q}WLf^FZopzwQi4};h1ulLpALw` zV|Cgx3T{#SM?EYl7siO|^P7}wx2}I4dP^<7G+@4nFW)0(6e+`q@8dzG{;20JafDQ< zPDufTxHrs`fOk1tCBF3x3p@1L%>P!@gupw!g83 z=29Aw%@aShEJEpLZ{Dw7ePEl2^PI6+E=8JT{o9CF0PW%2ZIsQ~{>!6~e1`we&$z<~ zTk~2owX{I0jJN!Utbn#B$Ir_cZ|gEJkFw!x4c@L54{`Zf*t5o^Agk^~6sli*>6t#J zrdQrb%N0x>_J6yFnfq)Fi% ze3R=D`Ft@k^RgtD1(mEh!OTOF6S@Uo%mpC|-QPwJZrBIyys>v~7u`44HNYlad1JZ1 zaoHo@^tDCU#&o?lL>n{3Qt>B2RcJKP$VTO1pTD>Wqr6s?jixtD`Z^BASGr>{ zI!LEbo7447;4n;u^IrwdeHJ@Cy_`3Ai5EKPo%WV*O}?>?4-F4joo@?c(dT|--GSCY z{?8vliyW~`equteu@{H9f_Y0LBP_p)Ss3g#}2oKAhX0sxk+R3 z17imCt0=W>2`-ojT9A&5T5{lSsoqNtXb}?|+?gJ356~F@*YcDS!}@?mg>NI);fa-# zGrW)z^GI_>H)Z~amNzEt9{2F5wK&}tve(~`QTxv~k!l*VkI);n6j*nrm}PJnRu)_q z%CY!$7n>sk&_g3%!v`}By6c@<^QuI3@vU&&R@JV6cVlxZd}!*0;TvYh*(R6mIceCH z?fxRuQW&qXTQziFnTmfuq4cF|lAfw{ymnQ;JeiP5p<{O76Z2ehYt4hH0*L%0A|vzo z@(Zfq+RzjXHpsR+`o4nsUrV<_7HXhqRq^^BDv5d%&1A=oD*C8pgl}8B~%qDKK{Vvg?*614`2FeEpO1oCF5w71QnwJQd~- z5aDU-SxRm-s&N9!u4lL`A-$vkJ}wfG`w}qXK|k? zE}is$5_^_j_Eja$G%uIqRq>mzDp1`<8T#}ToOZs-(-1{CN#kJGF>ZqtqWivvVEoMM zyWyOMm7(T^R|vQ>iCV4KU=4UQTs!On>02*QcFgxj*z~>OzoF;xJ9c`vl}-9>yo?+# zM^8#K{2vElD@zbFZ(x>~w-)(gpdxnGuj{XJ`;Wp!i2|iclNsZauTwRI@9b_zDqYh| zIdXl&7xA^aDEO;N^hXLj|J-8jNehLEru!5FiSmokbyc~S!fYwOqWZ?2ASEQK71Smth9@5OzmnBTNP(@)jCh zBjZWz#~;cI8|1GdTCbCkuFSJH_`jVOUhAD;+$@$jq8Qj}nAAJ`V|^H}kWN~-XR$y8hq@+(($?&r{T%)k^{e;a zd>qFUpZ~pdc+lKO-(W;3hnH{jPNqam6g&Qs7e;Pwu0{8`SI~!}4}}u%$4Ei9&b5Np znVzH0fbNOfrj-6=UZz!^(Ptw2U*}$s7twYDy4%LY>(6Dxf^!I^jiWE(vtRt;cC8xz z9%9bqOF}@rhEmSmFsP;}a62&-ouonlplNwW%?vB$7w#RCCkFrG({7}`8_22m! zT}8k?nli$5_ZPXl;E~pJYMKOrw}I}{hs81G$+xS*cM3cL59^i#N*3Q@49ly!YD)JpG%_%)#QLS zQ>|Lx!Hy_2lXr+;fvYt-EEU@4^fI5x!duiPJm!1L1H3hR=dq88gU0%JM_<A?Mo@RBh_q4~mOmsCg{8XwNHuM+C zxno=lxs0k3l2}x`N)*H9u4ue8;{Vww0oP*)Nz<2xl!$!oAlb)>z@P#gDkG~C>2ATV zd|vz-#y@-V?U+D)yd11gGj9}iy)}0iA197mGIk3(&WbfZdd4{YL^SF|=OO%#xM%fh z7y;@zN)o!p%GG*_bSGCo$^8Pbr1%ED`tSo^c?Y&3O?A1SQ@y6TdzcSg7F{tHdB!m{ zml&d=_HsMr&2pZj@X`HN^h&hkr^O9QO`99I)Q9JCyVFIOAUj5>-shn73=F}89_v+t z+e8mW3L-~;PAg%=p`66A)DMt(8$3odp7JjNVKdd>%9`KORH~EtM;Red$1vp&oNe?} zclgrsGCVk1PrKp)Oe8;89D1%>587{z^k28uz*b-e=eAF;Br`!Vim!m!yQy-Rr@PTp z{*Weekg36Tfxq5Mm))DK*y62a=I{sI$_w%;}7wcD+OVk-%om|L~npq{E+g& zlThbMf9>}onHi02!A>XDzo(NjFKG7-{$#9W5@QPfdQ((K(uVjK&yT+HELr;SVoHHK zHBXcxnq`Kv@Hny*@6x z&37b35v=HoEL|a(i@ROz{qUr)X}#L8R2YJe38dVQkc)f-#ioPNlS#iU$R>3oke1X4 zVc_*P(AaPxjB$)KGRPN+oPf>43UX_-8a=*KoSp^E1;WELU2Ugo9*p^TdDVgKRR(fQ@@ik($dFK#qj-bt`*;lBiWsTfLhn-7d7@bD zO`$+2@o>3mC2){KcD?Ow?4wz&V#g4^ZKBwHf=)htfuW&=0a`{z#sb4P_bPo3Y}01i zLW<#_t~77Q?1hUnRGZDFr5CJuTGp{eSCZLdw@O0AFZ$w>VenLp9#e8|39Kk%!2O3P znBU#AcSfB9VAqXi<?bSv00=A= zHf`|}?mLdWtT91OL_}1beHB)6Ird^NL-5DC)Lh~KRm)QeD-zxFsW;V!FQ%E$Il8Mq z*}akZcEm;q(=?B*7`3HAqTfcOFw#M!gImMV!+HcH_8Y2dU9++O29%zmATiGF1dF73 z3i_$gM~{po9z`MBW{wNPR4~xO41k1Gl@yL%DB4RfV2FIW&?HIIuBn>B!2%6QGL&y@ zBbaDOb}LdvdcXw3S*h z(F-ywnLZSuk6q$j`zk@;ey>6*>@m)Bssl6Rw_&cSzQD#ostt?1 zNj*o(LD%4Bb(+kr(|A{9PO);w%(J)x0Z){)w4;ZpVhXlVlwPnrKGLO zCer3@6AjFVeJQ3EbeNzmN)Kp13=;bXa)$8)4JR(w3@>UlL(H4cwy-mbbaap%^xH}F z*RF-3zA`#N?WxnT*r+X|TQF=+ws!#r1)wd zT`{olp~c$S9MA14@^h<9t7FVEB?we=XcfA|sl!J@UIPP$#3{Z!m(|r|EvX$j>!iZ{Qz`zl*mFF@V^FXtScBi%%GXq zN#!>2`BF7+bpZ9Dzb))y^)P_Z%#9{Zj`q`Y&rk%tkrf_gZ9VE`1;MwsAkixkYPVKf zTbo7TvHDC0w_&B6hLrDOPol_y1@8G41cxI!Ajebp-442y#+~_$!I>N?k_ADl>`$aE zEe&$+vg_+5@|H8lm6w$+C_AKG6QL1_6388JpJ$1}P}g&b%)>Z?)a=YGro%48&181t z`9FbrIbts`AHqD6&o2kbQQQD=B?2iu_V+*nQ9p?wd)#aJJ}8j0e4*)x4LVq~%ck22 zS88@fcb@oi)Ka(ftE6(W1Gelo-RVx`q&z2`=G#=Uurc{&7xM0upo3yo&l3B*eFD<3 zwX8&H5=@-4y07i3(3L6qV0;^i81ph%Jh;So7c=@rHV2<|LC>6^oEdZ2yD@4DpUAk= zTLs+&iAI@nYi?xT>%{pO;%$4m#J2(LyvnXsOyPTRSaK4Yv|qrn$O_1O}47#&3AuJZ1?q#2X0DYS^pWI zFrv^h)L*CoSbYXG@yN^Df@R?v*RZhPKjrV=eL+arV9|+FqJOPYDQJnQgyJT0E!;it z2B3da7P{kAf1R1`j=lD~$MNIO=+I{I<&Cxaz&Y=`eJNL2o$e~AQEDf6QDdr~RWKIt zg9eQ6-g^pH!8B%qDijD%uU;hM{2<>3f5-+>lP81DU$35T=PSk~i`N&Rnq?MpV)Fb8 z`3e0%2Y}NQdH&b4oB3~zClgew^7l^)O3x(R12?9{ZvATXyt-z|RxV&a!E=AI(rQeg zJi>muPBWG3_Lc2EMR$FQa5|q=hP;2jFDyO`c&u;u?;^;0k&6^T#VKWw1YQpM&PUb> z=8b^D!>ups=WK$Tse{H}f5OXwF+U9qkv1wl7ZB`Dnjr}WLv7!%r^g`g!xr}1&H<%_ zv|hP!iMSN#7)&zT-;K>Dp@Jh@0Ty`z1Iqb3r1=vNvh+DYK+@jnnz+O89v_q^|29xxSmAK3RErG!WIXw~un&Y4LNJZ#xe@ zmlu$JHI^b$`&g=#sCDHn06@V-`hzIl?K$iQuN{jLXm+oYW`9oQZT7vUNui(_G^<_j zdL%9E&Hc<_J>}hjDCu~L$+)-+?lXKY?j#N@ZM^wjb_wlcdtqW7bw3E~K$$abXZ)u` zpd`@cmZ1vt?#kuVuH z#$+w$uo5R#<>E3AyA1sr@fXbfL>e)aF2ns|DaYVp`ed1Z{N;hXsUQB z=;&aW9raE*N1Ii5U@VX1s@_dnpunR)>s-{s@Q~0(a6$V?ova%;*aq}-y62FqHm#sl z`caj_pAiI~5MOMblQx%yMSC7ZKS zPyEe}0wL=i#ule}nSS-JU>17$c=&YWSQx|&e;qwRp$ulTWrp8qjy#;jb81KM-7%h_ z?Rp~@20N<}W%+;x?&YzHNr=#en_Ls zN#utF_3q0>%||lKx*HGjc27 z(RwHR7!rDV0QjN&wTXMFww@W@3)^6@1(#|X_johqLRf>$| zxF~V3Cm4_}*2Sk44MBPC59fu^4~2`KK(lEz+vIK3sW#EnC{Z7eI*XJ7&gB7~plT{- z&Hg!MO4@Y!ixha~y9A-H9KTrWWQ0qTd`~Kc($zZZmeRKpcTZ)$>5=rU7GD4MBWD3}t`Ge?b&56;Qb-!F*VBG+wOP zuC%Z!hG1HTyJ9_u}*VV2j7ZX1VOsBeb z=+SZozPprx7*!ZbjA1*llWTx!EDJ_E6HH#hn=o1H8AwJckZhTjC{@> zK}E%EPm_VZ6ml;ixHWgLZkK4rkwSLh!-;FDk)MoG)@4Sk=$XW?CyqS}@s=9vj0}-y zw`pi;xjUoD)1VRQ5bn&AkM0ARfwwdvD?5h}QJ{5q`gQC5LSQFgd@oyYD2KXF5O`q} zP;q9(xXXPDl7_ACqlvLiF?vQLzWl1Fs1Ra+uch$i@%9@!Rt}D1baXHLHq0P9GUG-K zC3*tvxgVE5eIuBd#ZWd==e*O>1iMKNXla^PCEhdVNb-w8#4z~jL%t$@bB6#f8Ifo_ zZfRF8)#cc1D*WFlb|j@2Yeca_S8M~2l4El`1JO&eeCaB;N9StlN%+ZSn~*Er8E!N(K(z z3oR=CurR7)?N%52cT0p3F9jp^dG;P4g7aL;8V^H)_WGbZm1}=E=Z_L%LW&8N5eBve z+W7&5mj)`_-Rh5Q;}vy)jcPJmZu4U^wg<3zKD6Q2L@p?I%(sW1pS|z3do#lzH}hXv z0QetP)uljLVztzl@m8ltL0(4LUpgJ6&l~Eg6h9w`?iJr{f4Fz3E3( zbtvWL*?%}z<@@-l=f{@zXht2X7HE4e;|^nL>SW+^F$8M_II2KOlzYGu1eXXO?Djln zjfb=VO|a$iI%a*`I)w<&r}Xj{OH;_Wji1nB1pJP3fw9jEH8+DEjm_gb4Jtkp zi6=+lrul$z-cm{$n`xQxE^RM@U0%Sa9eXqgT7+I;#@s1bWAeX$t|l(X%b`Fec%Z&1 zY9wzB(zKIOnDRkZ@rz$s!S9~@f!UOmk)ZfpD0~-36w)zdNg2yOP>kHynjgVI_X=cu zNn|VdK3npRQ*4|L{;g*MDd5^vAh;#Niv=UU{2eAvg9>_%$}3>h`plaPh(gj;eeS%! z#7*1hFtC%(jo~kUAC<)|xSYe&(u#F%NZlGk7P-Xv`L*fH@A!oecw8>gNlYEenM z)bSZ?kV~Eu-7I$F@EupARM5PhwmPhh?fSW@PXK#J!zQ6m~oTUw5;YjYw{DRVYVP?w60KKmFjN?4CrBSP}P}%in)jznVF^2WhU;D1m_VRRL%kIq(wvVr7 zw*87fIhGz73!mhqC+UZ6Foh$SeY;J1UgRCKUWkR^gv5ijkH?YTjA8^|tbqMW1{49+ zHzte^J5`c_$8A-kwoCoyx%+NlbdrB}js~!aKu@f>&r_K@#MUR^XsiCjSx%Tx8TA+1 zI@bs{_n>u#k+nI|V-54;Az*n50ODPCT}m~#&e=45I9Zft+Xz`3(OU$SW1<;o}0$UX&w&l*EvcZpe{W?J`H?*S`T(#oSQ}GCS;kWYt4!78Yt$OZZwN&B zJ(g<1%c(y+ zRC76TE3eUWv)OTJ3eEpOwXf^ZUccKxgf{ zM-;bNbNG;Mse{q%NHF`0=4-TF7VM74QhvXVY|dg>?P(Pdh9FXoeilC!nI@U{%km5=%GR|Ao5TxQD5)GDnD|OlUH# zl*PB~IbW%1eE+uPxOeC4(a$ z8b!j6(v^OxRHF5q+1usSZ+jzQes_3A!O8FtgZE=ssvc*c1?=rey|XQdnE5@ zkM>7esde4c1@PQP?%;j6D9=D3ko$JcP1Xn3jH+x1TFwWFE`b=a2Q(3!w~(s^QY<>7 z3`g*8Jcq<$)ws*Tiy#3_EyOHOo}*7-$yb_DjD1AOWOSOdyXf|wrQvt6rdO{vqxE3) zS@ma|)r*6Poj7t-Rw%{s*z(gF_CHs8eFH``$oBO9qn zDFgo?CUmT5vNLehSsmC~={hrQ7t1Vln5BT?tQVkV20iW! z5wP&nvS_*8AD&kkdK zhK~+3F%=4CAOx=jC_w09VhXp35m?yoz0|f%{6qRPQ=-S?<{(fUG>Y96O_VAVAlO}E zUzB)D;hk0lX-@dNsAp!0&4Zwl`#78Mk}` zrR*n6t2CTx!emqise#DzjL7^Zn0MShp(ldWr~BO9b&-Q6oPp%&$^6*dZ6dDx%O~2W z%ByE!>tBM0wyg8jxa(JQ^d1@q0wV^JV>RuMsJcM9PAzF6&?#I%xWtkVc5%bYyNSVL z|J4-p_Z^s9`31WTQaKH^6eZhogZ{4WQz$XMK*$>c2ZumxR-Cqb&4Ba64fjQU`{6wK zjRC*!D=31`&9>tll)M(95RPZ$u{HbBI`o5f(-+|PQ;1lSRVn3tjyAcfZO4;fqA-9) ziVXy+PjN=hHG#MFvutwj_=)su8G7|ggjEXsc;6#L89{I~n_HN+O1S>bdnRjl-;l8C zqzt#(a;;uJQidbGc=rQGuCp#^%BhH^q4%3H};rlou>$l^+%Qh!kX0~@3w5N0PDIJmnmyX@>K4vo_Q>>`}Eek%ATpsIgvE!^fS1bdPmr{ z7aJXgeef1bcy06oe-s-V8*KcM+68niSD=IKwzT zt+zLz3feaEz=SI>+{1>)~TQHtDA^NwQ7wwbhuq!Wp+ z;PcF% z-09^M`8v-sy_cvsuI<1AIpUmiiZ?EnBjq6QE#dYA8kKJwq{<~h_kYoWlO5^{{PRmT z$BdS+YS}%8_e-3{i7Y-9@Ivf3`Kyr+o3Ce2Z3DWZ2)c+F52GfR{)g|MvR)@n1qvlAr_xeP*Vq zf3uVhwl9!8u(e#wD;K#V#+O#i7twb6Mo}8mOHD8P!3^PGY75U1kT6R-Oa8s&9f=@9 zH+dAXe|QH$;dxY#ZYdFk=mowC?RTtW|DV+`l+VdY*kRbuw$ll{{71sd^HF>3&f50fikYs?!ItXEE`@xXN3i9L>$nA`%y-Hn#OXyu(HT?c@_od7)Eq50C_+1^((zc~$9*)^u z|Hb!1`MFj~3Om(xH;Frgbwir94kprnKdxi)pv%H8tEGdrj%BP)WGLaBkl|Beo86Tm z#~_U=l^~2Yb|xSX=>wIRNGPH+wXpCP^j{b-9ISsrt^-y^uEAW5Y($nU{XEj@K6R3{ z82W2ZWf6ISD=8D?dZ(FU-jyVr1{w&!)jfb+xykAF3rl8&Df()9?%r&%2p#aqZ=yow zuAg7|l)Kj_OHwb_Ut(3bzii6=*KRmVmjbov5^z7slE04IM{d}De8K*0^ukKK6lD4@ zf`7H916w7QTCnDYYUdm?8k03B1vjq;bQSJEbeIyHiO)?MJzx&xM_v~*PSAxh^3>hz z*VmM?{Go=PUT6?z1i?uXZ+?R+p3A$(uOCd+^a2Za4)QAd0JQq5pF+PyJL`ypjbaRf zds<*!=`(w7PAl^@Lz;>zG>#}z;{~GW8?<6x8h-EE+h4Dp9r`Q0e!lR#i$COeOR>{8 z^nE)$&H`JLg644~kzf$O1br|yR#_-1MOY53Ev@M|;|EbOC$OOiMk3cuyeNF8ZcAuh zA&_GQ)j)_C1h#Vsx=+^%D0yo^S`vL8v1=*9HN7xx7FkwceFbF3bM1Da$eRxS$D3_roSWfFCAC`uARM?4 zkV}&q@s=Yk1;_mtG32haa!75&RxyJp!PJ;+iVpaYs-jg$x=+lxTRBqyrgV?|6@_VD zVbSU(D~e`I$?<2Sqjcgd!H3;^cLjGJrE*w!h3iG!h$7Rgzm;f>Q1b|(KZOGMcHYI0 zod>>;sEf=50=}Bap|D2caw(FpBC1+wS3ZwBIIsq>VH}GYl9JHfuC`4XD>s>1WB5xn z@QM(2|Ck+<(<+v_eIi@B492^gbD-^Q;Na&bm}7}9+Q%2)*Wh8ApMF3z0g5TwN(K<) zxqW|adrw!WN{=)@J(EWCfmirb)4WFfzfPg0A2b|-?4JuHV`nwYY3Fz2=J$%_fV4qi zvTbn;ai9GUB_@asOBhs8G3X$4(nqv~-r$tIYmeVW-g6Eo-f$b-6h^qHp7 z;>cvv$nu)6hJGS6b|vJXA|nIX>ZB-u=mdC8Ry^#i6cjkpWD4i2c|b&V+E!btTXqFl zxkNszKIR=ZZ=Z+sW=GOVCO-@AX-HX-N!gK6Hb*q&`X&>SU}}zP?^oCrk=<^88=!6Z zT~gsX{`*|q9IQ;i*t}d@aT6-nYk#wD%F1)#zD$B+7STRgBFxQGocre6Qo`(Q4v&+< z8eLbwH&m#WS=uZG5jdXpUORa(&1kpcv(vF*qEFW{>WhelJAYYYQ=+>8s@I?1uG6&k z>pV}V2pfNR{3!e**Q{eopvOdR3hx60Co8mzo}QbhhYW78M&H3`uWtNgYvOhLw|!^A z_$IynRIbOM{}3LZS0LiS25R7=adlNynPbVQoQ_IvK=0i1$d4^0&R@&cXghC2IA}i_ z{_ZP3Xu3a`Ggz$C1uEHrjn@$zrFK;Eym3ik>FQ&a?JR$afdD#%fs;v?g0nh33>CXD zX4tVT)<565e&rQhK@M8lGa}c!i)9dcs|>P0_tHQJQSU8LUj$;7Q$6JpO{%75 zBA|!;h`6wGv>pD~c1T_HuDpz;SmyHtDIOxYpS=-ywcZ7g$B9f{Yf}Ju@_mQpB-AET zph^b7ZNpiIN8e+r(X(0hx>!GQzYR#2c&X%`B8)MRJZcT+RGYSr750R;)S^ON{iioe zxeI@U;Xhm1qW$s;)7WshNC*4<^0G9S|0VrT@In+d>m$eCgrX2_7I@|ftBxw+^hkqK zLx|D2-n7C@TH2EOPZyFDjI7hzy9$lj00Qbq8JX$9aglL50z8_>k3mH>Di*aq= zC`3+GDJ=p-s|q?lA6h)B8wnt)lNE5Bs_b;LaQ{Ke<$rTcFk5eVWYp!d5h;Wx31wmg*W zXedZP3USx^-;b-n=2tW-+u}_jnRqw#PpMRvhf(~)&r{tKV-~jMuWU~4;k7HE(aOio zDRycG;IafXXK;OzMwa(7CA+Z!i&{SFau5UwtT9T!A(aLls0uiBQ05I-=~#!M`v_)o z5HJPIk#NenM`&5)h~`U#_czS$xzW4q|7UJif4d&b>I>9DD%3}A|n%p|ui4|x!IkRo%{Ss4Fz&WEZJR%RfOSEe8;-A(C z4cmap?8pbgi$)t(9V^I=-}(Q9LB$Fz!hBFmO#*QX5^cZ1$v%cZZMfC`**e|`Idl|T z%P>DgL}2kgs|530H>$}NtuxIO&hI5y&_~_}^?ZTBCLjZH#6b?ic);MVjC!uAvUQjJp7j+cj9!z{i z^+moMYICw;LudkUds6ldz~7V*d7y`{0qtR&tc@m3Hg-H#2vW%HP6)b6=5 zi&o7Ob6kGBd~a7DpDX{~h|Fk+f*d3NN;&ZhtXD&KwN${KpQ8z|g;Hx87NTK|%uPCl zbIEOxq}%BbR_wZW{=_hp9u{V1<|x^xH%j?Jlc1SUc(4%lo49qQHFIY)V;*p{tB!Af z)_{GccbY^;H8h0&8u!S#4i+}HL&)Rle%|#HRt6b1F0I(a%bn4Udxsm72%U2uGz<0Y zT|}l&v2+#frg|pA{PK8=+9(=KtipHhNoeZ4`clzuvn<7D9dSs&ADd^m%H!}AR4vH& z4McGgw>EP`9Rrr~euNiNfS$65bNoG<(4fCM{nn0#BfW{Q7<7TnMLbVsHj4D>WzTOK zHukOB0xEL^5kD!N1mA#ayAK31GbN~fiO^3*-YQXx^ZQ>fuEt}qrbVE(efL4~Yap=z zvx=i3c~nVC+Px)>MDp8_ekWNyU+LsO7O#lqV@5Q6G%dJim3Xty<{MXi@orN21RLL( zequRYl#YJQXP=?yrjx{;2};Iw-Gt7AXR{*Ir+@2!f?BV9fD3eaGrgt0n8XbAAK0cJQ{>^&2?=E;NYnMyZ_vVbrjSa*HC> z-tkKgWT?0|K-KSBU-VT@(0;0yz@W`n!x6qDe~;wLeNhlR-x2ks;j38Bi3U+Z6) zEDxAV;JX*h#{>u>N!+>kg;DP+3OaXU+L*N3-bw5}ZblUSq|-(#Q=KgG39h*B0`Eimo7mM1YWM zh(MX-@#*nGyzYFs?=BpR%ENga3`PYv>^|O1pj$$e7N<0^*>wyMl*oPMIN$fpugq zBwl$81uo#Y=6m?dukeO*XuCVnHbxLA|CC|m+f*$Jl@WkhFkiqdH^&6H(Pk$B55k)$ zg0F)-M`k|V!umw?K~l`nU}|{r`@tZJNTVkk-0esNb%tmp{OWW{b(Hl-XDY3tFZn`n zsyLp6W-^BLbIp8(;G>DC)(SLyr9a0uGa0&=n{>)28c`j7hKnP0&UY^wVdp3D$t^PI zsuBz&_m}c;#iZU_0_FLTG0%}tjhmh&_K8ZhbXA>Zkc9s71#o^m!IT&pq@qw9dM2n2 ziT&=ik0)y$JVTPm5d5MaQU+G_(hvvm3qmQ)TNK5>pT6}wsjRXYmObMg5 zzxyC&0s<6K2byh?^el{mhADAaG5mh-5qps@h1@{t9#4X4v%}_ry|=OzzhTLU zPktnupl&bwJn`gYo^N`sYN^p_JB(%OIC` zseU%~2TOQ|1$d=GI0utswJ4>qO98?IWk#uQ^rzoSXVERYGedF7C4f$G7m?+9`Got1HfD^*)m~VF@g-ufiKt|S{eDIlxqTsqN zJ9e;bBA!u~d71YVyNvQtHtL53xDRWur%g0)?8T7u*&z^Qv!_nt^Ph^i`NfB1x`z$t z6q~gzv8@B&kv;;uVpHjR0c}YA>TLGCJK&T2G(Nv$_%{FqHDH}aY2jYQdZH?l&0{QDiY$Rh9XOFEU}S5=f#V&qr-FdWj6 zc9l#K{@Co6eaw?#gSnS09Nn}{M{tKHX%OoVND|ppeDhVqKM1WUT(b#}Yl2xuy%(0(4BBT9Bf|}#*2Y8~@|%D>AqHzc-$VOmIh%PvcqrEvlc+r5MFzHl zs+n^snnu9>33n^zwYyNjq|UH%o@gF~$J{$~(zC(}WN@3B^{wHq(zVOrP>WvwU367w`d_&T=qkt?S)6;r z0jC%VNvm|v8Il}>aQx%4CD5-BgrW#$<76)AS;EXEG7wB^g22)SObO!AO3kH=)n#X_ z)`P}l7cv`@Rn#&DE-ww&?*(GTq|YYw_gy^L;!?PN+Mg=?S#=CIdnjpm`dL*!NM!3h zZsC2-gVVk*@7`R=yfo>qzY(F%QNZ`=PZT(g=k*BI>5I;w!i;&2Qr40nFbZVmIhD0% z{(B__{l$q!BuvwG4S~R*9|mfc?a<=ewdI-I#Zcb}m{DfO8G?>kOOpHUmz!jkxz5tp15i%&u3h2?wnC_~%hlhu0cy~8w7U)a%B(UGko z{I9J*5r@H4tZNAK`G;kRY{`c$x;MdweFd7e6u7luVwYD3R{{fZy}-Xpa2gsvYHL4^ z#Hs>s1&WS-@X6n;ZE%KE5|z|D31((F#EmHVbN_KUnc6vnUxZj=ve|+ymw$Hb&hc*PW=Xyr`IXCcCh8M+ey?Mn zM1HuaswDr2wZmwm&E7e)y*$A9=gH_Vkke05aT|aJ;-Vo0!hn%*C6)#fR1i~q0`+Bt zph7guzy!wEONQ(|ey996(2+1AA|e5TbJxNJ5VLhPFRk|?p-BR9XD~w0V9V0?;^jQi zv#}}8qTvWdEHp~3ltD02icW2KP&;@bU7@l%n(mkRl*mK-yLZLnQdT_KLRRB`GKQ=B zIKC*hh(BC$$yZNd)QBp6$_j_|A~BbV9J5u#(ct|f(eCn=BZa5?;^v!B9Bai00q~*5lPF74#3A396?^U!J&OkD#)=yf(;FllIz36;2vbj#9r&hiPd`Q6 zzNmq2B981niTIL4X7*ALlmE8#l3Rp;-D_t9J}Z27Q?|k)8|(ur%&B9g@lp=yQoItq zmrwD&w`xI_OG6G$6Y0C7htE|~UKDGELmWfvTsjDeia$X(0W?DeR{~`|0Noq4s}?Vw z1%L6U8ucT=)rSr(R{-ZskP^GLBQ93fKHr1h0PsTdb7&_o`PQi*haxXFa%FWYUd{)3 zT>~gAfxiiqvh@mV<@3|?TbvBN!#VB(FSbnNE!E86xkY)RoS5(S10!FNLQ<7|NW;Xx zrS7$y(8Eeg=WN2RQ~=2OU_M{a)1yLIT$W}joi@)Z-E%g8ZM%7y(YwrLATJpt7~!n| z?r#E$rG(y@H&u0?3GQ@qo__BRtp+|e)W#oBY731{bDNGqi=-+T`sVPYIn^6w0`K2doV zO@gQsl>y`D_a1KR$=5aACy}S{&uz++vAq?$$`U1#M=>(_hJ(F?8f^Uf8Y@+DgGWfX z1XSV~4I+~l%fN0s|EGG)t)oEck#|w*Hsy-AuBHp%9=i~ka$B_yKfoeOJSsOn~a3n8~9&G`!X%}gs5$Dj&~p7TfzVMbwB1{ZTvA@RHV8# zhHd=4oC2Sc~tk1na%^*`JKd7TAq=iaDHlL9YBu%$zcGSO+NpL~Ba+*NF1 znGzTx_HvPeBcR}F6XRQQZMO*UUm5$>BBDZMNcz^3gMey@jPh0Jl=BZcjqe6D$iW4Q z*G^!Pst%etyQ%xaK(hfPps(_KIi8Y!`m?)R0r@zOUo%%<2cbXWXp2q`A98{Q?d}Vz zdwdO1u=VV&e>I|B<(xCmQiFPzQF z%E-tt+kJeI8mDT@!f!9^#3_=^#xb-d&KX>B6q?jnJEVHNbc-m!D&L6erC<669~jKP zQ$E&Mv3fhp5NKy4_o_9TJv~LPVpjOOe{<8(tnV&({%31vrUS$KA`)89-2){)i_?!P zmt6heAt8x%5~2!KKRGdCiMkiA#3ZhM6g%HATIWbcqIdxf$?r!qq&kv%f9BQo-T zzMb>={lC}Mxvum1oO500c6+~HujlhImuD}p17YE8bNEm1rVOe-M!Lkn1Nh-nG^edk z#AU3pbEvy-IQ75XFTX_lwt=4M<+@^TM(&xUI1FKYGgFuJOXblOQr8;?O^<#?e);LB z-YA-495Nu0-6HR@A4WQoL6Gu9aSGOA7rVoM)c+p-Qj;<(zWn&`I)%b}trKy9R5nnI zJW*K#{{7kjN*3I04@Ag>Gi1x5pS2p13?}3wR zHiMv}euLi;5NoGp&4B;z@Ma}ORyo&mYBi?8T`Wcn47rWPoZDeIp_bR?R`G?sOce1l z^0)c=vGHOx*P~wo1RJNzpFS#2WKYnUvkQ!oVW2-h0Xj^9N%H?~v;Htx1QdLp&Llg> zr?jNuV3SRhod^J>7i@I1kFrCwtb3AG5rs8g-d(V`jiKWI!SmjlQ#xXM!Y&2hsYQ{T zzu#&0I~n)Atl(`({x2}(>SY-@gf4?WifDqO{lDrq@QzKQX+{c&x#Zx)aoX-wa;aSC zsiBcet`JNcxzsGJ8gyUSlKh=_awJf_K>=+5dcM2EP!CW0Al^li%OoG;P>;g#T0P3T zt1UhN^$2`|{Z6d^r%NEaC^K%-S#Wk2xbFD`RN~rvR&!*nT=Fn$Zn7b?5?pYdkbUJ! z`w{p`CV&m1E}DWv+Oo|bU!yXvss;Q;e13t;s_y&zNIOt|}}jHZhPa)^>QZyGgi`mcz^-}ZWX zB}J^{;TQ#vuKm4@Q6G%E3F=|j=pv7cRSQ=E@nq5`xi!TuX^(C1_uD3_3k<$|6>{@~ z(hLLnSfh|L|F|RR0aCw??}wdrE2lsQACTGIC`cA0%61Q-M@V3V^ZLkSGAQu$1C!cg zP3owic278`8_%7t$e|Vt)$vJ0fbVw2o4Wf z>3trH)r|L(v<|N@%#z;xAzaNr+%i}>F0SrRbXq<5?KRjX?*Q%xaS@*<4uIp0_4}5b zI9nrfdHH}E|3iQDY@7xZ}rNkWh2<2w{*CU8vXIK}=-?>(lGB#ke;;V*jc(<*4? zciXM~_WZNna4+!HgP@452ZegtGo0;~1&@kf~( z3^NWfLmnyKSMWb@ZX6z_;_7Ra86iM(MfNY-kXV*JAw$l*k_MspO|`?y>qmwUI3KNY zApdH>Z(n{(rg zq_n83No2OM`l+wqN%hOo|`i-AHPv1UuN`h$V&RT z@MFo!{tk7#%EVqwSz zcU}5+(fsyfdg?-_-o=)oD_W4*oi#QUwb60|uzZ!m-gLoAB={-WwfIDSFo6sUix9H4 zO$)Cyo#o*_r&*l@3$#mhew3KJ0+i^I%WFS{LAeAW5(cmh;m6x;-roxn=CKbij^ycpsK4cG5QZ|3SZ`#)YG+0ey*GC zW{kM`*wR&v(D{=5;LC1W<-Gg+G^YANg_NHZa-5xw5Or06HPy+cPMLsL(l}hKr4Z)w z!EFLWw?w(JC&IE=461p5H7NBEj7^JPqJQQRuK&0Jck0o_oN?eJ!>g}(*t_kNBlJ4N z&4fHYFR3>Ns*|0A7BC?cCbTb1gHBSfw=LcoE29_T4!r3gSF1^qhb`&nn!UeY zJ9yBLT#t%nUxOuQ-(`Ne7g6+ z#ZdBhroG4Ek z%*9GRg_`OO+O|J)j&9%&i$*~c5;nwdf{6p4Ocy{|^N0f;z8lDoQ{bnbTP`(jdWEQ4 zAv-}1ck=D!BV=BPpebbC?U0=kl{!nsna>{9p*UP|LH9?sm`slUVHP=U4>mvnTnw1D zeQ5bbaZswOXFE=Jn0x;{JrOB<;?iOaxXX^D20a5D01~2Q;Ib>@Iw4N-2CxC2gF+l4uAvA zEr3N=V4%9;LAXQtPI|Dys3G_1?T#Eg`7;P^)Is5&cdnT_h1-yNmKDCPl)r1<@TCzJ ztI>Ytj_1_oL{!nP2Y_F@t<4~gSHCHmQ@o}Ky&y?IzEOgYnSJ|?Gc&TihAafnu{!3d zq1NcDhjtaqg@@1~6AKi^;zI#jA)_t@8z(k(G~=*!g;5DXP&{BtXS!>J5Zep#$5Dw9 z)Z3b6sV|{xYfg70c;KQqgDb(L4x50b=hMbg@kwyu zJ?9!55}H~<$1uspgF5_OlEJ{keh8&JAu1toG$LlG+;I3|+AA=&{S2c7+(PYJ`=0)K z{lbm)gTn`lbf8g@#6!f87^PA6+o{=Ht$8ILFvsOJOTZ3~g++8w2s#fO06_c8 ziQ8*7m~3?`Fq|zMS;&zIn>+ryetZv1Wk0T*DBu`1(Ajv;k}gsyP6r$q%=w=v9Po(t zcB{x9%>~5AFXSvy`gtV;n`)?X zughh`=s4;fz^v|8WCJfJ-7DuLWK^Y$##^(9>-kiI=sx)U4MOC^P9{O-lk^sb|C8S0 zHl)ld9=dCdpzbg9;pXl7&&mtuT!BlN{OX)?8>J)<{~Vqi6Z&Lm1+0NmvijoO?t2H} zcaMqMum*}pta%N55gis_MQK^$@IH7$7cZ{MHGbQhLNMmy=|RQ3#d5Cn`L)%W#r=efW*^z!sd#Ty}z;5w^mB+ss5#qIQZseE@}Ias0&aer!vn>fL=+zu*Jx zw~&Fmi-%{eEa`4RR%&%Jm$+E zfjEFQ)rQPZGs)z8o!x?~gkZeC1Z7){K*_du=}e6T-&E?U7`$dNxF~F-<_)a_CmnFV z)<$XyYsSZ@{ZX*3VQW!AMN1sZebOo)tL8gPNOI&Xeqj2FU$F&Gy~l*cf|OMeoFJ4l znB@HxP}zcoy0d`C{xncjvN7r@!S!$H13njOzvE}yi=3^wLoouF2c!95$y8c@*+a9P zRLM_Zg-K1kW@-}q<6{y+K>=j6Z0ix|pkQ#y)376mmqTlvsjdUc0 z^nQB27i_~IC=74Ib3gd~@JP0oj)~+s$VvwtNJt1Fm23;f7-fKZ=7C`n9ID@TA=uOW zK-j=F%l;y)Umo`Ve7IV-pn?6*pGe_H$oqyiA^>M(v&t;HRn+8fAb|~O1pZMy$F@N< z^{nohR&BM+9gUj(=9>|mZ;M`+_Gf7nOAjVj#8{D3s^c;ga@a6NoOuRoD}x6|UaJ5# zJHoO%2Khb3Vp2Is=*&h2p7d)-JHhgH=uyZ@qiVqV^R9gJ`~!H$Uaaq!HKTQ&!7U5D zfL!*4F|Ndp=hEQTGHj8YAd;aWNw0{^N)^%kIqmHNgsmn>lO*4_H+aQK2GUAyGChL( z1eJ5k9c7x4*v7;QN$E!+nBmB~SYIfwxp(9pCi1NQ+>GDJy$~SFQuSbj@7Z;W(1Ksn z2hDO%sXI2fRq6@ubUo9+B#2hf_1?aw(K6OTnI1gUAL(70n(n?8UAW=S=j-&JKr4+{14nPaIkO)AP zqyr^MI_aVSgw76M~^hy>8M|rS=ROn?bNf@ zw{gV7#wVF)aC&_*TNh%o_k(Gxf-7x$=>joZHu<@Z35q-Zbd2C?#;{g~_}plbGip)& z+u#e6@2k`2d@o8qWXc1Jpg#=}qadaudV}}$8wF&r1;yue!8-G1@OT>LZ~ERjRm6Qy zs`zlUM@^|Zuy{LaV>&8KAZV_b*jDEL=+zj-E@!o#)iV)Y@3r5+`zmZd@ zVgX)b*z^Wyy17bHpA^Tr_Usv{u#E$PL5UV6fW(HHoAxsdG)%9fDUjTgo&&qPW z*tf5%x5SU&?US;>o8N8NIVJ%PHM(VWq9y&bx&ot-hY}E41Ms3RB_RHzCi`^jzkvDF zRoBQqp$v>jA`d3!fACEmZVh$-zG~=ZEPi(tIGmSclNB-7oxC&o31Lb$Pset6P ze^gp6(uKIVKajB)G?8k(doWVb%HmRSh6aDG59aKw-!Df&u~0!5d1m%ov@})hXKU>} zQDScTNF&ZOX}^9G^EZWftB&x0br4J|PQ6v2$dRN~d#@d%$?IWTydSH$Db3u~LR06E z*}eK{?Ks}p_ci+hk~wcYM4z*PH3+J@C(0^^Pd`Uj2IFo#_2=#t4O0R|278^PTE4R)Nz~=r3iQY$UnQM=l3I`Zh*C@3lyo@U z+e8W?tU0BsNhcRN*B@#l5v8T5cy_gl%Y5})7v-%2L2#r^WR{G%I4E%FI=Q7!-9b%`45gI`#BK*qJyNr*> z8{RNh%RK9QyazYlJ6ibtE#<>z;0&qO#_fFX@3d~%5xDbELgr5aw4nQmnVy5(sA-piMq)6N#V`P_z338cls*~en zuQF!;jR?dBLhxZY8p|B9or{TMZh8C3C(JnQ_=qpKYweDb`;Dd>3G1T$aVh&x%gMbO#i4f;wI&QG)T($5o~GgC~zt5as=^KA77Zo90v1w_W0uooc3lPT9fg_zRXxngygBb zxZ|}tDuC=Ex0gcmC>d}!?Y{PY`O?M#4J|Ja_`sdAGs)Ok>np~qqNdZ@A^hsId}rS~ zRDZVU<62{$@KoffN-46^E|6GYx9ZwjpT(jM8=r?t}z+FeaKVCt; ze@bDyg~*hdaKGYI#qVFz9*?nQxI6Pya*J@ZBx(QD=WE#YG4ugq#u8+HeC{iH4xDK> z+TmiDcauPb2eFdb=qbN*AyHtfPxd;O;hf;K_+xt9b8UWcB zc~2dgx28b?JG2!5wy;hXPN6YXpmOeBg~Sehf>+-DGx^>X5#MNRHt^o1Zv!&^5_WFd z+0PD~H!S&_sAy*u|DIn##eSv=sm}CX<`^U$r*(m;uXd~wECj>x5oZoWg<7Xr{F`~P z`Jo$xu`R~vS%T~IR`t4E~Qr5hrQX#cndD9e5kZP$}e2TZO5YV(drpyS;FYzTxV zjNp89C*ZyHwV3%+UQ6ePQ?fszbWPGEB5r$|-fPq9_Nj?etd_3VsrI;Xpq*UQuuQr4 zmWX-$OvD$>B~-d-h4k;RCy_@cA)BSvXA3`ii!Z<+$Md;REd}6#cj|3!Um@q56_O@t z@{^EF1QDxaAyGzFUf!0&@h-UlVmPh)dFl&6PB^0PKKS^R{vX#Xd*{~Sjwmx~(A@gb zSL)!tLbo9iOAvX3L0C|0>VvXY;T23dtN!lXC+lTSsbbf%Jsq>pXpt{ zR~Uz;B>Ib`=< z(bqU5gO4XRNNTv06MT7}UFWWZaY zDrAc@GQa0q9wlR+h-NBi68=wkhwt z2l^Q{NOxJIH)4U1>Vc=p%o+S1_HWaJ7;X!?=o4Obk{TQgg13ukJ>X&!86OOMd`9kDSzF6wiUN5FF{lqrzg8Igus?qA?RMt*>gRYQ z%dj|qZ8dCm6Sw<%bv4iqoNP+oPO}dmjWLL#$e;OVXfO0<2?}6EAHLZ99Hp!#l$9t* zu{P)!g<4^cH7R&muK6QbcCIDYzKSp6C8^T3K-}{Kxtr_GA%hSG`B#BQy$Ln6qE@CM zd|Uf7Tj`d8+a)=dq8+;B_wtiHC-xYKgZA|2yE^jgXMm$UX7&20WMmreM%!5o*;w4) zf4a6nn0;{jD9}fYR%-fskD@vI8?CZFu@{dU>nvJq-%i1|evKRRVUg++$iYRXKUU3L zlGsDXy-&esdxU1(9#7fS%31>HM4h_T(PJK^wo3tEfto1X)RH*o6%M0x@iBZ1Pgeg9 zU+h;ao!ELLD|hMvfenuMAfiC_RvpGmK|3I8^GRppGv*rkrzEQ^pZ?&}s>*$8%-eZ@ z?|x^V`^c`P)03)Xa#u`ypg2sCbpCK)o+@sd({s6ykVj^PH05&`_rg8)e=*44l#-bA z!P7J49-iVIHoe6JvsNpK5t(|~p}n9pShay;{TFJ>!IuL-9cODYZ)Fu) zORVD}nzl3?c}`}kPo4PObKpa5lnyAO=Tz33*2TFm_^dSRv_=yx_@c|D!bwpK*=Y8> zSVikI}UJn(zU7ivzFhiw*FjkgkolD0|xQHS0I(PZLdQYV6q)GB7{es2z6+k*4Uq1^bMiH7APp}QE;Y_o&p zs)y#D7h@(_^Y!)sYN?B5@ho8Jy6LPX2s6hkmudv6U7(aastqTo_&UQN81|NvUL47j z8A@S)*vu+D_~QA2@x!kKyI$9+AuOlzV)6!cU-G*a3EZ&b(H}6Wc7i6QPz?P}G`6N5 zhVLz?wp50@T*l3oP7p2#^!cfl>OVC7CB|)>hQC;Htm-Mysrasd-)KpqzL zwjB02=e-THzMoc5juEJwoVda4Ut-~?AjnmA&o(*n#tss%6mpYMxL%*=b+?Drf~we0 z$cg}iX^d^({-Eed9QO<)6f;<6Yn6|TuZiC&kyhjlWq!n9lFJ*-;BNWck&Dgo;Tz&X zg@cFBn(~^vZx;DHv3;*GFA(uChZ$jnVIcfRDImz_9FFoYY%-Scb3j0Ul=?Hu4@i3U z6;#1)COVIB3>0%CZK`Y~sTWHB$;G3T)~bFC zxU0b(38P2=XT%w_rkL85@upY6u1XGLPGR6-9NwNMo20VJ2jx;cdrV_q zK61SxH*7dXXTc%CnpEi$gOK#R8Oe}y#Kg_WHC?71bopzQ=;DR1_n+!C`1Ga;gPo2f zA3B@b@&r;5jf*pM44u`S@;r~Z91wt+j&C;mE&l}3DHBK`2`hmF8C3zP6zqkeZ^yvg z&UGWTc72POiZk_70VPpUndEQclB68Xiofml6U_~fr|g>yfk#Sk&(>ww77_df^oEEe zFL8rupiu2{%o3SsA5ubkJ#sD+33F4Y7z9*8;5+*cLb)KUOELOhAFF0zgksEZ=F6n& zndznxWk(wKy3a6IO0ax-QCvEu(T({Xy)i}@C*h!*{dmbY?jX}yJ9~Z1RJ--q=-!V< zabS$Bn5^1u*75NHu-5mY#LizNa}%PUzaGz@_+ltS@FI@D;QH&u#}K+5N32W9_WI$KF^uXYWPz*(Wc+2eueyC_?aNVF2NLyENfgu3BjxvZUwESP z5i1tV!}^V`#X621>ry!M1p=r*3up9T$-LYCc^JFrygpQ#(hNgI8pT+B%um*-sJ3jW zpjz|ONWM{qxbLmdizUsie}1F~`u+#{P&zUPKr$d_va^8iUqOe672(BmISSaLoAY&E zOA!@u8*HMIbBOb4wH(D9A;ILcac&i}^gIhQ^X>l>8H(5d zNGR=sfJ9VWys2OD*q#Lu$zv#k34yvqiLVR`M`y#RG37rYcMFtiTP?J#K)D2>KS7qt zeTsLX#zr85KsK}qoUU$T+}Y4;HGyP8B-!6z6)U_;tYY!!M*}m981rQidI=J1AYVpV z5%Nb;A9Jjjtp4+ioS_OzLo@&ZW{1s|;?Zs*7VYe+;y#h*=RNA zO2uj?y|?-Z$vQ4eH&mr8OL$$JC&y0cL#s^1@1L3;4u71%;oBh@@o2 zJTsv)y3gg>bRa(T8e=m(cztRpspcbM+F?c!C1RYuLHrHU$yC!BGyMkDsWL0w%=?IG zNcS{k|9=I&9t+-jZ^s{_Rq>#jK_@CBe3>F0N2LpL)uQGug!_5yas%cV!*0wl_M(R5 zmzI!YuW5N&3I%9V+Nmt#cchQNsh<4m6>k%GZXm=mGERtQy8k`=;|vwrHZ}xyUy7zR zKG^ox@~dKNEfm*Bb*Ptw%>J2g(u z4wwkp!_WqR@3!s`Z=;Qu$keN;byVL`8C}l_%ZQRd72RHT{<_@Ktdx_c14T6cqjiWKk&n&u zgwc8n4EU-4DlC-dy*OUQyo(JO+C2LjRbCKQWOh<(bG?#@OC6Qs1 z?GKWM(Dv@T^2C71bEp3&!~gH-)ga2(dRAJJ>?UyZ4>q`#{nI>CiBE*R?z?1lfeD@l zfSVTlbPv38nudQ4TChDHa-(!JYmv2k7&I0xzM{ihh7>LW5yJ}cMEnotIgxt_6^+My zZ?nZh2Nph=Q$_lE;7mzCJrMNIt?vW+Xbymnfvt_^&G(lALm&AnF8cuBA^d2sD!EPP zGRxKmVr(iyRh*jsRE>%ip_w+st_AfIZRG>tsEb5#L3X6aRT{PP3Y&T0QGAaL{E{Pc zhT9>U-Pa!K7plVA;Qy_iTwzm5Mssqo#4t$LL7=HGJ6XM$wfQwT8|6>(i{SI#mt%vf z)sp$WJMwJf%L_FZGnQOiz4|KnMu9R-PTg&< z@rHH>*{m;-IT|$DnV00S*wW z^2zxpOkT+FVMMp#_eSUqz5XQVrqou9isx{+?WS-3<`DJ{WcRS6p=tI05OY=f$5BZ4 z!7|I(Z_rgJ{yo|?eFjQZJyp{8urg~~`LbON#OxM~!wTx&-T))0kcgAT4LG>HmALro z@q?{}Mf=2jeZ`=<$e>eE)7vdOmxV;;&sOm=B_IJT1c=&V8`658ZiS1LgTbd8o_Kl( z_3*xsNa}L^v9Izk$?VKe&sJMo zA0NNAH%eZ7daV56D^-D2L1f@zZYNjTmAaz^;vWoV+bh6CWQZ1*XuOMuMYR+7^-8&4 z??&G}R${zIG{rzb=Hvp-sbVemzi0je!H@tCRO*kgnRd9WV{Ck({}r7fB;4G#6 zZtmdVU|^#ZfH9vVp4cSR?tO44Q$ITFBpd~uWqIHT((wyL)k(m8+dX+S%@(2a#?RLV zWYd0-zCNW#0LMDU(}{7Zj=lXi$PR26&TgD`dpTuJPcuJp5Asowz$_`McerA6ZKVx& z^4H*b-ecPU1GW-8EX~UR!zumJGi`D&mz95ArD z%cL`0k+~c9E!H!b`Oc6sxh+lmp~4urF{n$3=7fJ zHwx@tQ;JEhUg`cDpVkJVkJ>XS8==40K?7Tv{Qhkg!)}5kmK=SWYyd1%NM^?2jPz&* zNF!~QTn;(IVx_kQbX(QNd5Ikc=?~;`aRK>~D&lSpgotQ<-u{x@**T(Z{Zrp1h^sNs z(CnkPvVI$s)G07&C~JC499&}AO#pCAX%#=h3EBbFlXxeQk5(| zf|Z;ZMQ&pEe(%W=BEWrV@!?!(M_8v_kJ)L#01#OLU~Nu~9?F6QpY7!#u6lM$Cs(v; zrC#^Yw#;;W{kr;X2k4bLPWVNWu*CW5YD~$ZW3622*tn&RTY~E~jjPif5hdFkTJ>&$ zUZi9R6dV@vQ@+g*$=)8s4Zje{4kE@78e%!0UyH;2$N+p%!j0A_-aiUDpX(^DG%-WB z5U<_gmxIvO^Q75W@;V4fpbwgyZx1@d#>b~gOrzt$23KbQiXyy!H}Uh+r>tlpvMT}K zQDuI=)h&g_NU}30NV*c5BBOalU)ko{u_kbfd{m5CkngPM#Km86p;Ah3DB+C6$?8^F zKH)tYI&MsxV2Y4niorsc6b7O|aT;-vOKwq9`UbvgQdy@50LT)GAGm^7X`7!d`Ozx> z%r-0Ha$}5-0$}2<1T-zLT6Z%jwNc{Z#%q~%cFMQudmFKwbKJT~ubqOZNV6vv9Yu&z z+3)W7d?;!C6Q`bl%8+YYwkG-``TXjW|XLxs}mW}f)Or3T^Ni_Mw3mqVO@_-Ekxs z^#W8)XX_Bt-BfR;5|#id2#1bKNIVC;3SLlym}V`fN{L3}mky1TEuXnJpfteYoStJ2 z!CRacQkA+uiKnDm0^;U9=6^qLrHjjDBB5vgLzCA__oq8=>c6~aa2<;Y-MZp!qS3N1 z8o|B#joo?ZM{{nRg4}?g=`@4V@2fmygM6>WajF!K*|aoGU_wJ^ zR$r)VJV6~&w(Xv4#`K~i$zW)`o~Mk^ND`>BzdsCzc3t+X##gy37yq&_^F~bAbn|-u zXl|h$n9TZVth#<-mZMzy$4*A>2DO}`?|yA#sIN-%Nn_w=`Ykcbi&Q5Gu3$mQfDT@% zzXVR6(`wlOdl*>$0>w@H`aQsJuYu%yr{|nC@IvV*a9AJg9{cmUpon7MOXBm`4l1m-N!@r_LMtY;!k=hB#c-_@7u@IsiUu z&IYGbq?y`XfZq`r^GJ&!Tg(;SosAPys5| zciEBsyMSiuOMjp|RNKJx2z(Ie4viXutm<`}d$JgQ%|p=+0B? z1~c@GE2v`?EwWEHq#wzB_ldU2=Lc_kd9x{ zq7QUn|kgoHel2X0;iVrm>uH8>;`@$S%j(gp<@dh(8fZmqmC=AC`f ziDmK?(p~JHzY>d@QDB64QiCB)qcX%q4vr#b>|qf5He6rib8Y$cXv9qZ38n&WIzLD$ zGH~02)D0C_3kc~DC29bZdf^@V01Y!p7BC3fg~G&;+CY{)5>5EASJ)h9Lj_W#OZR_A z-xTsTti2xx(~ZJG1z&U#$UBfIaTQ>2Bhw!msuir2+;xSCc5!FJNf#~FECd$l}40utGARTcwjlvEY@V}$`lKz z{_P!RbStzCCaQe6DxDAOy+2>d2RFU}3Q1pMvs6yIOmZLbpT%~f_DB;u+q`a3ZYbb+ zJsZHb65WGdDMafusf<|6?~33Dt94w$^$Vmz!9W0w2=XfW5%7-c!(pSde~!@Dle_FP~}SWyBr@)T`$R)VdVTYJYy#6m%b`3UL;@9 zW!k>~=9b&lWoAAa_o(CYoVYiA_IIwc6cM_wxrw)dJlK z`X#yF76jAGM?TE$8m6}SNTCefgUexG2k*a`4O2({4`fu(PTuw~3$G zlY~fNNC{K#wiO5^w86&9t$GMPuq1#+^lpWABfrDDXOLSzyHgzACCcY`&R)KN7Xrvi z&CO3vs2A(g`H{2oi8x1QEK1tH4Hh!cjdHw%z9A$sO^2->#3KgwVq?6Bt91pkzrA$+ zDQQh=4brD!u+-4dcoBvUS^|YC8_wm0_t~7u^ERE_#4&@u%rw{1-9iynddg$=OzdezyQR?is%5WMSalphV+D6O>NJWaJWnkI02o3VM$(Jue1a)#_pUvNy%fmrV-g&mF?{71l@Vi7@Y_n01PhbuPw8s7&raqFmmj^Fxw1qfEk3V{Ip!hQZ)-s}S?G+S zR8r0P@}*Vs{lUC9DdN{!m~8m8llh;ODjEz`W!}>AQpyyKDwn;JNhRE%bHNzsGgVvN zPEnG&Mzh-5?rUjr{pD`5Os_%6Ui4t1Y%EY!8BSwWTg{V#juke^pZ+bPBfx)1;t};` z2!BQ>F9ByCrZ?)~(b-l-5^q`k+rafSH)5T&^ZitZdX6<4P1fX{Vo8E?R|bkSSOT2P zCdH|GRumu*vRqDTPvh+Oaj;49J;dvSPIDmv%MXw%f<;aWBeAC2b{-StU7E_vB$i21 zUo2@=6NugqcE>ZjeH7tzFOxMrKhoSY6nVtdUu;hvQh48H=x%)hN+KZO)EQ+sEmcV| znZp2_+$c~%GCnA)(&1KiKMxh!0H3n>S9#R%!B%lmvachTfoP8jf(bq0lSEwR9=69k z9I3NQfii@$_D_!yKsU&D5=iqCI1@Y>E*kABDZI}MrJ&4A@>u^dg`3Sz~Z_0QLAOZWO z_SrX=T=w3*{5*%#s&8}6NeDbE+0-(}swbqb-yQpVMzB{0wa@S0_+-4^DTqUOOsL)} zPO`?TulBG}Q7WK&zM3#I5(%(shTObr58)rjP@bw|UHHaxquDYk>K)R6^=sVL7V@`N+TECG^~+4%gi zt|P!7`9DOdn{9pNPO_W~oC+-hive|Xc8L}d0MG_ayvK0ITLL3dA}K?RWXe(B*&lQ1 zS4!jm=q`wVnaf;zQh72b*Jr8?9}(Nk!J#@>qB<)Uoc^{j(_0xv%G?VhGL}4a)}PKx zc4D1Zq9Je`((Nke8$V`>H9^*`TIS=wUd1qWd?Mo`QmFE%eA%Xt$)|G6#m5ZG>-_V1 z*9$tPw7cumCTMsDnPVEGalz?R@0OjEH$_0%(k!zMRet_pdnW34*y)` z7ebm<^t|-J{?E#~vtOh`zC2HqAtaP33)lAL@(l}I1B!DF3HXNzZ{h+E=UjzewX_{} z?zDvn@oSg`t_DEO8xkf^XZ4%5a1qAI?k(K&`-dpj(qVb4H~nt?w>`nZGkN5k(Nsi| z>+h|54#?}u>>oP^ni{*I@xF{)SS13} z<%nUy^XDgmo@#PahU-A8QR1!|gJ&B^(lHY{EZk63bHDky_R4N)lb?pxKQcR}R}-{t zL1ct109($gh9G3vRr0pCC{e7K$67{l-c-^LoCE)(tQc^%W7x4$5=`*|35u(n6)$#A z&9XNOO(Vc*2QM+pi|5X>FSww)+AnS-G}^_=#p@}vt4Tk6lx#G~3&7r3@$=Cgr!?~o zx2|ju%XOa@#UjO3-&FihtNVDp6og?3j}ocjynRX1)OTkHFFM#b>?}TxXUFpJ%K{P0 zVqumaC(K;Kg2J|cprN4?DtQ0V!rps8USD-hPkmhJ77k{>)z5py7VV_xI%Xkiw!mQq zI50+h6jGDv(6Wn?F39g}TIS`oUZNbPyqyg!iFj1jJ`qHb zF@c0wapM%aMFR197{LNOF9I7K<2^LL?H9$H*`6Yvi>&CFcv=fMSB63immyl zz<6los-t-yCvj#-6C|S<%PAR((v#r76na{{ zrm9GR;0n&HvLivk3(#B%SF;ZC=ENA}WEt2*QymBWxj%XC%AdU=-PH^0RJ zranh1Dk?Sr2NFPLMf6lM_$^m@y^G#!`{%#a+YP;+z-Z73ij27WAmWZ1ZAd23L5eP~ zhH6}S#SiM;yN{m0cHY7@c&t`xORj_CFd20Hvn~<$_Jgs!hK2p0%m-J}gJgCb1$(V! zsI?(z6opt&_fKm9P`mi4*R{qpZ?YKl>IcY@L{_6SPRP@A{{kdkTMqE$>F?3=^tj9CW|y zdz@dUEOx{!wJ$HA1tG?)6j{+qAJ}JHiil=fl^(7zjykD+Cz=|)3;)A_&6bwjzIbnG zYrf~~r^UNUP83BD1P6e*gux(H{u~nN-uCl6(^k15?g<7;syjk(T# zoa^d&8m_~BaiwbpH|*z8@FelP^hznc(9~7htSex#_)tv)G_+l64jL>h?3IQ`eQ*4X zTLuwl%PY8ZzUXAEM8X4Hjc)6SG+TQjCnDOf1%2LqZ%IN`Z)ny#ngyg(e`bS45TVvp zz~CT&xf{=rOlp<9MhfY49F0a=r!ESV?xa4iJoD7bT)@i|;S8^nIIXaIv1XI%zxd z=OE}xc$(cIGU~fC9+si2pXk2gaY4>w>}DkMFd}hDT(rw+*C|N!0V8 z1fqq0`%go-){E0!KksOz7RkcP1uqg24U(V%AFSg^8{8)aAfxr;a<=NvG(MX}QrO_a z^ZUG{XS)6@`$s6v)kLD^k4_NAHU)J^kR#g{*#HmD|BDUrGgAj!`_@fxrFo; zs((pBP|s_~{xjb-0UrwfNQX-z6dR0Mi7*^=ms0SU$B)iWuC@$1wY#{z!AMPQ@TWTZhH}e0vP`E1XF&2%iOOxX7sFPLnjV`mNuOMU(05yd=(&&v`VIZKL|HydbUMFMy6(o#_ zaVz});?))uv^T6Gsc&6u>THL+$J&`Q5GrMkAEnp3cMUca*cL+;f$&3-**VTe^0Hw< z{C8pd>!s{WWG@cp7ANOB`p>(7 z%a{Xhh$>&tzx^AQ_onEt-W#Lh)U`L_ryH*k>}5(PB5c=X1#Y+HVSW~BhV0yI%-o8X zF1p3Um8eJ3^J&Kcj%yk7Q=gI~yD{bd5?VJ?!}BR~b0(!IYGaCc6$-^DFI?aN)Flzr zKS~!ZjSBx|SV^-3EP67j0+1;YuG6U`LeUFIAQqH_P?ictn?OqwveksMMgHmGFXSF3j2Jmu^WM9 zt@cbe(w+T^Lq~PYs>vN|wuy-fxutJRjQ4-MBum8mIzpbmeUk?I7L4ap(PvPE!QG776h# zeT%l`k2DukyMrtQ%892~FxyuD9guFr2x^98GKI_FMbkl4U}TNh@6&TGk6>h~O~h31PCuSo zmUUvO)rlIr_2-u&w>F?z+z#!5IW>7#mK{x3LzUVE`>a z=|}-POomAxV|owNy;HIuc77*+17hQHPKL4L|Jqwv$xBe=5hOv+CE#^~dh0!{v)_*Z z`JnRb?XVk6VI)hdG^c2dCJpmN`o5{SbW+p00ok|*dZ4Y9n*Ov;WP%0If%I)VF-k zj7(Yt)xU1ea8%v~byUQw`C5-#?fqZgTAmU%25=Jz0}7=wKQ=yru|jU{x}@KV(*|a&g;DwTwyl3rJUFqx>{kiB4Enn zLEB=_7^S{cPVxJsu>m67VY91hVK(E>M2zX)&cwce4V{34!Kd&s0(vlk2;FA8>*7C1 zoU>8QBA=U^iy*gw(n_$gW9D?+O7yt9t+XYK>N^t7hZcTIn)L1KFD`p@eOg=)zjT*v z-)CT4W@`A0p-BX_Yuy3K;BHDqJw*9_i?_$f{q673UA_EyFoF5L%GdgXI|WxsHtup4 zWSTN1nwb9RUi&(I5&1Bzgz%0g1UAZi9LZNYFBKklA>g$F&^f(GcH6&KsUqV)L~ZIr z000ZUSDUR>-&+82L@dN)8v-?GH#VQ@W~A~Tx@|SiZ}UkJxp?6q;S=Zu{ULg*2U0pO z1t4c31ehXS+Y>nR2V^h$O`wlysJkgmTrv37WlgO?lH7yw(812U+)s6j2EVUXPLhwj z8Xk%iV_qn>CmDLXs6os5@M0eIFfw>BIwFq)o#BUFBk-wxCfUG<1D^3>=ijO}EJehRfZ0^8{*_orkuV;c%d)O?rOFJ5sjGPF|s3BdWkKbiUsFTM*tHN}7diF%-9V)?+{6{(ik#UFUo-Rv&j-orSz2!Cw^>t479@ z50U*CPeVwx)*|Oo{5Qsr*?;m8*Gpikxao$vuTSTmb&$h+UIx{OLZ!a!SX*`^xnm*m zCpJ1!&w=gjxW~U?N^D-^SM7Zk!5a%8SAQA}l5@(y{^0>E@AHq353&&M$m|T(;SNQu zk8NY2`)XsS$*U`py*v49?u+j?$z0co1BnNgR_!A46?J`cD``;1Q z8n^-PA06d4$?G9Es=y>SFOPdk>lw_Lg7~;hKg7Tbbff{5t+5CwD?c@PI3QtDb+$eG z?*HZ+RHOBd`d*i0>HShH`^DJovpMtbC2;+HETj|J@Mb1JHb7U)?gSTy)~$p1iDdzH z6T!kag_J*AE-f##pR#!Le(Fi9N2T%un^;)=l%U9l)Ud;cO8!0HJEK0K&oxj?;ClQp zMgy{@Zgni@m5&o&Y}#)0o2f;QMm!$lLPLGhlX{8~2z@0_kBF)IFk3Yn+@o ztXJ?4e^eU2{p4WezyLQZE>7SI5W70Tnb%vZ4 zyr<0&DaT+PA^ILWLws!zW=-!eP95(b=*!ybx(oQWmVA6pCp5zsy4L&<6Y?5Me0_vl zaHzpup>ecQWxT~&eV%PQSA{p6`dT7LT5ewvPNd;Lu=;24=DPj(nTf5Dchjx;lNv$I z&6&hiYI+9&&bd*Uo-;%-@6{|8(8Z6S)@B~w4FUTfw@y@Q8IrKxsDh3TzZEQu_?OSC z!CMXHjPf9ve5rY~#V zfNOB!q;7x9!j^W52e91{vHNH7vHu@o-vN(x+rH1;O{j#(if$q+tCZ|p_TGCHDI>D8 z!mVwSRc7`G6(YMtqG2m#lRdMd@jow~=Xrnc`~H9b|L4=^`BabY`#Y}dyw3ADkMlUH zZn_r@%{UZOH>^e*t&IQFT3zxPFe@`=i`Fj-tF+=Sj>ad_D6gl*2&I^{XgY%A)d~!W zv_gYW&Wn=atNyd#epoo!Me zVp~XMx0hV@na)nQ2vUlvUam>x81AYpW`#A*mGFKGkGEg6b#q)8uXx_bW7SMcJG%F3 zOQn?ZuGM%{Ru%mLTBfYxeEs|wL?`fDqD}k0B&Ot_x6Gi2g+>ifh*v@n(_{>B`-xNe zklFuSmB0N(85aQAkgY;`p1OTWZj%DAe`IPYLnMM@h&nk? zjsf1wQ>W{>+_I6Zw@3i#1RsO>jgYV~5vQN8TLQPHxgeihqM1=hU}6Xnu&5sqsLG9IDKcCSxlGtl~z#d*a91l|Dy+nAFu zaLYj~*?unT72s4PgRV=5XP{+OvpE`i+|MO~sZ)Je7RSy8GVi$4j=i*5cV1qTP{@L~ z(SQ0JOjnj4@vVA;`2>v!T{NLjX0S7Ccu;yXeb{}Ym9NCEDI<*F3~{)d*K5ojLTw=S zu_g07%;Oi*M0)JkJnX&kFgo}gD+eO_qc9Ld$n5-rHF(KyhU0Gtd;7{l-h!!@bYSY{Sk zq8IJj_%=KJv))VTxOq&?k3XAZ2a9kwkDcF49EW3U{OKFk`#_p$Zf61}5IR+n2itqQ zBR08me}HEcv0f+4Btx(U%;+Q(YV$duDEy8xyV3s59U`~ZG1(Om9w@H~tI$6k4^RD+ zjE(YtEa9e{(fmXV7m^%KmHRQ}tBI&+$>_-d4SN!wy?MQQeDA zTHo1-paTBS1!`KAXJ!$F4J2g~jssGeOxL3^0ycRaLZ(6`pxfarg;IVF7L*r7)Q)`! zbE#lD?O^x)xvviO!jtoOyg?rj75$QV-A;{6^PG!2>OD*xDgIR%BThX2_!&E5qGV`V z+@Zk-oRVx=Io`4}-QdV}qvhk6zF6SznoDJ0p4!||!nSaIE;199Egptx^ybV6y)#<{ z#rsKNI+I@Vi23s?jG4IPm7FK8sd@V&71@A*hIha*oDT1BtlJ_eRRdpDL;i;MeF*gS zePp1eN!~I^L)skdV_xLSzrkH>LI3&C^vN*iFMfK@=c;3adamg#E(*)r_Opka%K9&h%T0AJ#1t%FBJMGk6mOehB8@`^fg{IncjaucC~- zot2gT!TtCd;={5l>PJYW7}nplz??59Vl*-KJn4G5or|dRrbhzr&w`~090pBkrucQ3 zSg~+Pl{%X7w-!Kn*sE}(3_VBG?7!8=ZJPdSs#fFpoz~lXnPbGjydg0ZVhM0gzq|Mj7G6(#szm*a-Jd3Z-&fBu5rwZSI#Y zVV0&cm%H}!T%I+4yLgY8&3jHvXL#UV()m-t%ulsses!bT99N&qIL3ASpl04rm7Ub- zHAhga;H8?o%rKvsEv54ADM{Chs6mp0q3_5j;z%0hIv+ofUnt=2oRE!X6TIvHC%UEo zsKQ}&svmP2(e%~#z7F9TIriPdl}S;dBE0ng`+fcSPT6A$;;Yp8y@pv2o@L7XiD=1F zVXx0`)c9A?Z+?f5F`UJ?I8&ZWxxD4YX z6-meQnZT{rV{vfcLC{%8HEeJ3X^s~sT{+xDM{l>=KeKM4xR=t_Nx!FX=uh1iMfvqj z{!@HQ1xl$VS;jlIn0RYyZm^0lR4;_R5bR-)iew0azb1f!&r;bJ>MxIf$3MEuE-8CM zqfE#*uH=xIL{hg`B;|!wGRHd!QR;3yq}W8tKQ5 zpDzZ)&4DuxZ;Dj=PgtHThM1E|LZ`C+K3hH@-|wgxK(!5q0YKh3I8?9Z8r0UAoEd0d z8Oc_vi*~aSqn0oy#hZwHzH56!dKTS*LU@yw&D8K_{dGe-odn2G1TfqMx9p0*301w& zIRfKk-hV!X}%-H;1|ck z!&=N7SU9}7A-Wul>2P6qq>2MtTu$Q`p*O(zxHF@FNW}TnqnPGH#yz5}%rmn<*1{-V zx>bMul8R0wT(&a?%3RuUcE!xsoI#718ScGTt@KaxD^NU0suWie;!Jxh7knQ#SZD~; zUCxB3p1;l*omx-f`vNF>oEf!_Yyti(L3(yduzgF zE7?T=>YWhTq-hG8tQBjhT(RjCYsuA$@a3m>~s z9%5kd)KY)(M(Rgffmip!9@0pi$BTNmt_oIq&Y5mQ@1`ZQ_^?F1T}QA$CU^7QBbh>= zc`X}4`ElVqz3=)Vc~r}0(BF`A6(9gn;@t3si9%lXn8H9HF2#tQx?gp6BjweD`{3@% zZCO)^e6fQ=D(kRAdO)%Jo=vm9jZQri&>6kbU-ov=`~nBRuKa-gS$$spyz~K~4H%i@ zB8Yp=w15Kbh~6D!@B)Q>Oa#%nel#e^e{?4B$ul2nbG5J|`K>8>3sfypnptj)M%AS{ zMajB@N!1>WQ_=|)+yyVK!p}H-E{$mS_s+^-B(ahEBpLRo>H=+Z#}SioQ*$mtJ3FLX zcD0sAoDym9bv3a4Rp3M?iKDhr1IFJ3%%Jy%^t~Q@^Jk}o7be?(RN5Tnj|dy~Ug>Xx zF8vAcpKVPLOk-#y?{~+UGY^d+pdU0!_&%H+c^hfX1d^#?r628?0ng?FPA=Vvk7+VT zFK;c;Zb4#Q9(>HzOWb3Rv>!<0MS&ES>hmj~v!E7>5lE?0L-j5;86n>!2Uw@Q?;a9( zablim19g)7$nFL&>60x3g{QCPw`&o8SqqojI&#l2H^hwoxvl;kB{Hd3lc)FOpNv?L zIpNk7D0Hj(*nP((&4J3sp0GO?4eHKjA9MCA8?<~S6cVfs9b+$8nWWo%ub0Jc=b&T*GyYA@p|d(PWR@5*cR7-;U=pke^O-)E(}k=LKwYoR zpO8^d!rRyl^Pi{XdLYqe2PH@<+L++nKS&8(C`Q*Dd!E}Ftj8{$u!Ihyyn=$tQ|l%X zO%RMZmh%O>$|F0& z{(~n1BwwijvUEIGE3G%@<~}dPK*Jp&$L;L|nj(jlv}fEoHi8fv(Xl}!#lrZ#Mk61} zALO?dcS_YF8-92{8Q_ivKn~0G@nvh0(`^BgO*W7Pq}^{d67BhDtJGZDuPcj01lsHJQTtf_fEq0q%@Ma zIhFbTPusv{UfWwI4_opwJ_^fh6*9#g+$Z>g$CaN7g&VBF`VJ_JU?}d0{ksh>00U|KC6TIFiMF!I0FS_}UmhirJ{2BR1>ZxIpP^i-x6 z3yrcWW^g5xRl1mht!af};F>a4A!hFI)msUj+0;D66oS*Kh%{saq@il1hTqAmaK7Z$ ztt0~{Xa^8Y!Qgi16_YRsTf~3hfvkPJ%LKQEehu4UU>d1hB#>4XWo-{$D!oj6*g&OWFL7a7HmH+!ZBF0dx^|16P&SjBe@?~d)QA1I zRck-RSO$@|xzmT6t{0_Aa|J(luz4q~6U{pEy@juUSwSaSI;Fhrb7IO${SzF-YU7%) zWb9wB02_e^LeNDR<egt3sf1$7&z+z*nUO~OO=!~xV%x3SwVuy=pX ziEaOS^|_i19=@-S(W#SSKHr{K`wa@g(JveEbB-BmDqxIB<*Y)VS`+Xs(CHnxJvr9G25>!G zRlU=ZCf!>-i#q&Nw-Q{W#|0G3%36Q%W@(%7h0to>)&b&bSVpTOZEEJN@1ZynBF-A< zbu(F(a9!RR(T2tG{7@cPoggPWlr^MXKeoZ>k+|nQ*KrVc?!r=G{=mpA*ibtCWc}Xn zSfX-|hI4l=qCtju{JW&bR8(No7p7{j{8oO1iF9E-BHsnK@|8wETI$p=@SbkysJz{= zXGU!Jy;)ARXwhBi4OWkGpTMevYS|}jmnao9b#8Xdj;!9&f6AS+<>^jQewqm{H%~X_ z{r4jzCks0wrdw=T%L_x|X=6wY^NV?`0vu)Q`ibwm*d z(^80;fYce+yTxD%TNhm5eZXBV+fu4gFsQN8r3#+1iWUx787Dz|(PunbNkkB|B!B7& zSk`bO%FbR^Z#+2E3*OpSxXFev!+FF#dvxnl1cUH7$VU$%DNFD(wV3HE5d<-_Z>NLj zU#E18K*E6BUJ;82g|2Zhjs|f+0m0hUm{=gfF;dmMTX{`Rm*gl5IuVV$OCf!bb?;~h z0KpMS2zgnwKeJVv{!&o_S)chNhy-b2TDnZC@_>+1Ni#u_)E6Sab7QLbS8>$V7;%B} z(d!x)XIUXaAG>a9%b>s@wLimHv9ebu>K=58V}9jwc;9Y}4nkx2<3oXe;^3&gLl*^c z?d^0|@zo3%l~;i_ZKFc~dCEK3?-MYC8|C(P@#`B^+*KIRyrA`F?iMyUjHo6R22!{HfjK<>DJu$JN#zZ>r7aAr zu;$*_*n*a3Mz-{F-f&Pjtlb#Ee;%aruqsb&h~*rlIM#%m=Jm9svK4~89~y#QF3EHAJpdOf-+N(fD`xZN(%GiBhc0|tZ1T3>xGs|SAJE?`!Cs?T51dXI_h z<(gP=7u$%JAQKBq(RIOtfF$-;TsZ(XWVI*|&TNfUsz zmu`&D?U0rKYDP5(W2v0R-*1wWRr)BdQnN=xW;@Ox(0mX4Gc93w*Is=8;PkW=AZ`;q zo8-lyFBJoGHm$&fH|FlxR2=hdAiLO#(=AFaWYog!;eOSxbIWprX`m=9lU{(ae9o-i zL*e31W%N)ivrVr||E42SfKhU9S9*8%?YbvOL@KpXsx&YWz(~!`r`DfQW{p*5b9m1* zh=!-Po`h0+C%xYN?_;X7(91zMdJd%z6cSmG5@Qyna>?0?sh&H<({+-bH83o(%eSn*%F|Bv+-!9Js0}HRV z&qJ*$qE5bY2^#-pUq5c0;o=7?G+TZ_nc|-7Z;{9>qOS|aJsF%VI-8NJa%}O0DQGK7 z&3`*XqkIzMqko30tg6SFa%9QXmZ26Hqk#IyEJ$(C(6Q)!EdKMsg6fA~DKu?vUWT@M zi(tV7LsON5$tlM2%7sX{+}~ub^*{?gF$QRQuRxV*{E4?m>%Lqpk|rrHxcX&ZON4R* zF?NZi9L>{;(o)C{SBC&;gvuKOl2afH{+!Is`7ocMIq(czkYI zf{P;L4+!*Keb~o-gvxrK15*vSN_Uo6)qko!vR2=-LAz>CHPfDo zt648Q4y`PL1+C8T0dWxKLbC(wQQ+X+YD!IM&UMz}ah;O4;MnRlb!fQTwrDFV8ae8| zkviJVD(=!f!AYT|GhpNK=R!1dah1HYZ4#o2%9?q;5qhZ6nN!E<{)T%WKPRGajNwK| zCCJksUWXKLL4V(w^#fXwXPo*`JqZWLe&GeTZgEMAT@tch0ybHhh@=JiL%Gg?HEsf^ z@F2R}>$g8@C0~sw(kSByNNIZ5em>vrWbsjLeujgp@4pSJ4ZC=sB|jS+)HACLkPHQN z1hZXiC3cDRbB#&U+(X*BT=n1#(-vy5aLh86HL9*C_S;;dkaFR0j_6P>pU+u2UT#J) zSHX?oY-7(6BfO zM7KaWMO(~$R***70|V+6FN|QoNeC#r3BXcTgTyEd5gSp+rx!4f+I!T$9gx3I6A-+! zteZj}7Q0HIzVxUPQM3_vfxTi(zJwjEYzA1|Vm1ZRr2L)>#z|}=Q4oOkYre}EDL0T~ zb$JStQmen$Z7ncb>AifqP5HttY=$I}O7m!bjWYG6qgFfx`_pMZVq^RU-xYz0A4cee zykddY6LQ(RH4k{Fj#p8L#evjx;s+KG2H}51EHZ9sO?mb%dAbXM@#Tgd^o8ECxUyl)hfIHJT|?{kDRx2mI&=P|}l8 zlqAyejaXdT&SE7$8y6JkcoQn6w~%Wiu~N;ZCZGF3MQErd%Vz}U`QJL$!^mM2Km)I5 z0~P>K3o6;Bw@|WTw?YK5vQ@6FGpM0!O{09@H0!bN`prwUU@z(3&Z1hc^yA^Y?tHs& zX1uaIv2Rc_$LR0K9e(U*_47c?kN1_=bxed6&%*Qx{JZHL*#lw+)Ki6KoBq zF$dD)qjVl%YiL>k?HCrN^4WY7#&`^1lIqORMc%CIjNmC`I5+u$vKVBDF`EI;*$o$| zi&ix(Xvi*O?7Qy93XV85`&fp9A&97R{fX?5yidL%N{~wXzJ3+%MHMviAq00Y=RU~@ z4&(yv0}Y9cLJlV)1T6yHT3=7p?!DjPvH*^An98@Mye$?AsK+#H@)gWIf57O*XkLc3 z(0)pI_~E4=RhXAds$f2Bnn&Un(@POxeJRuc1s1QWXW&SnX^5 zv@}a{4Ko|1J$~{sxs%Q`E|LU~ne{BFPO7UrZC^0nZB@N+?g9DPSL3(#H`^PpeR~XC z9U;wQ9dB+*ieDS>Ou(sJ2bBo>pX#edL0ldbK$3aJF7#@x*K1G#`koz&32MsX*+y@s!-$R3*u; z452|ierEx@?=9Y&m4>frKGo>V{rMrXGl>xu1Bv)FF1)GP}A=R$V zaz`U8WP;8_%%{N42Z)?P1vLvQx&FnxxtBq5iG)@7x4`Rn>$`phLTcxMGnqpX3N`OgBvvlE7}>h;MKRh!?fMwB_SGI9K5RU15WcOJr-^^=%Qk zFyUw!$&akyIw9sc6AK~meZ2eA`%A~quU&fwWUh`IghS17Xu!Fer}?q~)U3K-^56qA z8W-U)!d%lx^NsIpgx5HvDKN90O(y!=g6@IAY} z?UhE_Ih;hT1dc#d5m;jq=_6J>xCe(;W>ciE_pjO^O=uwg0JZqYYw#~p3DNtWd_f+~ zi^pHGF&NUFWXssEr9B=gha{V@sc_Oc6>bsIh(A)j!)m{#L)s0%hg1d)jhCARH{T{| zlk`1Ke|EA!V~3NBma9HFVi9^!Je{CZIuR7T|*jQYv7el7d89->2XBfugh zQ-F|gd$jN{yG;Njp6WwnKy%ik+EPT9h^|tbGbjq2mfe$B1AtMgF{=yKjWGI&YX>zH zB!rq@Twqwl3*rpt6n2K~a0DtGRWI9;QL%Y6C}pZ4E*A(Wu5P)d6McjREJ9@Bpi8C- zKqq*A^11=nj=Z49CuZ}=SbmzzAPhN(p(JzyxVLL!?_naK4Jbjoqy9S(5LSW!)f#eG zQ$P3}II@trS0(o5?l2QMVu{>NgE*WCXfe!`+A$wF1V_Q^kO6X%4`XN_13~^a{u2}a z4}k5ACokRwAY4T)Z!vrmDxR{}??CUpTOVXq1S;8Nw~-Pmn0(XRyv)og{e~g(TBmpj z!^PHE6(mja0_PWPPyu+G0E~ZdK6a1jp}tlGs#%o8&um z4n>%@(4Ew$G(%c7$bx}FGGh4&0?j`O#OcwGgJpWwmDjyF0w+LaPE#$&^$)gTGx zy6(DXC!t$k94fg^y4*mlDcfwFyq;I0Nf+IdtBR3TB|2CWMSp;LPs`ZdAuMfx-B4ZaC8`6R7u=0y6^Z(e?hXOxGh1Sp z&If{=o-R;(=STLxih-=^ake>wh+PzJ=H5AsA=&UX%BDBNdFN>vdecA+8IA9`oTaC!o0_yWPlJtKy1T7I!m{=Z75tZ|gc;Wu!h7n}DoI*DPKs5#_;Jq(> z4hlh($6w`x2oQE30Zj|TIaq$jvRN3$CFRhZQzbX@WOJqOQ)xIx{Iz9w&?Corld2Mw zfKlvTd3WmL>*Zd#nH*?S*&lRJCVZ@wge%cT6510_et8-*#(jVxBp3cLXRS_4^untwz`7@!lz{`s{S2tYES_ILVVH?h7O2k|)T`ep6Dmtm|@;t_pM>mre& znj>~tCwx}(6lS{-iqOl7apLebhskal^sYh#K;nMtTsLH(?7Gbh84hdo^p`b^igw6H z;Z*TIFkx2v%@N>%*l*$3l1vwx%xGd6qLDN8F1|%)6K+zs%QbJZYB9XQA3cznLud06 zW|=0yFNbpV$+?Wc@nhX2tQ7twvm)}}U){L83?3%4gA9%b`sgd4vQ-kw*fR-a z6cybA%=Tx2X{d4k0f?2LbEr(3E=B1)%-82|g*$El!Fu^ZxV^Rh{!19&vV-T|XJ%y3 zT+dU^^%#9k-ZiOU5d*c6xc4tkZmNAAen+O~&mCp#rW*24VK*_nM$yJ`SzKo*H?u z3sH9#eoC?ysA6!@4oG+LmFedsWg_FF#58^2_>BLy|9V}nxu#Iy&*eKfNijg{bRoXm z17MZRt{XqBE2cumaclX|q41RNT|?vGrSSe^s*Lj2#rycm>({!7X1-6X*B%nRvXx*p zH*;qz8XDK#hMw)qVv38Q=(WT7G|V2v%)l2T>El*(HZ{&BZ`K?GDmQVUSgwD@`75_j zDs+r2c?}9UxG8`pRf>Hq?ecW1_LA3;?tMow{#qt}{M0=+tY2^^+J#+`69kE%XaGX> zU^QGU(sPiA0Zc!_|FhUM?iiIJYr5g5QN_bOLnW5AGpEaxMg3>2441{4za&O|BqxcN zd<%WI45@iUeaRhQt3JS*=9{e|^d1~^T0Y#`!$oX`U2-8A;vZRu$33b2_0G%!Fb0;l zn5q0Um)4&!*;7?Vy8JkL5DT5k5{Ou z3?(4S&zRjT4KsmN`=v!hd#n)k%sp@C|cwX_96*Bs4l z@IRJVFTG4b6(>m}^zGOFidpx8rF=mt%u=cF@=@DuMs4ebUMU|Bxyy6zvsYO&CnTlc zyk1E71E&Sb$@UT;;;TTW^ox>|{xPyJ`b!8lCe#9sGZ1QC}*c^Hvjg5Heo6Ra85qw^6&hj5zsNX;RV78rvEKXH(W z5-n0wn53}-*JnhSnmi2|1HUaW&_CRI4eSCU^0WO!{V)V@U>>N$qd3LEn}}WZrBFZL z?Q$SGZH0{B#6Y=L1d-d^h~i{GhzA-wa&u$K&b~Vjzx(m?I~nY%22OogY{JZPwIlNPcF#4 zKO5qUYo_&&*z=lv=YGWZa<906=wAy|*CGdT=JGQuz>WrdJvSS?F|5^%kEGeGN+ZQk zlrd{!$Zi}3+H-Hz5KXEf`CGw5$))3YaKGms5Y=?7B{y+@i>6hOJon(}8`cCo2tHvC zq(*pavGo@W{K4fJ;lkdB+_&8NB zYr2p=G#kDy@}cJ71Hf<&uLLX&%kr=8A=R;Z`)$lUY>1%!w*=VkLP7t zk*R+!=3F$gcFqPV#u%Bv09j&)8+;T6*8nLqLpffE9z{!{jy>a#Ps^y!*=joS7P`F3 zwZ3bJy+JI-C9&g^6o`fAFsH@Y93WZq!gJOz%<1Rus0?Ii&@MDD*{k$-yO4uw6pK8& zV6n!QJN7jvzJ*ME0x9=ETHiKU>t{3PJ}Lua=7+OrnPdWLa9_K*0UXUm*0dlDW4nt7 z(m&#X+RraqBK26Az{nIPdQ}6napT2 zn-5ddb#UkDT*<@XaDV*o&#kRj@2mJwH|aCH@WEg2g9I=z0{p%u_gVV!&p&GufN>h1 z1I-gYm&%I!?Q>If%ZQ3f01*(nJ}EJz68NLdYG$8s3K22pJv$Y7yDsUOevsNuvXyxp z3x9`wsENmvO`j;bhyFlD#cf0I{<*wYW>Z!N(^3C5&dAb4{|f63=sMj;GHMwGhL7!a z_zuYj5fRu)KAas3%U}ndipgqueI6YJJ0AY}5_J@j(_uqCPWS_SWUB^_^yOXR$Pj)w z|J|QHdJ)Q(z3}Jfq)Zpg1}97Gp<~CVJMEjRnk}9NVTLO%TsG&cnVl=y4loF%zdU=2 zoC=3eUn2>_3~jw>V1+-xH+UU;0$7c?)C9!p_5;o+xh63f$@{+nOoNJ^Fj;jy(vO z_83--+-Asolq6VD$)1l6-B9Pns?tRf z@f)a1?mjy`RPSWTQHpWY0w28xt0_L6RR(V<8;a^2&II#k{WWgBUHN+U6$aVOlW$L& zYQ*V+KCiiIr7>KQ$b$x8^(CxBh`e&X8VD*`l>q=(pE$sHGVAU03kq1W?!$L`d)~16 zU3myT?d1<#|Il^?u9v29ZtU%`tFf0)FOyhPG`w_X=VEYCS_Hf07tns`lW_T{AvzG7 z>bLM>72um3fN#DXdK7J1RNiYEF0Y?v;o!fP{bi&2bf5XD0XQENj51hv14Q!YDsW3aVqcWgtuH7Ue1ay!ds=I~ttd+3X_BQgR0TN8qTCL5~ioZ5GSuy!om$EneBAjVjc znFsusn1*KMw)MF^CB=1HGppZ{uAZTaUNq@AYAzi4{A$I3mp%BX{%E#K_Zr&jtoW$oKeMXg;C)Q{PNnUx{+4?Uus0HrKd$XYJ+lc3WGCI*Q;q%=m+fLj!;Gqey+V1b`v`w&xA8ih}#~I%uXFy*_ z3GEXtnE!UEn#u@$R=kJex;HR|Yzy3F|jTFyO^%w>ic>`B6u=@bw7R=l5e}OoSTpxZ(5L7c}_cj`PRhBsyo!gCeKdIh=73MmG0ql!Gcg@qEA-7kM%rgc6a*F=__c!Y$1t#5FK;y-{jJSE0})%}&~f#an2cpVMk`Hj z*epd2$08+Tz#%-6mY=>boU^Zv22cs6m6txufUWkco)F=e-WZ zrt7&xL^~_8{YgVJ^VP2|`0y7=SDvYa^Gy6Y!+Iy-=arvF$d0}J*qkCyWo%9W+H{X< zK(G1bum=BDp4{%_IVoaHC>zy{?JL#u&&y-d42&4B--FS)p%U@@Im-mMA#f611gF0z z&ra!%C>)9+vJeqf+gYT9XVjlOx->$I9lzcUnBcSG5x2ylZCaMx0CTai#Z@x}8E3q| zJ-D0$r5G(8-(4a?Gf9SD0wgo1nHY{G$$)8ic=N>R^hE06eV%{TE9z6EZ1ubsxd^wh z9C+qV;mF+utPJF3K~uJ^a^A_L^^8YY8rXbvJ8>wZf@wfE*|XO~;mtk{e0l%@Mmlou zu=?ix4q|c_s9o)3(rcY`l2oC!AQmyqn8=Nv3FmoWWdO^t;CA26D-FW)6Lcje1W(uX zl4_uRU`-((7%$9VvRWt#Ete*9vw*{bo7;09Rx!Uf0YLjl{gdtR);M3*GK`i zo~n5`*-kwpWO~7YN*nnGp?A{}5(_QG^ArA>`F_(F&)hCGt4PkBiz6Z=Q-D90P}AN9 z>o!%sBK<3QXW`vKJcpig8q66z$l!}8K+{dry=GT6AWRrlP3I(a!Ur0AdYRN(I=`6c z1dV(HkCd@3s}B>`>bEW8r;;H>I(=LDk_C!wa8&7eSr(Ok5bycsCzqas&)-nYZtnYP zX*pN|+crP8SYk!@>Y5!ZF+V=(O^+!$HiPiaSg%2!$&6W=Oz*4ZJ%&4PJ_xTzrk-?$ ze;%R|TEcx`RXbM(`qjBpp(W;RP}*AQ_JDUqOU&qZ+MnpSK<8PHdVpck7$7uyWvZcX z#^^8y$X^G=Ksa;Y&g!qxU8pVKpE^K{S)))6>Q%EL-93S*Fv|p=I0Hi-iZO|yADX6a zZ#hFl=uqmALvvS&BUI&F)3E`WA8)lDI+V^kOAT!gZgkS9ozUqHP}*0fyb$O3qa!jP z_V5YgcDuDqg?SQs^LD%Bpq0bm5AU}Huhg9ORS@x>XXAc4FM}a-fgoLG$4l4^KawPH zuqI1MSFLuciIP2ef9A`@Um~X&E*^(VduV(f=+K`t=bMVxQEZ-&y!#&5z}kxq>?DoK zy^yO&4B}Iz0r+d5Z4*olBB{@2D)ekFkLhu!(V@+rg>;XS00Y%oJ#K?b7ajD@oZ74* zX~s)~(1vP9g{1{2X@oDxjp&x0C#lJ@aZsf!-oEL$Hm`$XuBD!i%qa zr9&EfA$K`?f6PBbr;rX4PA*R)Vj8TNAluRE3tKoJU?%&`rIEJ{O5xKFw9YSMRjZ!~ z4n9Ajv2&7>jpK2qBy?N1W)W}yGG#&DHNIskgoGv@ysuFtRwE z;yrrrbC&Yx+Tu|C%-pl()TLmzISu3WZKn zC0IS4U!CH1JpC|__zz-6O@3x*kzN*nCP<`caDNvvL=&i*Gss!)- z(u!lnj!zz*Yj-Ftia$W~35t|g95OpeZ#e9w=N)@&Ds}^)8LcriCQ z9`O3Y58VhKl>a)1Ry(G_9yms@ySMQ%@b{_NE;k@}$DNLhe+2wx|B%^)jyOJ(XTaph=;2=t=A4Lm8I)J?Y@2~-tu?2X{_>{Q{h6}=kx zbL{9BSAK`ZEf{Z#N5I1sMJV<3U<}i7?}Kx=y%^xLw8qGqCXNrEFF2Qt|0h zcItz&=YaTYn`~4u^k2NM!JDugjQ68Y1TTk&!ZwQWo7@{ZjbFx|hK9E-{g#X+&AE93X| zPE473;HmDUoh1{Cqq_GI@|4;S5Jn(Cnu1t;WNUEehtZXE!I5xxGX&`bi501X_(%+Txk4I$KE~(M_i$=oU+K zs7jI6>ygnO!x5W?#W0}Fh0|`vr1`I?sFXwUkrlV^II02_4&VJPrN#pv_{{k!{7{}+ zdiQL^_J=B3jY2ip%mQ>>f1S>%NWj#vPT-qD{&Le}z5VD8PSoM^`zCeA=mQTH5r_zG z^xSJzdJg_Cw&UG@apK#4OchG(JYeo~=W|oMc-d#_*}#KQ6P}zWq~|*ubOMXQNX(h% zjg%6xw1SDS3_|&|TRj~h)3u*!e-v7+(w1-!DwPLE?0PtMo@pqr3&fl(sH$J&HQ9KK z?4-!Xvgj7upJB|L$_@JMGQ&gqr(jY#&JdIgGptD_ori-D0)`G z51C$5a!Mg0Jfk&sZKBf)TNng@k91ZBxV*GhoqX63RM{G;9@%{gHUy{@`J|R#AF_wk zw=laMNOh~3M}Kh-fCw5-Og07ju`&w+@gCBPec!=#prTjP3v5AH0yanNL7zPz@Z|Du zN$9=BQ+;x(80Z8!)lTd!}uIzWg!)+Tyu(~744@bO@vC7L;k{`wY4gMBpA|5+I3ee+l^!i@ce+iw zV1hcUOH+a$2yQ&Tes9!kfheJ8^8@AdoFES$4eG_64DDZs4LmMb)Qxs2h9fQkGfATuC@ZO$-Z#~&Fqw!JFj~8-|-(4vS|)0gQLcFPb3i5 z`DfLx!>iVS!^f{}4$nN)3a$Yrovey9`fS=^@W_N!t^e!lLfKp(m&pN}CGi25#sl`i zD7FX6gFOV}Y2fK=RxeaJ!lSycp{!wu+pD|1K+mssZi{H zTo$_Vb_@pCAX?(XL3=s@D4!YV2e-gZMP?`c#h-48Pr)OJ-r{|#lpksy)3FFXsX?E! zy;%sg+dt23=X2g+pnAWmW9AJ=MihKGKyS4>wA{cdEFBm1wcW%o48Z7`}^iHiZVO`{U11ej_NP6iVT5+yx)C5I0$k@@et@nttS{A;CY zOJg8J3FJSUkf!lhF%BlDMK{h7EA*dNjL*j)Yyt?Zt~#NfpxJ2wwE!U^T ze;q>qdSj}GE8%tNfszoD#R4=nG~4(q%+aYu#jSxqnx5@*51k7C_Jm_OP?!<{;$Ru% z|5u%HI3hb0M z#x(igKN(hGA|8r>P6#o{gWhA|D0qqZtc;&{Pyt9`4j2QSdG2lUeg`(xQDTV$GI5W? z+5$uz@sXQ{Isqyh(+631r&Lia6Aj>{%5Nn9>lq!Q04_7`*W6_p$5*GnIU2wKz9%Rl z=$nFWRZ$4Ym-C?<8Csnx(+?es^G^?9F>B;gd&;C4yZ$f1MSU1f9TimcLfTOv;fi)9 zz>MYj+3(oTPw`ZDH@F;ci$l8Dk{z6%f;Wjs})<{pX@8BPT#YT{HD75$3HQ zLPq*uXx;x@gZ(!fAUcH%Mxx^Y_Tcj=Z^8sW+~43EtNH)FzjMRLAH-hf|9^i^Mnm}G z%f?`Ul$*!Wm*B|0DF*NDnH01vZ zOejXW(N-?K+SiqzoB9w&pfVkLj-I@z%yjCKdjF*)rvik z4melOcLKe~LXo|o>MRDP#nn*U6`xFYci@zXjb2;M@^sA1>$RAQl(Uo z{jf42Ha8$lH|1#qvDRiLMdFeFSqfWNKp1WHjd!nsKc5hpVT(wQ2RE9yhq zS5z=^`rlr6Y;6PMJZ%ikZb>IgR&ePyR<} z<0gZv&Ru$zmj;Wc;9A*Ch9Qo71CyPq2aOr>C*4&EOle$vo;(`(eeIn!^8c0|;Uh?T zjcvlafoz%K$Z+f$AB6BvXazsCaJ0-{E;nqC;EG+@?uL^FVZmPJX4Qi+@b38Yoy`6% zQnlxh04ebyI-@f-meF$Vc#3J$LzCI|P(1P%tU%5<4ZA^*_e`X0_D^Y4e)Ghn|3_{0 zciv@t%ms@1Y#0daBQXy}Wq30=P6!UCow9(!b@U!rj@>QuV%s+?*VKo8eiLOb z3gC!?K3LirCaxg7EYwZ75w5>qKE99~ahj(A2s;y{T*yMqd>nc?cqrhz5V8sT($dqd zybq=^TmZl>EYSFV8-E=G2Erdcr!EL0a4f3`h6AHr9xe22x$xYpAW zL1gD=myyYbH>;%7&!d5>ns%cx)yQ+Rga$3%jbaH4G4Pw(X> zdb5j1uiS*!x<-zUNh#RU(}3x#qnyqZI+c2>S`3j>&8t9k&h|F9WYd0(Uo}EfzBxdf zsP1ntiEi0`c`zVK^DM}ZL^dS&0jpFE)kU3<7{n_^vZnkRROobvh@c|+)kV%12##GK zE!&o&@=J|&O5eK1w{OeTe<`cR)SX1`>gG8TdfT6{ClwE_Iz(-Rb{gj2>J!}_= zfu4Yt5{svP(fH+_D*3iiyNNtVU{+yCYFu>)|L1uh*lnZ1S?`1!tuJNQ*@B)^eaBhi zou5eO--mk22vJa&A4TEW8Bmg)`c%6H4$Eaj_J7W^hxlPwdVIe8sQCmIVh(?m%t3gw zLwBY5tRUiKTq}&NzpqfDk0YFd8$zG;Afa; z;O5Ak=|r0d6_9)O*1OUw-l_~MJ&f{s!Qbz(KN!z*?5p#Wm!$Tv_nj_O%^qtP0M*V^t!k1|BcpiZ z_s<_60|$o-?i^r_A6;IA1C(@ZMe;jzJh-cTVKSulC(yP*Jzv51$zrFPhU!3eCtEp)_Yd6^ zknRvP*>Qxrgo;}c-Y)~E@IMdj{c)ZGO_$8->2^E1&yNFKXuZ|w?6^Jfb^FjB z#Q|tMD>&uA`sJxQpbhZXl0wp~bw<;Fmi+LccBF)35oa@|$^&N2hE}?jJ4`X0_>?{W zeBD34DH0F@P84eHh*lllvzJmGq|Pq=H_``D=^=jg&kuO8W&P_;2*^U;!i+Jp@H9Xb zN3BF@uc@Q$4HbUq6T%dxEPxnTyZ;Gdn9Ac~QiaJ7`=V6o6Y$Lvtj}lNpcLoUcyKaX zVg04z?lvSm=S0hAb=K;SID&@qwbG>HB>K>lz}w?VStwq@Tv?u56+JctXe9iKDm!2u zdItFW6g5zm@sNsdjvNe3L<_&wGZ39lX!(cqvOtU9Y{EnEuP<7mLjG^)Am{?(MT|78 zrB+q&%oCJaZI}Dppmgo4s}lO@e}frOnt1$BA~fFmp_SeV<*wPHc&6u+^!D8SRR5K? z=$P7#yephSU_e#|08cjPWj`9+DaYnPWp5g`QlV(`e#~j8sT@PR|Bh+6_Q#m9=5RjV zr#~RTW-ne}^m|_=XsEfH%$2bapcXqE_bD0n9$NQbK16)Ee?}0B^KS>ES$4rgEZMl) zFywLkRp*xTKpwFR_K)&k|K5tAyFk4FFqO#lt<`li6TiU>lyS5=+5EE@4smIoAin_B zB4^VMfC?|UKNrulK?Y>wD@!^*)_KmCBq8AR#l@n8ztg33O#;vfyTxkj?m@e;g7vS; zlJJ~gduHgT?${Tv`FRU>s6Ni*7JL4aC3VvqPr*q<^RF9-I!J)Q1@WS?PStS397M)Q zcK=`x|Cn(^iCIH<^_3i1Fh3PVxe{Kn_4dHG>SN{#sc6>=h=x!9Op;;s5nK>>S=`?VBP2BL zOX%xKfZ zIvu+R5lYsSh=^oOvW1M8N*G&OD7)sAA|z!g!bB*`C|k(V>Dpx(YlBi`Ymmvl-{&($ z=XARN+`oRWdryDOt1;i@vp&!BUOpyqV8iM?JJ+=o3$!$2wEC4XxQOo1TA3bzsd9k! z0gE^?5707CgZ!Z0V4JQw2eEE*bmqb3CS?@Qdb7t4oOlNTfPXW>j5tm21mR%om%J^n ziMhg%DCfG!3~l_@X)1(GYr73(*YJja#G6{vuF>GH0(98G&vJ#KE%$Z#-Ra+JFL%ar zWI~&==U@(8^28YjEf1%^rY?|F{_4N!@*xAM9e!l|Z8Q1ly091hVx5DTVFC=D7dK7H zzV*`gC;xuCJF8qbe{bHE*?>OWF^4zp-`Ct4ufa?DlFEwzTFwFQS zPFcCE1Tj#Yocp72At=@Bj#K5Yr*mKAtsA>w^rDd-7O$+6OGTo(hg~e!Ch5h+wxvAf z1n?2&bzZEgy<4a$IuSuR!`MiQu7&>Vq?rpuk!A}hG_s!%?}am%cVQ&hIvyRq$+iU9 z_&Zf|#|O2gx-D>|Qj}8~2q2$Akwqfww7EdTYr0UTTN_>8``k3YPwH!brqbz#oWnZ) z3n1nsgwuU2%5k9Qus8)&2$btR1@|{{5jj4i>Mngdk;V}lKB=y*4&+SJj&}y08o)K% z5U1V~D?DPsM(56UU;dH}s(zW|6nb+EL%eR1F>RjnM4isXpf~D5zABxJvmAdYo2ZZq z$iRlyrE=8^q@J_DYi$BCo^#26rKj3coV585svXz8s?gTaNO~@%yNgLLm5qgPaJO7y znrn_Qh_hu5UdxMpktk?|jWXmfZn#w+Phv>Eqh(h;Va|!qrB?H>X=ZxsAa&h zb9Kt^4M7dQe;Zfdhs`Gg7?UBI#xcJdla(l}V)*6H{@)Gd|C96c-Zbv! zLSf{AN}L^(;GpzBZkQ8;$Wh$DfWn}@nuEO3N!C1P{Y_-DB75E}3JBb$3UKU#hR6x+6v3K+f!J~CXv+g%DA}YGPeehs4LG6`om%S8 zKVWDUW)dupGz1{b`rR4EuvB=Bd_MPypE2Gj3j!Ds3Ogl$`vEPlC0u|9FAr8*9=$8E z7l-yK00M<2Ozpk2#W;@=jzSn;GyW>|yINx9fg9%Oz;f%dsPI#HK(zY0cA4|*+dwXD zefgE~N?QEA8F6NKa8ut80P|B)@CcL(>;ffnakS(!kr5ENKH;e4rFFUC_3yp{szTVg zypJ~!K;RL%RsP~xFy%j4G*-*6a*6~`#rdx8pRj5?J)*jgL&EkL%!HB=ng>NSI8!$x zyEno-36OMY-~&26)ePZNPuF2uO_#_h^M0`)d*Yw4IMb8ErxL?WjsU@{5muhFYZ z0Gq3QPhGC+ayzWFH&k}SP_34(K=&WR20HKGTQdCHu>Y5ak4m!1+az5M0mQFzfx0;d zGucNKPRWk5seAZf_&m6-7y_}Ry}qu)h)$RRj*yfCGSh*H;f@#A6R)%2l#w}_`z)aJ zS-c})ONmnDIkLOw5du9P4D-dkfpChds=#L(UU!7R+J2k9`;unZ{)(QHrVO79KsUE` z5O9;K5wq_1>H>E(@p;N2bK@fJbK=}nX9LaW`=p4c_DU=P-R?2`S^k68b2-15?A3>9 zY+v`|ISb8uiep624tLaB$`vO=jq&Jup7Sakc>qZz@2%UPK=q?7#VXOPZU9U*p`C8H z4cO>$k}rocWnY9`_D74yEmk=1$n93dKC!fCsvyMly09^TCMJ~Ki7ME%S{5vK<6tTA zB7ec*7Vj;NPJ(w_!{Ei1&b?6^@E2@BtWI8%1`X^^K@w&YrlEYRwGCEC{S9L zm%o({KptcvK>af1XSx*HZB(3K=V{-O^pBkfRxv1iGB!Nq(Q5g}J_mnI$c2T|iPdOj ztNP1_%7Ci|A1+M~A1Y?&tUV~lS)6pUYrN`mZk;8&$scjZ$04s)S%8a3ogt6vz zL{H>zu%!2)24WvWjps3x^(A%X~?(6J~uq_ATBiONa-Sua1llHjel?PSj-o;_cqE< zri`X(CV+7z=nXN59q3WC(FWfR7xx< z#6m=(N~h;#9CpC6AhJ8qp)Q*@CA_7$tAT;b!eFQ-pLRy^tUa8GV2(kWNJRaO094IG zUeNhso5htxB=fC_^a33(jWIb3AseQD&+}m4#j!Zoy1)Pk0A1SQQk0mk2-_`dizT+j z$UbvM79xlRn}y8;(bvvzfnLTUFj12ck82Rh;?;c>Qe|-XXk^iQkRLSa0aR~agSf7P zKwnRnO()8QuJQ(laWUK4`_h7_91R8v64ANMhB}E_g&JgF=4TFr`JAxl7iAPDPOB2q zE$Vy9KR-#hJ$q(7#f{z9v|C5U56z=uCLEFC?)VWXDWXt)TC^$BOo?$E-81gn_^EC1cmVwPvDMaHGLbD=P z1t)rr4}`*SHuO5pjy<~2Cs$I%eZ%{C-%@b_BK#n6?~rb3*<|-DPYvJ2N&z^o&0rsA z6*oZ%M0GhyoI6S*F(ts-+2GvKq9>u!(elxr91{cK^kqTTuH7=nx36|bybADsNdg+7 zxHnW=^}t!N_UdSee{2ur z0io1d;(GDh4k=6ZjlRo`Sx1=xd*m$7S+~1lBRPOxH^_iMCQY~j&Ueg;yCCHQ3<=-o zhnL(Z01vUA`aoh3;8t=hq?Ye$bp>vT@%v~js2#{nXInVNZ$JlGi|Y?fDEbpYOeQ{q zWQ=L}c5n^N6zW41M;}lbCvIC9&@|g@T_qfu#ugm$Fmyi1VGIzj=v>h3j>EyE$p^j^ z?tOV%v(9>=#Z(Vb>U#H3COtJ?O30u~<-pkY8*7Kwf)t;Hct3R%_6oR{69}VAG_E?QUbs zr`HwegAGv_AK2iqbqQ&v5^!I6h52$yK-6oPEgFpN1DtewPCvF<)q4RzG?2b!mr>lC zQ_o*w578U}>AbFiF$JyN#I;d#9(*C1#b2w%$VKy0#ZyJ&iBjIX#)9Ui5P(F}yTTLe zLUv`+Tgc!ap+ZU#;XY8xYGyzanniFuCn?C>eMDNNigpfsm}|eOW3h0-_I#jp?ahUJ zX_t4;)~+W)K~fL9nP)3Q)Fk^jOQzL(3qhl@)00>4lSxq$gW4no1xz z3OeG_Wg{1mLK?>y_frsNZ;&25|-L73PNnvasKA|x0{72a=kCYwH3k{DmwWa`JV ztuO(v8V1Dv+}-(KZBMtyfy6(}7}vWA0kZl@bcvSr3BJ8{I2k%^aBtQ11@yB*EY_Tx0!|$O^ z%So+GY`lpLcf>u%N|w4wGa`OFU6$nXP3UAs$X32%hKh7?k%Hvw6aK{lD6<>7W@nWe zjLjXmDyPsGd{F$esNe0Tt#f4oi@Ul>(RuiGAdlLor;HA(jZ0xncO8`yI!n1F9Sk$K zSE#`xqhDHe6u94wz)&(8-*^SKMw>O~N?%=(9tHuNG?Lm!os8FC zkvfRbNsnGv7wlj5#?OA0kj^4L)XCn&izNEMVv8UaO}3|n`@nLn_olq(OK3%agGY-Y zZZ&s6y_@JXF#qc?apjz5TOFSry5)1IhdMop$zJ7@p-JSLI>6@~U?N`@AqBP-W&^Bx ziU$4L5f?;OX`OaThT6RmBs(Gx!3|RDhAS9s4K@VS4e5q2oe8TJ@yip|7-PfJ&71aYU)R#@M)n9m-37W!rDI|sT&*Kq{@UP05z zY3{a~W!(8tfA|jD$Vpp$>ImIEe+RlM2@!F@WNdL=*uA%9AdkHn?> z_WG{VyLCt%vB+(LJ11eqbpgkTB)3wf;Pqg9I`Yhd7(!bM(A=^iAD?`jUxlpXP{f zFx79#+j9NsZhJ59H9TM*DP~?O7-rmC2*nWDJD3gzgKoZiPyBqp6Q_iC>eI7j{MS$T={ZW|dln zUSQ>@Elyp0Z5k|g^b0_OEmf9?hoBNlYX}Q2ps!5sw^cl6HjpKfRMF)RH&B|JV-6{+ zsBHz}FGm&|THZtsoiZTyldhc1o(=N+j2q^f8ols4Ux;dX&poQZ{xgz!AO5IbjNTYx z(>mW^;cB{ZYCyX3DXo~1$f)KcNUW9KKY=)L@xnModG@xxE!QPyZQg^H%W#}xmbasV zBfiW>agi^e29hdyo%r%`EwAz>lbx|{XD)Z~2LB$f23tjv2RND-j&H;4yTUp}k*@aI zCoTp1Orabt!VvZD>keY~<{l(MB0f@W$-s2}R6?GAnuG zdvV57=Tg&itKTmIHK!UQU>wu`t-B?kiNKO9zK4735K`I~JihhGHf(@ftT^x1+&Buw zb*^(v63+Wt4)_vx7k$>78Zh2R8;FB+p`&Pti4m4g2)B{p57fYsuJ|04^7`|5WxiTh z41^Dzm2jAs8BpXTDy+VcT8@JUWuwH4PD3(_3~@%9uSS8AW+X9V_O=7aII`*aeNp6& zEpM`wI3PyrF>tsx$J2F$$9tTF7_#*~_-;;TsA^SD$`teZv*;2jqKM+t`Wz`Mql@QD z7S$-X0=K4Z`S9dCtMT5X^F1vMPbT(7exqrmY|Jj5D4gYRD1ko_A;pXERoD%Xs@rv< zX?-l9|9L`D!zILUnnl#psJFyTXb+|zyd|^3jW#ki%)%8*KR* zddSV=mgd`%ui+WT4=T-p4ZbZ!;?v0uZDU$C9K&%?wg}a=Qf{k zU0PhodO@{5;VI5S7^XhS`P2J0ycyPOjH%?lv5waqQ{t%8p%! zqct2|vR(@mYzDi@G{<%f`!0A8{%1He14@9gmT96!8rHVJdX)uRgl*Y>`0FLo?Sw?M zFIP_}t`m|NZ|MRCmI8IdH7@m%Mc9s&Lo_x>7xiT#2M45Y%4~fs&2*F26oEVR^U5_2 z<5jKjCyX|Ev4td7B#ct?Jj2`+4<4y?xF}2YU1BE=`bi!|46X60k|iablyak0uHnG9 zw!N32*Eo4Xk*Np5|) zs~vQzS-tUHflI$NBN$vWcFgvuo|{r zT4fNzUdv0NLp5oyyYQ19A(E>xlxI=;DJt1RL0E#DP}1ifDQSt>b-{fk(zt?;fJ4M| zVxV($PmY`n7P!e{NUQk6yFYvtf3m)Zc}fID&en0~{nFKI=AlGlP%X8bVyd!h_JJLrbhj&Gw?6U3M-=F1{=!O)|s9P^ZWKZu&DZ{Sc=)tgpX zq$WnH3{^Xp)bP5535gxYfpUG8BBA(n>u*)Flf%(vsKLY2wX7bz1))G(%mk|vaJPm6 zGhP?8H|d4EdXb#aqA|5kgU1}0d0EU|2~FcDr}8{2UA*=-b9scB%>yJWeNtEC3nvg~ z4U(=GJnADev&H0ZLyj|HM#r?#z9DY~dpZeM zrI6oWgJFyoNxk~edfu?$vs^JRE4qSk5^UDseq#rciS%6G_b3ujxj+|qQ7Ocr%j#6) z0ITG>J;54lFYw+j?p=h0^z1e-tL84yh3B*%bA+s({OU5Pzw^;ez9=Ow4n4fO!_xF9 z@3x2+Z_fnU*SOK@2xS|2faSGI!yzO&IsUnd%;vzIc0EzN*V=g9KH$lf!+!fT0_V2$ zD#4jvKsC#m>^ybtw@iEp&7wp;Y|979GiP=`7NL&qRG!i9#f?3W!MSq>w;+Xx_-O@* zc^zZ?hO=M9@#-z;**PC@@-;W%k5bkYiy07kLG)1&l;)C?CH*;58o+8a&daP_g;V8~ zJ3!Sr-lbJS-MDqzRjXBxRRak(>^UVAdpd$n?8s#=38U7kXKxA~cAGB}P#S~1@CrT` zwaAX1sBLn`!I`3(*aKlPw9t4J!hPyWjd%KVZu=lVb&Ejsu5b9C3djYRH=9mRxObCeU3Uw2;czTG+# z>MIXQnoL&{i``#k!C$F9m)ZM3MUEnoLR!Mjd;2r@c8n34*q7`!ynJTwSG42VemZH) z7pR$L*)&lFa^=@&_(!KrCkEBES!HKM$yo&&{a!Tx(z8|e9LbR}Q!dGf;L=LpiiIWzP~2RU-U9Md&Y>;sZ}G`|dopX=nBpgMP~a&IftnG9Bs45q z!L3ERj-CE59J7yN!@ZXnt@g=zhCw{Kq# zBjcYUKKZ%t-W`9rAxxQH>8rj!Goc9CR!5^Y zb^Y}rmm6LNT~;LYn`6{+XMF#%9RZS_N*5=;nLqrkc~;>y;IdnVS$_HrtxHur*$0{} zuXO(C%dogtkmrPQNS?fp%3dbm0k zJq2^)Qdk28b?@&MfMD3$4ykG&w)2GZy0Epn?kkMtXItplm-4CRd0T4CX;y*XULcSW zt%QTH2v)P)L_tmjL%Kr`*qiF1;yrSvL&eA@sCyboI6@U+@ame)TFB`kXONnNbbCZ0YWiQ{jen>P>yu@6eyQyWaEhWAd>`= z{TLMOYLftdZzS(|J_1UO-KfHx(`s=4JfwdnIzHv&%z_$PJ{(u)ml@nLp;tKwy7YGY zRt8+H6qAHxj{$W$A8C|J=6j`F&$-Z4NAKONFi>e}f@-zN%zh6cp&sT56mdsif%;l9 z&KM&i?Tzq%q=uIr1nptn-MfA>DC%v$P{Et^0!e;m%cOilk;UNsnBg|i8O5LipJTh3 zZA`ci*t3|{Wwg`D?9i|{Cf^%24$-=j5|rA>JyS@$VqJ&=+HV6s5UA({(>GdIhIGRp zbR^7PmLTwoJ?dOY)j-wy6sHALRZfEX=gye(uNeoy$35-gwyG)wlI!>{4meW^8=iGDpS%^Fe$d_E12Qtxuf_-lF zohZfztq&U8O;_+4+`-i$ujJy=_pPjsGS^f-N>3x~1ER6wR*v{yTOs9yAntuB7kx@A ztojX*)0o1&IOz;vuOekmK;$6ELXQA?^~SQoS9xisJ}V*-*!ndr&%*bn6#6e75In@4 zSbR{`>OE*_L}$2|Xnq&aHiQSrn)1ynla*Q1kWGhF``n6d=aHdo=AXex5o*%$3QUc{ zi$Ypsurt-BqW!ut3j1mS-1Ah1pmN<@e_FxGAU5n4bsw6$P6m-hLJuCpmnLlSEIoK8 zo*m~c%vWZ*+#&Q)SXfGDf}QZo>o*}_?U_>vD8F=ggq+nLXZTE{k~xs_oNeKIZfK#!|s@%GcuX@VlQq!N&Q$vt1CMZI@f1MZP{J@C7GCnPj#(7aOH zAO2ugWAym>oTSEU+-vu>9Usx!WY3m}WY&pMAV!CGPt{6h9lPY1<7X8|v>RP)ORkCQKjW9^Bu_$xG8w>=vU=F`b5{@_#-(JTy+Zz->z3)}ZW&|!MhFlzi1)9nP10*bj zLx?BZu*#llKJc(;7gKoW&2lL2hX6ljLn!Um1!>kelECc7SduN3f5Ez_y1KbxKYkue%`q1ufiFH^Ju;X^% zwQNRUp(nQsuAZ$>UX=Fq{(xU^GWk2kwTWaqfJ*tg9$-P3xp*M8PO2~#mSlzAFr!T7 zci^Kqg5U+mR;WUnFjQ#}GQ5m>)rAh0Or$#-AA>W9EPEZkD{r71|KX)YV5IMsZjbq( zvuYK6xVGA%5p6otBTDR5l4gfxxgD^*RkXlkyv70Yl8$7q4I+Bs?l-bewDOeCqivQBp zuBfXk-kGfQM3l-Ya4WL|W4zRpO>LmW%mxjsNpZ$ZJj8p0kcVnX`x^>L)k7Jg84%XA za9be-!I_yCB?}Vfj>tpems^w;f`aFv262f*0U<4&U29VfYO+CRXwhV z>)Q6Rgf9l`e&Y^9mW|^e2s!9F^!E9)6O(&cl29?%x+_6?cOz2gPR!(&b32@s&=UN! z08U7t>|J?=$xI{REKPSy$IfsDvj-;EFNhl=6np~KmqXTj3t-o%<&@bM7?!#3q~uwX^xe&fTa z7WD0II6(lP3*=XHhKe#>(y_ywOF}opIyJtYgBd%TosiOn9P5}_wZpE| zpE*6xRCXn(Z7>0KXO~Gx(87wE=!wyXRP2Ji2jFL7{m3pA*__tTj-)*tSP3*%;g=ZQ z=-)qGel<9>hyG0Vgb0!;B8yazQ!fh5kcqbmG0W>{b{cH_5)>zgm50{l9|gR}Iw5xo zI2??vHtZ|kxO0F4W{hMkx7<)G-2ynBB-q^TQC@xgyJPKgu!`OtR8&GLV_q&TD~sum za9QQSMj)ikFcM~0Zu8^AS8&{j>Q6{L_v61-_L=IFu+O~FTh+3%ko>si9b1U46}MTq z{z5>b--k$ZK6FnG{^jYvUmvds57Rd@kh1j`-|Ybsp~M)g%EZcySa}wPPi7#gsMj=o z_v61-Iz22OLh`@Lh<`k%3J79Y2<`_9J}-}@zkCOU{YB;9jEg^6FEOrP1^=|wkEsz= HPyO-VA|Yo2 literal 0 HcmV?d00001 diff --git a/_freeze/materials/glm-practical-poisson/figure-html/unnamed-chunk-43-1.png b/_freeze/materials/glm-practical-poisson/figure-html/unnamed-chunk-43-1.png new file mode 100644 index 0000000000000000000000000000000000000000..a1b6b49018ffda6e8f9f704dbda70f31e9738a50 GIT binary patch literal 74417 zcmeFZc~sBs+cx?o>NaGELPRKOQj|t2G*2`S(x9YSX`(ccIVBBLBAVy9RMH?xX`Tm? z(kyABG`+`_`+45|JnQ{uuf6v_dp*{=*UvBCzMtVbuk$>P<2=sm-Wg>X+O>>pDHIB= zoUEiOg|e!OLZJ%zhZ;ZWIa3gi{}FbO(soe0Wa{8-bol~B$;iRh>XL(%`FUoi3zzN9 zFWK-N5;(-i#cbx_U~4bJ!(;uQA2@XB@B4Dz$r@W(9eWCe=??jC#lybw3zQWU zik##L^($fDKRaJh>sxw1E_&|!=aVl#bh&!nwKA#PY7&2D#fAG+7ufIK@LUXJKect0 z9WT8f?aB6ou48*&pLtPt@}j%Px3jXN^6~-v)pL&L23FS2Mh*CK$5yb_Ufu0gZ^lm^ z41YXXDyr*oz2(0*-Mqcy?_UjX|Igq4=N(We|ML$1=N*uY@PCYh_oekK{C+LWPuAwU z{!WQBUQQi;`!0X`@G|AxYY`D@tGl;%SpE3%`SsfM>lJ_XCTb=pJlMg+-@4)5oe^rfQb#J;*Ji;bHlIF! z4&uA0oVZ6TQku4}Dn#wXi4*zPW;1C0OLkm!aS@w+{p!`Lef#$93Z{;yZKY+oX-Pv@ znoTwSHUIiM+t0Sg@$vij?_YLU-*&ykjGvK-X{CAR)KDY+_U#Av?AbFt_T|fP`O~6< zhdoMGwlXj=CGQlpk@dgk=GNE$KJdYn`?!_2*;Mzwc3hva{VZ`l*CzM*MK_Oi10~J7 z|K?2IQ>E+wKl)qm*Fg$z-j(r)U*Fp!jmv$98ln|kes*6kC@2WzF%WBxQ#qBao2}Yk z6|&{pd@Nr(axinzsYJO zX&>&gU;5Q~NjKN_YrrJK!7~y|i*u=($-2?WXJ1)-%C+OrPJ5yBTyXjN5*CuBT=cw* zK9!HTpXz3ry`-jP{LtF^yCS`}{Ncz*YEcV*iQndvkW#qVx#!QHpY}BFMenn~NDI+7JPyy@E9GlMxYqlIP!z-!`J!+XW`QuB`l3Zre>2NWN_KfKD z)Ly%fU3qbD3)^tr%TtVkHeoSJPZ>tS{;sF_4tuKVFYDMJqhfu0A5ip%(L? z%XRFyT!YU}!7PuZMeTBr*}iR3Qd02_Lk%vyK7!xA8Vz5MQFx;4MNO;v{Mgm0pI=Wc zEY6MD)$DBKO4LeyuA6Pa>Q%xlSLx5{eS7_mi1j;;4E~uO>BurylNZ0Rd~Hv4@7p>Y z-FXz4M_QOg#tn%-l_k0TWJ%c)98NF*5x z+I*@*EU?H`KNWm9*_Nb}ncy_q;U8t)nWHo5@b}5W7-{*~Hqp~ZfA}CP7xT#YaLqH( z*q=XbC35J zxsr=TnqFV~_bZC8*6}Lz?H0Qhx5s_vgui;Ew2yY8iP*K7GyZ|X_Wf*=4;Qo^bLsRn zDKvP|YsGBE|$3P@v)NI+%F%;W2Q|y zC-=W&DbxLYBu2j>;H>Z#*Q6&;v@#~eCD>)Mh=!V)yZNRR{vS{X*9&YBWNS!q3kNmcM@&5Mu z`ufviebvuIUw!%%?7#W6-DioDxlYW7^+Y%AN!f|?PTR_Nv1XTyjOR0~`vudQu=web z){h@QD(si>RY$7YlEkeVbr&ga>+antNP1#o7%L)Y;`?Ogr(4 zdaNtUj^&tC_%poW9c+pZ5OEyddU5G*a*w-v_pZsCVqTB+JZCoT5fl`37ud9}l~((P zCC#F@C5``EN2;YV$I|IwLAggc<2)ktA;(>FkizyOG<>!nK1t81shB0^_GgM@Nfz_b zj%+($8A(Yqq#FOIZ3fp4w;VPwFuzetdm>RIQS-R@V~rHO_K0%Fp$4fRKYobV_1tuy zA1`MMn87Y5sWt!VWXzEZl~LHlWmm0U*?eY^!{%&G&`31lXJifOKRP$@k!O0ae*f&B zKM8id@7brgR^*1#?i7f#{rYyeEj_Yu?uRI;)(F8=^>|g*qt+ej*RNmq_5Fv$hn=m0 zDTnREH#u&DLOuV$y{D)b{*0vlnQk@cO-6CCNb20Zj)5!Aec_M!pQ$0;e1~`etF{-P z^6W=CvMtxr(grB z2sogmo@RK0`)rP4`NKV}W!~F@xX%jUH7GENIt7M@8{9BRRd{lULnk9jGes}HG4}Kb zswL9p6TGPyeEa**-|Hz{^r-OqZ(LY~%S-DcWschQNV+Y~4mimZdPkANPG5`4s?VvJ zbR{NLB|>ryEt3ep&ckHY==%xk@e_&zG!%R6%f{Ks0q%rnd>4Jm?!0>SYP%3U`2y|R z!eEQ+HXk2zGqeKRsIe)BrJdVO{wa-)mX9KF-*sy6k;e4HJ>oekbjv^9z5HWNlt7K? z+T*{&eEi9eJ*UlrS5Q>-o*X)da?;Kpf|9CHcx~1yY9Z_rP$dmisuH&WZRzGA=nAG*gl@oZyqBAGC_-Hq?OFhgoLm95 z7{w#o*ZUFyvr9z#nt5gi_9fXlA9LUy?eLC=lpDorntRw6VuZ{ zPj^z8F24hIFKn2oeb|*PC~8|77-Fz82eDATzRNG;(4D43Q zPk(%AesW@RQVsbj+i^rwrhNGYJvoW3wd*_ZoC^{QNid)D?Acn0niOJUHH4{_kq|;fXy@0gG4nbO6|WE_Ca>ZNB^~BoEof z0Z{5_gbUl7?qpql1@90_lnqUQpx&02O>r;3w`X=9TD}8`zrUcRe^p9MOpKxV7Z}s~ z|La%b&PU4kcm%$F?Hb`|-I1k&8udMJInU_rBo|BTuYPI?n82ZzYa3<^?#GBoVBppb zG*P1^x8!%^*e)i7^P8y#1rhuH2Z-cYPfyCNTesrRygWJFk)2rf%4#_>RH^ZOvaFzl z%@I=Tvd!w>)~k?jD2}%Kzn^6^j;s)R78iFA^+5MO0td@V7}E|uQwIlrip1JAYu42J zvnn`%G+n)NB@U#;WhnZ|xBmA7Z*bLLB&;~F<6l#6+?|B#Q`RAV<)%FQ3kHN0{C zO)~nh*G4g0i6ayVc~BxoA=?+y54LZP)j1#sn5Tt8lnszU6NSJ_AsSw+?LZCF^pDSH zr6Uj5=cg7e>aJL^!byHLMOKb5GAz`VpCg5#hxoB zrlu4#Qm%~mSTrXDEvGfDznN!ZqTxP0=eN<(XNEp^?%ZKGq!$+<<=t_32ZcF0kV8XW zd~qfcv9u+rB7p7T;!N*GtZ^Ium14V`Gks8BN5Hc*k%I#P1=;3ksl5m%MQ}O})|Fge zvw~8afMxHd1FY zBxx$sREhrJnd16-JV+FhfNrL#4=EG&12u%h(sQVv$+2qR#e`jw`wz*Os=m8~)sfcZ zk^-qI<{H;muAY%Vh7wvu%g0RX{op|p=ojv6ubgVxeR{G*`rYtqv9&fASW-8{tzO4q z)|O_J?=o$XwBYXU&M59)kncS9(B$LLWEW{ug^tYHr=$;rG5OOjr#}0QpKv${gg|Nfx(> zK(K#lL>+b5V{tZC$zu7=Z0Y%{Joyg@3AG`t$e-M`jHVKdV4b_4HZAY@ZVm*Gxgzj2 zcgko(v^Q@<9#OTtW0(Zpl4(+es%>> z)Uf^1rAyrB^3``7F_BF>aO(DY-5jfs%YBs>%JB+vb3B$7v_LX7!P?cKThMdss$ZS# zZzk}4;g92ThBqabJ=6Q%C)>DuL$-ONw2jT_rI6QodGVx@=h??H3Rn#i;FSBAie^Kc zd=N+Iv8x$Gb};ccbH=am&oHM(vaSX&th3=sC~P%Q(g(wdqGk}KjqeibQ@{HY!)KFb<=nnMv$JC0=DMC+an4g_=oElV-Q;n7nngUVbL<-rUj4!SFd&%$b z%FAW2XA6lg>B;i{1bh;mvzrn0FM;u>#le01dO`|oGR1bAD_|3{$f>BP5LwZdF-lWU z@TY;EsNtFvCf;&Ks>j{=Um5kU_R&`dA1?h%=?%A`pr}JiV`8E*e{hH92`{Ckw_`=I zuAU&}UAJ5ENcUsKHYqc+xEnWa?7~MBO-!Qp?ca}2dj@>{FQ1E~Ybz^sn{$|*xbRoG z4Bcq`3+b;y+x9&68wA%t7VyBzYM({%=RNt?Z`zJRvvgt>gSxssWoOF83V&8#UyA5g zi@)j#CHU_G;ywSr^tWYDhOeu+^rg`44?>zAG833sA{gXl``*c`NCJc=ASt!4T)A=z z!q`Z-$Kt*0BD4AkMn2OA`A(z5Bq6aN&)`#(iV2{h1R$CFVD$Fi!8nFnlAl6IdHK7` zwRXi2!cy$LED5)?4phx10Ie%eFZ7GebW<^jIDAl!#|L(xw&0JpHTK2Y4I7j*YRvd8 z5O5?dNmP+R95us+5$JK#xCUZxnqJRG|(P5)4)F(sS?!lU_-D zF<_OTx3q8G>(_~pE&ub;i{o$JylDn)i{orglKhiH$w-G4wY8^9?`(XPdxEO7Gu!eB z9$@TCE2^Y*Fg3++9ngOZP!Ys}+p8>ra!jj3qp=~|N$IR55>Z3c1Y%kHC+hf{6YCyglAn1*mBAit8577fH~35ZMZRnM+O-RuNH;|0H5 zYg|!5pL~(cYx8 zfoC5*eE863%Leq_T|MXI_FxrWV*d#hu5Mc5QipcE^ zOcr+}bL@b}h@1j&@c1$J*_b;U_lSrP-tW1!m^%ct3pzq_!cj(_Wg2xe>H(9eCXv~( zUwV&24N3vDmupVcdS#z+aog6dQF!5IU*FzZyKbFphB$claAWL4vAOSj-ZE_@FUz`Z zHv&ilvTBcF$g%IMq#x~iBU;jnT&0V^jfjjK4IXX>ACciHoQZIs`Fe*a+Sm{+S_W>> zxWV_rWMdLV7Jv(nYHT;Uj;Ek_Fhji?f>0~&WJ~faxF$aoJW*Ep9V8=zb8Ja&FSwfd z-j~TTRuaEYQH8urQGN-XfI+YX>w2-5U$znuk$%%ALzU4$b~Pwh)?o)P=oPu2^Jd`A zh;sr&cyNU5;V@EjlwU%+`ZLq}Fd)eiD-5CO;vGrZD!?)Bl;fz5$fU-l{OlK@{@j1? zAS+IQm-mdQ)AuyHedOvn5}=)p+mE|sy??M{|Hg+it(-&P5Rjwx2?`#v_GQ?*)uhoy zMlP{-9X>5#MIy_5`+90O$Zo@*U%x6`T6Be2uJq{9ql7arZ@B#ak&N{a71_7Q2FX{m zd7vt!QCdz_Q`b$OT<$yp#zQlI{#XE74Yy|w1T2}V>kKy(y1Baj8H#0Sehfhga@8xl zh`@R%z0jRGAP-h_Ad{WV)+TKi&n7SDV8n#h%af~*n$;CYbe!;_7OqZ+0b(Bhl$R-$ z4MCd-Z6pkl=T?(){d8u$e9!bJ`&w4r#y76cvvYHu>?)PP02>51m?@#S@?)QfvJw>K z*FY+_RZrf)^G2xkM5e=iycg*o8A-$f68`3p-)U}-9-gNsg~*mbNO$e62J2qx=3Qou zMDeFk*xv6V*R8v;EfhYFkuH6$=3{!hMA%L)roKQiK&IdgWK5;K`?RY3(`XE!@o!8;GK(cgwyy z3nbQ)f0T5Na5Y8(YIh1))gi2303nJHP;1M&Tps*5zIVPl4ea0^adhwAz32#e?G|^p z`cIaGJ4@ibP`TB6m=qtZXr~Z>x$TAJU+%U=3P#q*&UHtLT_)jrOv?pKNDl}U4GXRm zh~^nacm>_V%P^|=E9v7MHkS4t!Fx9<1?wtqUPdvVr90MBqmI?|`~e^Ar^zl>I1#Kk=Vb@gp@DSGz#Up5c(7@zrGV_%mI{J8GJZW#Q8@O zq*5UfMm-6LG)M6el9r^GA?3}$j?WODNYUF&?wMIGRKziXARnOLp|7QP{G)(ZM_zq# zSAzn@?=odpPJL5hyMR@2e{FawDAjx6Up?MDq+^j_P*k|!g(!W}vkc#g$K96}oM{>P z57vjC7GF>Y>mYmVnQDo~n_nH4q?D5$9pu`NU_99t&8k3&O#jJvD7iw=M^qxEb=2qD zFNRlq`C@>yD4@Jri-1D(2IH_(e0>q(dYj0d>wQ{Wm~))@Y2Lt`e*-(irzDbhIC(wz%w>u>JdlKe(69gKLtE_!*~5H;Tuh zy^x?5>x*)ovVlqDpvU4o*^-CO<$oKzi)dB$CSdkZO=)TVih-7vQi0nW_oSd~sUeU1 zWQ!j;qFS`@>nWJ&1xLQE`1}E~j<$B#Eq*12X}N`v^${%!Nf05>;XIwy50#4)nFrF5 z&s1@5QA~e-VfEUrXCNzcCnW1+#&BpPm~=|WVowEdC5T@6`69=<)3lQpUvIwYH(0&j zdL%F1^z*k!4W0Wv_7R{ME2jz+p3ImWq^lUrdjiq`fkJ5q0Q&!cvwjce=-ciijYfxp z_`+1cA^n0lbnO$62}u(H8E|0mie{ek*mLOrhIR{Bb@f*^=XM^zyO(t(0c{wK(j1RH zV0St2Y)D+NCbA*#_!IgBIFNMj_v=YhVVEK-iRt*l`)qHI~;0wkTiw~B$ z&O@dmk_?fbZqx4U5I#47T=qGJxV1>S@zkJRzunI;lM7EF$bbIbKit}B#me!j%D@BY z4sSyTr>tH@^<7)K@fNGcWp_cxA)+UP%2rl$PoEwO1+Z(5SCfId{wl5zHr6+parXoJvj!)jj78xyokE-GwlFd#i8za04>2-m;2;eYuy>;_kszU0tn&rtZtGs{>5Q=U!_D+?9t#3Vpo%fRMLdJGX>Z)GWzO^CWIX@3oXd6 zq9PH^Vt)oBS=i3*fnh-3ZCXQ=_2hYQ#3-;lmJa?A6pjOm!G`77h!ok;zl9elpTnTA zfYhl0Z2(_)cn08>C>aVhwXv~T#)pT_B>*dxcYJ}EZQWI%gUxEMC-H6^Ef@3Flyl_K z(SZs7o{9v(z@<&{c3B6ZalChSpxwjBZ}tKVNzxL4I0jkJ66nWCKIjP6kVt1JB%DG* z+F%KlkM`d|L-E_7nJg&;(;s3zN0tz(nB=U*E1qK9IvE&_GhoW!i$P+5P1^qRv0GHIQYmGMc7^z>E`z%?ZKG z@-M%dpP$b%ELllV(upDbk{=_HG?>fKer!%~LEC93>-EHSYuBnS{F(0M|9GBc6+EPx zgoNiaNGTNNqXb;Y+P!g^&d6P#@#(PDV`nJL#K7_g&q_p_ z3l;uS(7ZWRB5oGW^sMvNda7vs_|Q2HuM$5qB?wJfwqH+*vffA(Mw9zT*BeW_<77in z{tEI8=z)Vj#iLWK`^F`kwA{c4QKzIq&$L30T$uX(#Y0pirWt0J1hi2P0-=uYPF0D# zT@x;z3cj9jOR>J+7zoor;G zI`Ue_E3Xk^1r@|P?1KP#ZftjRsG6iVqV2;QMAS}1`V>O)ATzVX*RNlFeFLqqXENhb zKs+XX{mQW;a8qa3(NFp zIg=D$hp=p|J4UYO^7Ym>e#c?;<5zw%x1^&U3|9+&X>uKVBh$zggfgLC?#nb?FSCc3 zd(wRg4K;rMKn3Dl@^e}7qua4gDDN?(Gw?@{w6@#;ZHR6O__!+=@*O3f79nH%0uOLj z?<`*L?95CXuTtg2@872{ulfv-Fa`MA!M>S}&*<$cVnw>wV%44@b?VNB?9(r{YQ`!v z5lz(j$ESMKSfU@3eTv_9PLL+$gtLnlZspm$^hA^ znWrKG)31!5_qGJyPn;a61?Kgq+qCJ$Q^8BR>O1M^&f6`6CtFPtW+h(2{RD<~4~CuAkZXvRXcM)yXu?R-x0rF}4lAyot20WLfWTWsg7!6cUlXZ-x#7;khc->F3MT z;Y8WVcJe$y9#tWHBLK>BEiPyi;Y*xk$<>86yfRsdHa;>CMBk&{7QkXWu%a*ttHNs1 z94WKW+d>qkwQI8z?E+*ayA2Dl6QYE?N?t%3AO-PW3rt>$@bkP<<6tp`IGUiHem>$T z^riZ56#=7x|2)nGh&iAf7Ke8LbDAO|zlD@~*uOrS@r#JSrnn~ma^HQi#TjEFXd`J5 zS6Wl%#nWV&p@YaSx9uMR;#ndRf#BW4j8V#nnh^=}2C>=w+IUBZBz;}E<5i=lkXDBPr#jM%y#8gGU`5I>Av!x83vS0x zQ81qjdN)24U(`l!Py;p@4PHN<2YV<=YRrolFIHIs)x`q&Eq6_gk5DLdNNi#V@)NKK zu4%c3TbURiuLr0?$MvocBE7gD-or$^O;}m!#zC?nm}t@RpOrW#NgkbX37-vYWQ!_hF+ zNcf%1YM&oxXnu}P1+rnfH8Tsxv158fm5&oRa-^Y0x2+cMCEKW!+WJ$j3XFZW4q;oj zY~Q||3$bkgJpChknb!aVul?trI_M;h-#%=%@$fpQ2NNcIw;6FHlm3GU1@?S&oq=$wX zMViPUn0CITv4hr16LgHD9*fsv^Q`MT!fGZ88aN6KYRvIkEE;2cz}$CPdZ?=h64?zw zW)3Yk;q0pvFS-M@2;!zFxh?Rt3f82Pf5U?l!&CFiQ#3SDr5>xPsS}`9j|=SGu=`jX z_{cEO8>6UG5>-P9{ZG;LH8;b>z(9CSKKK!(nY0yw0Xo_1GZO(?HKrj;q0(yaLv7Ja z)`W*jV`t2DR(Kwx(L`re&aBdtmA#9_iiPCd&eO){GCxBK(3VS?TtpMicN~dXx9t!b zk#r5H+$=KRAM6zL?d&$>L)V9>KxNbO8@%=trJ(pE+yc#iVF=PZT~d^tRABw=KsXLQ-L(a6c!cvDh`kEe;4 zQA%0ZKZYjNOcgXFz^wuo18OiSkOGRvJ0XIQhJBaEk{gy)0Z^#*<*7TnnAR;Fh6r^5 zo2nw8r)XYv_wK5FtILVJ?|F;p>l$zPlHIis?F(o$tr5^7wmRqmXOGd*=D+}T2nsx2vlQu01}I`%!C1zt9pUGm-`Hdg0j{S*9weOuLvi zF9onFFd&k3)khRtX)ROkEx*dFdC~89Fn}5T8=U`K0?R=BH>2wJ_4XPMINUuA1;*jm zcO60x;n#jilrAovj5z2(M7DtfI{?*VnXxrvPkUP)hbQdqI-WLOA8QjBZ>gx)*Lkj> z+Qqb*;pfy80XE#vH&Xl70|zTT6KRg<0J&`wQmQmZ9VMEDN;2Q^)T{)=&>s*$?gTt^ z?tKPs3q)}&>d+d2kLSaVyJ~^}Hb8x{j8&JF2d(KF8{_ft@BrWFDT9no(f-gd`;n#b z7zb%4C{h*cOpSK7M&vC)HJk!_YDZKP7ZNfuS3>lfu`76H4LD8zT9Q6}3hPboL3Zb| z`2^5x0EUEkW=^*CO=JeNDn{PnPVqqrOORVy(WZ<_2UE{GmJx8J^Y!O9#NUF83HvC( zgwJ;7=hp;~vuB{K)Lth5V@^+KeuM=t0lhFM`RVThHlNJwtg-oj{rGGNy|01Jrb3aG zKv6WEhf$=6`-K2^ICjv*v%u1?5wn5HBUgBRq&+hhIpaz9I5q;YqvqRwy#bF!kf^f_ zaUv195~@b<_kmRub0zc=HKrkAg3A}TUjzNE4B?9<-jRzZ{IF>)-`-q9d^KJTtOlT# zAiM|O%>8(cuRNJ#j3^`8`%&9&37Y6q4~+zMxy~Hx#|t7%25TBupyqXz+!wBV(=f3mTbU1 zJc$yLgH*&r8j6-b3Q6K{I3PAGN!<_T7Z#>FEK|+V7+<#ks!>IP@J{@+?RwIOeOeFJ znuHz~=^d&d&7;pAjevsb!ok<~&QctNds1(qo13Fo4<8S)k&y%+d+qb3(J@_jL8`RC z$wgCTW4yFDxI_r7;z0Bv^(BD(YtPR><~h3%{|zra+kL?W){sG%an9h)v&sR~|M{L- z>wx|`@pJrv_?h%4pW>&PZPl)drHB8fqJyYsz??vW#UWQ*ToQ0EsQqsuBcl$&jto>+ zl~AVAtqp3Yfr`Pz)Ekm*-Khz9mSOfy8?u!KpuT9-N~S-xU%89IT+eH-gDtEE-vUe7oSY$E zp+=6Cj$BNq)QUDuL&FykV53mShi+}tKLhHe5hc4B)NZN5y3w{E_-q^(s>I=CgV|w# z=0vQ|0bM?a!81hp{k3Klvr_ltD*hfg077|?oB2l}2eZs%8~Z|k;^gP&uh*qiWWs+k+MdZ)Ap(UQ-1>Nk>n2|nxF`vy z0xyG%1|G7;cLGEt$B1{kdakVzJh^__mVRseVK%LH{DW z2`Y$!YJ@`Y(}(iw&~1#l9RlEi-46e>^|W#Io`A6O{nqlF;@f~!vT~h}70Dh$hP4Vl zXr0zqTaNY*k#Z&3mTCbw#1^L1Vi(&L6B{bCsd7qcX?jX)SJRc&-Wi!4`+SxRdPN&y zXElOLZUq#94*bp{7`|#be<%Q3u3eLqd>2p@3vIb#5`v8^Y@zou#Q|+o3;!g53dchy z(w^K(@&1(W__2PoKYT(846V}A(!=lWZ6WP2+AVw83B>?qI%@J^6Rd@0!p|XD;dvF% zlF*w}6~0*LM6q3;vXcV977dCaDnk9;6M@o?wWMQ}Hv?`3u+>d6M)&(M%W4`LwwamW zPJz##KB0&6o~73L_m6YW#685ijL|E9#V^pU$~F7y!XYp+Bw4apq0MaMVKG(S1hfhqM`y| z*fNlQ_~YU7rUTL7MdLN`0&agCfH+8ZQ-_DQYES99t?$Zl6XqTQWXx=%*i3Q6+20V+ zyR&K=yK-%c>1wWxdRoJxqMB>dU4+rP-IE8{8w3`mVvPWen_;ZvluIBp2*!9p8q2mD z%hnX1$u?wzLGZ%mfr~aF_U?R0A;3&GSi~QFCvzaqKbG5eXNd+6B1h;4yix2>6^TWV zG)3V1{0}>qa5@;paBR5yefzT)P)Y-?8ZbW(RQKM6je?1!jVWCS3SH~9jXCt_f1WKVtXEx{NOAAsGx}t0B3*q&+Po^+7gV|xXi_eY)3zrkRfd7uSqZMNAvrAaje+n}mB>2%W zR|PT%|KxNPrnFl(Z_4_ke#LCwFa2&#`ZbUmX_%5h9}qdt)6b8Q=HDWkVN%l49Jn1u zGNN{PXmpevIM{;++N1Z$X4RP7iBHNlG5XRt2>SL`y3Y zsG*{C|JO^CL|8!fwEP#v5CC-S>ck*GxfU*>{b*xaI#!r?Qsi3DE7CxCHD3&OGo3qw zCiygE0+tRg?{xFV1L*JVtyjUIL9rMz2pwrD<5eWNC;}D}^l*GK4?8Roj7n^>^~A6P z*`gwj^8OIHE7WN~uj`Z21RzCO*?4hxyRyF0=X)m3Z{ZdO|#MR3v~gIbEmw)SOj9@uS=#yZ{*=F;q#@?M~hX7 z%h8OqP9V*?{~2Ptb?1(F`yM#Wfi;Lrj^Q)o%1*xR>tW8Kq#aH{&q-(xF+$qoma}a> z>jIUoX<3DJLe!uY`F!EVUVU`KvvLuw1+Z;Wls|-8zBvjHWw8?^HuI{2tCJ469?J;n zd@WPE&2){hw@7a5=WTuMd`VN8io!BPC`AyNsVQ5{PYCJ8VxKiO8 zN)^n^C;T1JiK#2TP6Z2JOB*6Z`r+$=y#)kBm^0G($j`iz&9K-ysd-zQB+Me&pWxpRlC@sW!)Rsp(gz5qV} z=MlhLBsCJ@eeKqRFA#lX+*suDx4ZIz2fq#m&xB(y$3tDW3%zidjHBWcn0fqAQ$dL` z#iUyuko(lX8Ig`K*3apJil?JSiHzvU~l1^RY|NEq@d4JKJp51ri{H3XJslIfaS2 z=^~CZw*I~s1_WA=dwE}U2h08WPS zP5w~?BttSLz9_H86*WXU|J#rC6CnoFG>oyvA#FqBkJ^D;r-?P#N=N5!VhxOiGQ|xn zOKznhmlfTfb!gaVTq;_~k;)!>^ZPkS*ko%GeDa9YZ09k3(&3PftgnBB-=Ms{T%$FC z4e=q@uD1zsEoq5|=nYJ)WAu?m4^{%`S&du+1`#4-p;j~_l;At;Tkg<%o+FK=;-fHLz>w(K~!`6PNZ}0QjaOTL}69 z2W&>*Ab6H!B7~D^KA{glui(rHl9n;2!&A@)jYIQ+a6JS<4Dtw@ZYC`HL5I%iLeo!Q zZYUKW)^oYpjy3r9m&PvZP~%v#1mZ7iPJDu{3-*Tyu>g})PSvoIvTGEDA@s2EZK-TR zyWr#^{wYZ*siCFCu_egwn01DlYP~!jX3O=&CU^nDWhm@_@GL}O3h$i=13)NT3xoI~ zjPsn%A;FJi0#~K&84HT-A&4pj4qjj76h;BOEo#GrBOz^e z2&q)I6}r8~w?XIuC(MR4w3Cgj?yir~J52$`0)d9%R_NXJ6f<%^KIQHADq#j=CuU^A zU|2%BRxKdG{PJB#Q6A_n@k-EtlaIF;eOhc*a?1h5I#MCXbQJclvY_e^-il_kLEh!E z|LwbyxSZ!u`n{*j+dm4R@x3s{KE%#(_O#(R3IZwcP;c0c@etXuq($iiTUI`-C zW1Y){88&Zz3GrGVaK9C*D3jlzt5Af{$OfIa4rI9ixrd1OEKd{!tH?9RVcN$#TO8*Y zAo)LJiHGEw?u!QdIe#+T*-5jC!gc|sk@q_h+8FN^JCB#rH~_K%74G!4qsoj(+kADtfT01pFCCsmIt;PRBjjkOG1W_Q%tKjJg+(GvX#3PCQ`Z`_rPi5;qrzEr^l1cj8q0o`DSk2E=q0lO8Q z_c~<5Z$m>n5*H!ikv^o{q>oAuMk&#Yrqp#At%O zx@>8JF{EJ29-39F$c&SJ6z-&5l!GD^geoxz!3cBj5;u;L32orP@Ba>w_D|6AExU%n z?iyLhJaG9=QA!#)dIC<*7l5CZ_-nc*3pAB{P{RmF5+b~N$r8SMNE$7ssMtx^6MB0* z=F?%%NP<7M64ql@`9NEkuJK2fxVk*6QGWEwbr6{eFlG|F zrj1&7RW%bj2N4dyeVfq+>nYAki+&~=9VQ&zQ^xA-EE9X36C+S9C=f(H<>ca0M2ct* zK5R@H88R}bR-!Q%iFnrpi_^lcCmL}5cEvJ+$3f*spqG%77>L0i<+h?e-Om$)Q)GA= z&ALaJG9qaV8N9N(I=VFpInk+Sf;JO$gLXTw1aAB>3sz9hzr^sa8v2?M=zvtfB|`>P zFwOHll>S%!>sJo*xwwRSUWR(~ef8`Fb50%A3ENqZqiMI$mK%KYyQ>kKFZ}yD^nAec z;GnQ3%Fe{Z#AU;i!Njkv?>>8BdF*fzZ!Q7E2t}@_=iD)B-_39op#l)Yr}~vEGXV<( zkO31VneYYUrl6Bs-I^Jney``dU@*wtdvX5d^-6MnLEHwFH2GT{x6 z8ri4Vg)G{g5U5B`iD>il<9C?U-s+z`85O`5zUVgRWL~*-$VV{ha$i)EPIO0h^a`q| zJp1TVccSk8Q*L^D@+q3fke;?B>X_P~`Vzzj+CLh$ejF9_q5ie;G9h%^h1s$s7f6xEixm#5$XVHv_=6Jr;QxIa8ifRKZ7 z9ZIe6Xs4wgV~WCH8;^by644enMFcmj$z+<-Rr2ODJeHIU+qL=n{pPKQ%>Ou4e8JfR zIJHA6LFLqNr`DezqUKBP?9YFjNE8r*0z^&mihO7kI_fl?mgqr2IHF6wislYlX4bLj zqM)6b?CI$#X^Cus;(v+!43BUWfh%c=nob(R5EeSw>EWo5I`owkVB@Jx6?4u|q-WKR4CA(G3vU+aCAp!i}!_efi z(Tdm^i>;SZh0+dR+7nc*a4|P7cg3oL3*fVv8eBqWyr>&y#-Tc?)<;wW>ZkJ8Bka;lekI}I_7&gjhiHC)OLHq#p75^wy;&zrTyAt(; z8yR}Ljt>>DX#9}5FsJ14TaNPbzRjEjOkB9?XCLxtUjL)|59N?8GH(M#NE7D0n%LxU=f0v?6t;U$K; zK729PHL<6&mEFHJ!~mHcGw(VZF_^jD?H%9bT^RXw!eH8)aG1Ia-@C{WyKRy@G zsw?-E*cq%UPz)YieF>`}tM?wfpe5OiMWrnbzSvgzj?vCvf*82`eD??*tzUc{5p(v) zlH(4a80t@NZ#B$~DNK(jv}ee%%FCY1mo;!_x9;L9%e=BZtPa|#wOw*}csTLG5!)cp zK6i>E`h}_bZ>+Ea?AVVu?ZiqY8O#dM1>+>L7!)~&fiLtBmIuDH22cy3)KtK-4aJ_J zSq5{;clNl$<4T6st-?0cu-KbICyu&K6@7IwYQIbr&BmUTxS{d&#v-+0kK7kD{`@=@ zud<*0qH^OgOD56K{&Q!G^z-f6qMvX69*ulMR1B%?{n8K8>=-){6Zz=z69MeC@~2U5 zursK9msG3)&AD_HsdJ2Zw{z*A`xT_6|J7+g-LSj(`b1jy6XF)vxyK+;fW$>~eq>R; zqbofx_Tc7&Py0Usd;q~=)mb8ww@?oKqmcF6`FDmHynmpYtgBk&-tha&)BcmLKf8zS zhrV%rYV+#aQa4qQg!ZELtA=7=utZFsc6{yY;=p<-+=6G zNw!2qhNl~iEOs`u`hi$9 zj&^8_6-+8e97XlHnsHfR7g3->A!B@^+YvJgD>$Z)N+aGgQd*$|CKCvZf>a455vB%C z9C(GUe6Z9x3X3;DEpa_z(bzdSqv72I#0tZ>EQJ4Se@{Np zN>N8!pQI$31B%aa3d}Ix2pP8s6P$)Qh4_<|!^Ntf&Z@t~Q5P5qtp_erueqkNO%AV= zQN$rmO6g47X=Hp1Y#zWH5NcT@Q|qww)dBb<>!z)d=-39q3n=O%Eao^W>#m~}1O~ji zAacS7O*B<^(t7Dg%OYzSwnIsYhd>3K`Ju6KQm&B;fZ1i{=S!q;){xu38Q4`NUptRI zMq_Zlv1kxZ+290oMBi)pOHontL%~buU0hsZOtRED_nj26+xP43N}7%G?0G_o4=z0k!WdE8X=ydk-6yRJ85#K;VmOCi z?v%eHh8ylqzMs))AIT@Ro(vG7TSbo8f-0&Q$wkk{=!0{zkR`-Z;C72g=YZi09c?)d z=ekkz{5a>vjT>=fSAGAaP=1f)1{Ut*!hTr=;%Udo(7uX%G^b-`=I`hU>eXfz7Tub( zoxL5xLJSi~!5Ckz4sZj_URp4iY*64aFS)TA-kNl0$yn)9F0j=Q2CBQ}FGf2r=2!Ev zpc(jx`>A^~LpSbw(YIB)WS zStDt?E5B}gMy*rl!G=Qk8_P%|jnT*ndZ*?dYD$y{5D-?s1#lRLV#N?i01EsAWhE&x z3E>@j!QTM|j_KHyx*qyKBUj?OLlJcBeNTI#CQJu=P77O|iD{i54nlhjYD@MnG!^Zt z&*wNaDznNS9D3+0z)ii0Z!LGsy~m$!t=V(j-)T(1`tY&i(U<$qf2q-Vc_Wa$F;ko^ ziuMVQK~BOVq*h}6iLXRIrm4tdNyz>@;VI;Z0sz(bW|`{69j&`?C>sxLraCj|Eny7g zM1ZukG`6`fZokhRHE)o_sZHuQ`w5OinBk*@ZERH2&&P~5Ybnh=kZwFrIb5AdMWa}q z^;9sx+4t^0jjckq68A$Q0D~RoVrECff;i-=B1c0paAMeqp?)iK$O9I@+DU>FhrwH8 z(SRQY2m`Eiy5H4BGomBf@vwE5?{B#Dh|E_)-zbQ4hwxH~M~y=_EACn2iqlZF^gK(L z;Xd!^c;%75^k+JjHY?b)BU+(CRK_98{N;@;Y*Dw?h5z7D{bo+ZZ7Qkz<5TT~Rrh)f zX~)6S0&@fgpb#1`+fyiy*KFLV1w_+p{Wyf^7NoI+o@EEy_MT=8JTIFaG;jzZar0n~ zJ8{+13x|QF$dIBM@o$|z$h;dbdfQ{c)TWGRb8ou=Uvnwt$$GQc(@&-2S<7c9W2`Iu zW9R1Qds6B`#ET}A>h496R|_=M2&5a31TjT0;2R`pABb2(2z!QR<);EZw?n+(A};IE z1^*+54H0uBvR3s-e10*%JEc2IGqgxT?k(i8t&EJ7`zRZheMOd~Z{KFQ{F`|frVp~Ge!`f0>|@AWo1 zhq;_ABQJA4@zkqZk}qFqTuHOr{Cg$QX5c-ys0u!OB$T#K6eChd8!2!O5MQy&kGz3h z!41UO(1<7l6n}Vy?HjbqTbOaW)XY{IUxtFbJaW#$!qTz`r;gdXyPFXsJ2*Kpr=9Py zRH!ix#Q4IfU!ujm=tjWnuw$yLzVHYI@c+u;bBB6<_f<(yojXNNAzVK}vpTEn?p;6S z=MUUO2d+~!l-{WjE%%~PmGH!EUn;u~g@T%%J5;6bqs&29r-~4RSR`zHWOMTy<+w;3 z4AsOuh@$?KDd6~PG~x$A1yRg{$njkN@@Od4WayrWiARV06zjmwaeeP&h|xr$CyoHI z&8sPFXtD1`a34Ds_>A6nS7qoJj2fm#&fV#mTYd37FJpix-)6&*|6au&-o1Ne!nt4g zvRHk6Lwly(wr&5cmCv)ka%Hizf-$a8le5|eIsqbVkhL25|IJ8f3 z3|vecxm|BY&U-`8D4oR;N17!Ax$G~i@d+fr1-gXn5pJQc{qn!v_RAIYd$KGaWB})s zR5tn^P00GzJO8T?Psw`&njZ7^lG2P0-|q5z6i)qk z4U;l@ZeTYJoT;+LI7SrbxKzwVe^sIYy^%!AT&r|)e>Dw&E$s`JK?LpzXE zn4@(v43!?hV(%^}8jML|eb-U=fWKfOCidwzf#k#6*SkOf=SqMYXPjX9xFkFG9V|_% z+q_P2XxC+h@Nl6rG^&^#_R!Duo1c7_RF~&4)aZ6~B3L>+3XNA|LM(#Z_oP@%v?$>?{U7uZ478&BSEinjhrC!W8%+X^?y9>l%#^*zn>i1@t6{-8b9 zcGj3bMqUfZSYb$yH(e1=LlM#kjL$k>w$|Ii?b@|KoL9S(?FK8c7D4+R3OFrRj~e%{ z4I~lmKK@G8y?+}#zW`O>tK4u zB!7sTA}2Xy-?8!|ub9U2=;#q#R%FWtj& zKgW*cT8XLx(FQ@~I){ngiViZ@0KtbC)n(=2(k6$&NM)l}9kC;zGU{}=KAO1B4(qi) zK%PR&8h>ThFPO|wt>QSCjH9!Hm0O}eslDwJie|oPaFE7s=%HOXw7pM^Rm{N{L=QU`* z%m(7Yf~UjRcXiYn>;jOS0BDO`c-_RY1Hnys>9sI7JEUxvslk_s5LR6>LJK{lgDsF2 z+Ppk4^cgtlCI)I#F$~CQ-(Q6TppXVLB&Rts z{0A_R&6Z?!_QvGrON8#6%e6g$clqG=$VGGyaCWRFl3l^`Ex&U!wf6;}v(_O)He=w7 zhPBkA8i)3fa~=RkdyhXyQNXC_`yTUissR{@O@tj2uTm{(0fto->?C3$r>3EJ>LnR5 zY}&MGY_Vu*QMBcq-}st!>l#rlh(QAKKOqwgo3C#@?E1@!2+!lYMO}X-EuW7P!pByj zawNVQ%hHT#dH56F3lkVUjq!8hJ7){O=0Dh4@w7E7+icw7%fehtCy%jB-!WSW5qG`& z1L_QU9tIux%~@r#Payw`IqgqAxq9fsqlFGQYHk>CVx|o%r-FihAi<q==&#inrZaC0y-GWT^99bRH?go}#c>MB44 zZD`Cmq%h266vsxAlXfqP4fK|y45Z6MK<&JBTWs=)``ha3gMzQ@??3p&Ipo>S@cY(x z0AwuCT%hPx#`lh;E<{>ID?1;luKIdvDQSj)CXI$C{sQv(`-d{3#97=p z;-5vGgwEQ*C(gz!28^{lho&+LEsT?TW$wW7n8$$2<0vS_wcnd0yP zJx(G8;cFGE`^0x5+mU@Xq8mf?yZhF9jd%q_Gjc~(ZsmUJ)o}<6-L>6m>_WGtgyyNt z%Ey}_XS0-Tby(>!I?$DEUgy@H!kUtLLdS0{R^_Woo@o z=-MyoeYff`V_;--zxpRfam#u{9wto;hsXV3T6aT^*QnlkI>CCb@k>n-x4gj2Sfhf1 zwoWzztP)6>4B=OM6~|~CklRUZS>#MfIcW5^cm3$QTpmi=kRC(!%0qVhN(E+hEj+lS z=K0t@z9(t;=FOYq6<_9M9W)s@qw==+^Ju8~DO`FYdfNHmty?8QVglc}0s~tZtMT61aC8Sr}&p449S9KG>(s!}-=QPWL)2`YHQ@WT&8 zQ=O6u=TZ0)P+d;zM@Pj$6Aps}B7NnY6*4P*eYAE7rM&7osi8N0svlWcIbhLS-MX@? zF2|#Qh3*!0aoPSyLY*HJvM|K_coKFPen$`iOeWpiHU&64erwaf;E?xRN^*tqjspql z`4`V(V++IxeD+6lgb9~-OOG80=pYhmG!2@scH@+S*)AU*xMpyrM15K#2f0hKQF;=L z%E%x|OBf1b(_B>2cN5!SEDT?%pGbx0 zswG4Sqr`jeEg7R2X0lE$XlkP#qgGiCDJyliK>uT29Wbjt2%j`TZt|GS_yJpxiUK}O z#K^PS5L#DSi@Mvpj8$lMK+J&FW!vX!Al@U9l@Qw zkop9mMS>e;Jf}5I;l`{w4z3QUw{bUxH1r^2X+ypW(Z`c;;XABGS5Sm+!0W;KcVOu8 zwZ3Bz+Y(AtZ%4RQ1mw#*D@Mi94_ki=7EcgGUU3_Gh&iY+Y@w9O@+0$poZGKRRHCsb zjy0zsS^VhvNcZp`(fQYCHv2}9L~CI#oZ!}fR-?Xheu$af6ewcX{0;EIAeciLaK z%AW^HZx8`JTr24R#oU6JW{? z-8FKXmZB!UC4E7?3y$-|rN_yD4iQx(wCvOx|Nq9#nxYepOTh+5`XW!GwR9l*ErH`R ziO|Y0LgzqC|9D}9k+XrjN#;pzZXuObbaW(wkr=CpY6};3$9I(%%~nz6^{xWlw`lY< znF@5!G@RP)%!;N#$hIRy(LcA~vcV_>Zm9@+u9$<~%As~7$E+w(!a^b$8Umd&{G~2k z-@EM*#Q>3kc91^SD-dOc#ptU<@Vk%&>A*{+ozsZ04aB8{1O9cpok)UCtw2_LcbL^j z93viU+{1~GUFOiu90A{m=rAwRXu>pPr=v~x|4JYWe?5xc@Ygk-LDsv zso`{n%YAjShAaSOA+e`L|AW8s+=?KG{vrCf%0K#KkG9{-z1IEvTP-rInm^_{oJlZBz>4zgx#KR zv;%=65N#d=$R-t5H(NA<&g!AluPmD~(CR`dO-Uf}ou&7_)C);ko$J1E_g-X_#Ynyb zkHSvH>zG?(PdCNrC4=g%9*@hS|Az%kQv8;Zs2#u|4^TzMMLz*YDYbUk}pm z;ig0`*&q*|n`_puZ-X!i*kioGjEgz$9R&MrsGr27uv#$Z45%gvNJQr*dZas+JV|WJ zXq)gnmAWD5%b6?{`yc)SFfBYOkvhj|-fIl;y(s1V3b44~jGIJ6)CxaR_vmRLo|eD8`9}7i@A0_%vN*~&j*E=H_QaZd@oEq0jDWxQU^``0;X3cd7w~)<={?XNEcBh=}r5tT=@@9 zZ03hS7uOA3{sX39kJ!3!ou1mzBfrfXFB%;!Ee<@H5re$1>84;Vcu^kZgWv}kPh$Q^ z7J_`DrYzXPR-CmGM9ie7CQc>cxvD+=^eMa<$Y(HYdvWRr6vSE2^MEkce)}4F`3anv z6+I&2`M^CJ0l0}!YN)fNU$7$7uWIRnxrsca;=ga{UZn6t#_mKsAz z;)Kw~7i!Fc_rKr&4oz%l*&6XkcOej0CICmhMfbd5YNcH#;1I!P7r7eRJjmz1 z>c7}$0ZSk93QmFuW=Vem`)q6D_v`pE0`UHShGgQZhs?>T=$;AGL*@hl(|Pd{a4y=c zrpgpb0`2bpz4AD?i7w?YWH)SXI5LD9tR%jXTrNNerjmpC$T)!d^97zyyuFbSmJF4K z2$ff<*?js4tkf{EwbnKwIY zkAmsTPUWG*G+;ImAqyR_uLgGSEI;%br0)U{;!wooPToEI7X}^$1ExVksUoNXiDa@k zb}o3!>InQ3ZbCBJql)eoe9lxjoffe;gBWR6CuZ}!ji&ne5G*RpRc**8K`&$os+X9L z(S{N|4Ui|RFV%sFv}pnEHV1tO5qaVJJz}E-#1n}!ED>AFhLCuo4>XS8v7msu{A$Me zOHRo7s*d%04Ed?b-;`Py_4c~HIEV9}_g~+W5U(5lskn@q*f4_`rd;GI7(DmV@uT|Ir3|iD#I2 z)YbgnUrykb<-2!3Y1~E3Jg7F@Uy&o-)kR2RHjG4Xkal}P5?0z5cwy{&HO>Ds6WKDp z-;r)C4TZ)m((r`#?%i9{jca|D2xYnT6kh{C`HI}TY^$Oe)C>}WKRu~lXwMH0lgR-* z;b?Jpasa9~QR(3+CP{VixgZByNQZ<5*#^arsEQuzQG5AAq6{Dh)4SPJ@urk!1P@r@ zaVHSz*mS<1Wes0@hUnaca6^pHM4u?_>gbWZeNsSAArX z1Ad`-!>;y};L{7!m%=5C^|UnH*Sh-xUXY)oA0>HfxRq=xu3&@maUD;$i3CG5HTn&* zIwJ6dX{)`^!P3WOHA1Q48^kEq(Rdd9cocWlNHANwF8`^_!SP4zUF5<5_32jN^(-Jd zC6Wt{TTb@BV5Ni$=8aRlZnMPm4b{QPo;Nr1D{`Sn%b&lOA#8t5Iz6N-C0N2aEypI* z@$;dC3=^LZMNWZ>@W-6-=#|hMH(Z1m(Q)LFQ4kc3<&^2J?up9NFuH$*W=AFx4(ok^}l>aTL7{IK!}$F zmeP)6<4T+orDYYw&8VjuVv_GJMEKKr{X9Mg7E?2b#F7m;QkDr_o@(+s5AN{4273mH zb{k9|nmSDq9m5sz;YLSBUfs9iu$fmkuwvM~8{tO+speQu|0K7J_D zSQ!e}(mSm2Q!{FZ_1lijv#FY)3hlWsB+lQ?vG8@Ah)Nj?iy{RGO$>VHQ8StAJ;5SH#ku%balV&)d87?6^o4`puL zcwNx;y5P6{08?P}_MVG~pr6E0HqOf8DbTvKja&-U3YN4&h?GbeIRt#N4a&Lb-|`Ej zKtt-z6zd7^$xL<#db3<)9oM|mpZ{PYY4pFs^9vQ|-4yT?^ zN~n#sAeO6XsV%k(T~|C@0s=XD38~@ws{}&%yzqJS>VOku7MZOgTS>q(AfkE{GBXkvgZ-UIHaKm zd(1?@2Bk-M8I6oN```AqrDCl4hQl(*2|sG8@Bi4mR-ip~`m^dRHLQ*5&aOy@d#^y?hj8vmjuPdg~;c(JrA7iyV+9g(sGL?i1w#_kU54J zwmlXOz)8^SHA)=}5CNn}W-vIt33RQvV8`?_A6>dN-Wf84AyT>Eo_y#OLSW#-41YHK}+K!Ync*?BMupm1y+3Eq4mYTn2)2q^t6FqDFRmIE zGM#alq{9)J9)(RrUk&R639=zAG%(;(z)i~XT~4UBg<`EgS**=+y@lBDp_YB5oDnW92u%EAHIJD~-8Wh#Mi ziJ!dBo+|ubjwf1lw)T#c<5kwG;T3ie0s`ScHrfs}=v9Tg%NDL*k5Ih>j1nKI_3y!h zNtKZHJ{z;pMG@fyG5rC` zK7sZsG&)+V=^YhkAt-c&S+HEmuK$G5i)b#Q@>A|YLWo(5n8AqqnUC)_(;>=M9zc7+ z#FA9``T!hoMEef)(hC?P2o!)RR}bFm@t6&sW*iH$NWH?3?l9~D&JV1b8*NLJxwS!K z3~1dXQB|`9>&p@|g56IKw}cAU95`Z@kivXz)@tclbA7Z`qShahG>DeeFzD=WBv`wO zt=`E6I!1`Coj8W@^qmB-1LsYK74%M!0k{V_0ZRis-wCjKB4AyIorA+OLpp5yUAS+k zhmV|uSq3@%1Jlq3B@o98rd-{e474C*F_4K^nHZ*6qnGDy;b>R9BUIXjV{|II3^k&Cks1ON;LcNguZ(hJAAQlyJT3K!NG%i{yaf% z-|ENT9dp*5NmsgMc{+tPEZdo<9TtwRof@@1Sh0joCKnQ&>;7ukZ-FE;c#Htxgt(P& zW3+Y8iy0e5m{&~&rv*^?rrCK?d5*GBI;w$8ki+=RROLTK-&xhrL@^xb|4soY+=&n! z$I=|c{5?X3-LRasJZruXW!)skAu4Ai=hBiRYBcNU(UGRNFr5``HC!9{i{E^>I`A;D zFrXZXq+Wr{-Ip~n29^}jGKHvcLbavMBEEdkDJGy&U;v z=Z@=HU0uBqK@isEU~L_Nruf*5Vw6BzPXdIcbcb(T-i79XB!yqnyg|Dh(Zf8Ow7xb zh4}x=0)AD{7xjJpMScJb#N zijI-%IV3kSay$VRu%TVVQ>D>?7=2Py$ZrKE`UJvp|Lr3gL!Np?{?5ai9sI*kY<&N; zFt+?;YpYdG`2*7xc8;he2Ss-gXd=7o7ZxkIeNU!_z+5=p6v~#^?r|1V+)1~9F_9+W zbfW4)b(cVX2GT)gJF;++kWxq#!`L&^_!GMUK7bE4ogmSOxCOcR%w&@x&}Me}rxYnt z5F-}+MfQQ1MOrw)k_jD3qUy`Bv+xti-LZ$nn^V|4=>nLTxo=QwK-{x1gJ%sje6&%c zNzCp~B|~eT``=bK978oh_MF!4?isJEJpqsswZl>R*I^J-Wh3kSGgxU*9tN)TDcK5p zP8|iZOcEwgN{HOy|0eOH6)E;!9b1O#$CYgO>nyRO;23SknF5Qf@q@BzMQ=95oajLc zhUs-5F|8q1&dyOFc`v##C{Jqvw}P_DUz{3=+v3N_tP^-EETci0w4`e6FvIG6G=XMt_iNm{ZDoD zxrM(zZ5Uw^R5WzNBuXqDfXoNJs(aQEpB+(XfkZ_(t_f^m)NvP*`H&FNg3^tInX}L+ zjE&WJ^-4fSpJJiY%2sYA(Qt>YRl&zP;jw~sl(c9eY-iNe+R=po2c%jaZVYVc{?kL| zU?g;CUk&L3g7HHFasR~h3T;7-z^IiiLc)ld9XOmJK0IiVPK*}7pfGf8C&YbomZt0?xfjD4f6=5heLaS5iarPRh%~r>|)Bee2;S1s33i!E&s|{9P^rRWiV=6J;u0VWOAf@y*k#_rEQ!U z97nlk)TJ&!u1FsFlcqA>J1x!IznQKTjuJC}h%@7>r{nw{6kNiG5YakOB47eWOye$` zL6{(jjxPZfR8~%qOTa`f<$_A91ty~(d^BqQQEcnfGd>)({&}WVuux+<42ZrZ_>PCU zp}Q{`Rfy+8*NwqI=QeIJ(7Ol{#YzaaeF(iqk4M~f=z6U%CP3>IC4h8AO+vf(T_0jd zba)rKl{A4Qmj??^{2VT#od*u$O&o%l%4N554}8KI_Y8&X8;&@8KVm^dJJNcKW;ID* zm1&sh=#csylfu46hJIvkb_?VIb9jH?8Zka8I`*SBqI|v3Heku<5ZZ8>v!s*v3i7o4 z{DeawtRch+B<}s0z-`9TEn&}hj*WK}JZs)McN!8hO#DzLh~^d>rJg-uROG7J?CF{5mNE2nf)^ z4wOn%NI5yi0X-!DMVJBXd{anvO>?u98KEyHTb)}=>>msjypBFu3&3r0Tzu?zzs?KC zzPEcOK5lD>*am>8J!NKPy!V=G{cqmYlbz;F8UkkO0{d7F?zHJllFGX9v-`Vc-p=&Y zV>WGl&vx4Qe7t$QE!O+)R%Nzr-u18hc{}X_=M)QnHgwKR&F@eB?RNIZChwoUZ+?nX zPWLP+p1e`yn)=m`yR_*5%|tiVnKRRwr=QX7Jx6(I#ccO&;|A{ZpesLpL|~mi+KUFv z9@B+=xtBU$U}<-^(GIl`A;kEp!~#=N*VcYd=8ym{bq^#0;c(`@ZG*NdDy1y30ck+Z zhwMe~7z3pDZxG{S-ZC3f4@6|dkUvzDnUj;e{;M%c9KL#0On_xAshRihDucDt%LYo6)c9b zZXyR5_A+40%$qldoBHPFN)pqrWD=hk7hUh(??CJI__@XImosw7Y=GKuvvAm%RH!s? zm&1M@adaGJ-KO`(YWw}GP(0EJ2?=r4C{wQY?p4mnn0{uMeI(y)ek-r6^Qhmd{L55e z%>*s9vlU~@UmkO2R%x=b`B!Y6pSxf?uIpH&L= zuso!yZt3OgJKUs2-__GYLm}Tm+EQIH#N@Ob#+e)s)70f696K^MW_Loqa2LXSkx>&9 z6Qoz33=ux%*U2CW1wj>#KS}O8ZKY2*Ehwv+)`qJKJU7bSg`f^!Si!wwG*=7^4KZ3A zY~82+KxpQV>6I%@7VOOC7p&Lnr>@dZ4Vfz5L$g&yf1};+4CT)O(yc74Z<+Wm8bo9vyEY5K^p}$YZu;0y7 zFtoN)z3!8G@W7O*i}<+Kc0o>(?(t3h>|% z-uxfjtx*cE|NHC8nmZ=L*6&;kVX}WxkcRz)R zr@B-5xWbt?dTzSjt9BZS&2(Fxb=&^7;p3K%udnSPm2|XoYHqFq2czSSwo7_?ERTGB z+o!J>*7yFvNIw%JW^QfmjX|)Wpy2sL1f{$x;`)u2oj4xz=Euv*v3*@AEU4|bhpI|r6-zVU)?QmPH$`>vqUWv? z@UcogH@PY8d4)>G@{c6uy}M|z#=b-kpqJNvEC+sp=VeaL-N;CGh%z1m!CcpUNv{VN z>jLx+h07xNj#+>+r0Uci#Uj^ZP(t3%+WPwXbC)jpA{F#Jn3L<^?~{hy0)bY?LtR(c zAz|IJ3Z}hN$NBhLR&$+KjUQSgu9ry885E;(yy4=#KZb_xU^RF=vDs^?cHiw}sP!&V zeW;#T+L~;r_KcR6YA|gx5A8ssN0p-Mj4wl&2>Wf#(Bk*k_a1|OjRs78o&C0-IP?Yq zLF|NWs+RZkxNQ~m=2PH)22tZ9FK6l{u7f?|9{Bl`rG2;`)^`n!j5x3<$QQNW>}KD) zchpc+-GQevDtP#;w)T1yjt7{)`DA4mh9;byowq1l-wQ+kItK@b&;z^AI&9(b+bhm> zF=F^U_|T89%;_OMJc^{`M_cw$6L!T>$lkQ$vCF9s+W6?)>>%m~73u zLaop~8^CB*wc;`Rl^Nl>UbwRtASn9gr=`3OjK(ogRg~$?nHR&D19!iCN!fKWg!kbE z(`>2cAAPiaZ=3pu6y0_m`1NzeG1`0W(Nz5oRimlF>A7YJ5)V8c9$I&w7_ zBop*Ry_Ii6Y4{XVMwH(nI>BAL)}hg=$=)q1%Z~P~5+F$Wef`u^VD!+7o@m|YrOvbk zu_E|p0X1e;kU4}|bm6|egb7+*fTh|@%)rQK5EqW(34zWtGQMCaqtGnsIr?cBkdA+P&Bf4uY@UxxxUI7+@S`5Uh_?=8MxaOxyCIXfC-YICxkm zyC+{@GOjl9<`ONgZd51U#%bv2Q~-0M?OctJEGbWp7zGy= z(3F*U!o+&dKqaw+?3w2%>Gy*Iw;dhn*TxGAX3R15JhWBfITyQF04Bk!hAHGOCWp_M zyW({lHfrHC#*6w8sKX#GFYlH7+*}n1SEn#e!3Zsa`%Rh)Bw0;ro_}qvrKRQgvyU6@ znnjuDyXwc+7o88wib%`Myb|UBSE;8mUm0Neqqu4mC0JVbAy%V4TAB%};B)1V)Eh7{ z`lGq!+qZ9DT_KRgcp#4kC9bl`+N{lLdMO*B&VL71Fgr#|Q}Z3jY5O0aWMdGAZRxy2 zLV9({qNe-K8-Gsj_Z1(iwn`8xe!Iw*l~vl6jTS1pC;6BayKjz|`4|57lDk=1Q&oX~ z4}I-6ItW}_4UV9I*oF)yXrT`y$Bt0V9O(tN=z&})4sz`pEDVM363?OXi)Gc!qfP{?4za}&-j3R?_bt&(w| z^YW%TQ?kmBi)y5SW^tA(74uS3Sp1~jz~uRJKa3YT(~a489#tyYZ}fl>T7yzQ?r9yy zyV~0%#l#MQ)u264vRkLhb!w27=+!P|iyXGG*@fxpA{7Ni&JX{+=SnG(+xco^ z4@%dI<#8@AG0f+#jPON7M_aml9vL5BuhiGPgKw@2V^`I&r-gxtQA{f--#ckeW!6fwu3@D6HBObJLnG%zT^rW062GFCvh@8& zAH&k(i>2>jLi|?}PNc4y9ba1?%fO|uM&YL5*<_t&gxRlB^a~7RMzbFA_N7e@3^x9m z@(!%Ly#CNi!moZgiu<<3BhxU8Fj4R4!cL0~I9n z+!;@}myZvtY#=(i7H!V&!xqTCU&Fw#NtXFoBY8FUy&A8u^l>+HoPyvm#(d}1%0rQ4 z;m_eie6=qjhbYSh{Ad)g3x2pUpHG8NEldExs3*aKUG{iiyd8Y4vf|{SN}A_KJ&_ z<6WOl6NV^L*VkYX&LY}Q%|yM&)|zoRali^~(vOaa@B$_0&8e;e_SqM&0DWp`joC*q z>(yvsEk4*rAl;cyOpFCXsWN6Ns_M-JpK@(C<2Z-1IC^+LwrEiH`%3Wh&3XCxu^FQ^ zrjOLFG!gd>aa>t;oB#7?2xo8P<^GrFX)q7p$HPWS9EWDIf_VmKX>uaRdPCjs&)#_K zx$;~n!{7P$?yctru4MGRq1k;Vg!if-hA*K{R6rhQ#GhTU1qxB-d(mJyvisAGlMp|H0Vz-ztkWn4%D8UJ8*UPPyZl zmbbRb?LdD=?7G>XEKvjk{tZ~Ei?>;ryYnvjU_4%%`qwp^k*~G~f5?pMVdO3N15q2q zDfw+}=n*t2hjD1G%Jhi0^*Lxuvt!4T^M@A#4+_$}d-qDJg-3y+cYNme^`^M!fdvPs zPLAZWv)3etFD|-wXSH^oDp~N%yExqmQV_(F+ELNCa&_+UiHUvK$M*;Vr`BWBmtcsx zoh+s$z%mP5|BG^JGg25oe*8E9@Xnmi!hLEJk;KyjFfbyYos!WW*I!(ofyhTT88?J>>Q=F{`X53O6iYmJ&cc>n1hzTldx zz1#dGM!{0ymGpno4Wsw~R4jZu^ceX0`O(21I(iAS`e)=RU*#*`8d%+_Xxpw?a;9sf zVcMygh2=}DT>d2*zM?>~^Bw{_>&RysO_F+^K*bWE=}k5OyK?LNTEwcct_ zOak7fh=?zLWpnS{qrG;IUr!G``{!@pc0JES^^wbF%k}kTK*omf^E^-nJN2IjRD0`} zWB#19ox@{Z3b^=-va+oBS8U=XEjGX+cBG^pR90RE1bp4KYrikr>gecXA?lQZ7HzJL zJ-B+H3)c{i&iiq3{Z$Rpub@@EsGnhM=v%W>8pV)E#DKNgBW{e$WHmKw6>rRz0#`g% zeBEA0O`tkI;Z#zj3v%_bChO#T+3Q0-Rk7cmp;b&~* zwtdV69tXaA<%I9S1Cf$4O=qGSy!+0*d#)Kv1bCF& z=qSv)?d$Q;afDSsnN=v2LT6}5bt1KzNhK>Qjsq=A=Id+2`J-xjEOtZpmyYT`p&ZRi z+vn}aebol;hF1u@ z?J8SaTlgDzAP|c3Q_&2l@$~XK(jX43VCHqRlJ59Kwx8%mCv`#3s1mL`*N zpKv?rq+c{&K+_0a#V%4)O&~^6s|I#XY@%=Sv1_ z#*%tCC9FJwd+(I|tI4^FmR9J5aBz*x8Yt0qTp&ZofY`&i^ej~5kZ7r+!VG{@C3e z55Xr6i3Bz_Hl>P(_*-n}Zk3I^d(JXV%rwxwD@P?68!Ih;Fm3w#$C3Q#h-yyjhdL5x z&n{qk7co6_h?;n}Fy`FR7CemZ<`~ACkXLW1!pMj|nbPG5^ddf%T zLJ(FA`1~_zTI%Yhz}zMQv88T1u?$RN4bHO7`q*uIF0l3J86YtLDBj@_bejI60ayqD&%Cf%7j|@i{CEx{G{(V7jBIv@`H@T%&}#(j zs*=*41IFz<`ZJdf07OhcY)>BMtM!eHjC>-kN+QAvO=Oq@H_*~k|8ELmquOzV8c9VB z6y4a6ekrSf;>yO|EB@hOg1lpSrmH9G_9#{PO^?NNbSN!MD~0ba&9N@cFquAPYi+&Y zQUB@dcUwljOH)wIjuswHfLVTkDKxi&crjvz`2y8nV%5v;+(R7ZANYxYokGEQ_xF1A zphU*(?5y^R5|kNJZ&&^@;asi4(A6~|n7)ylTU0Y$Dni_nkum_`bM-G*EDxIk#q5wy zBialxGI<0r_%t|I)#H&iMJ?M2_cL7!GqZP9jfVS@v>}zJD|dGIp6tsKb}J>WwU+J) zN$woIN!9h*C0V7T{4JVcA(?SuXBU^E?x=GDOJ~Mhs0<%VK$y z9rl+Gf@YkYnK^7_WfeAqXV2iZvnbepi2%Q^tasc`E#Ty*ctSr{)l)5AupM<3bkLsFi>aAyv*F9A`YHE92MN zb?D7%Bi=0?nZE)ZbNs>ERe4 zE8H#BhOz0Y&d$x4Z{I^U@zQ0+LRne4w6c;8Xp|bRjN=ctbz?j3xF=r#M=(D>@BiA9 zDl)D^Uz&zL*XCy0q}L`W^L7 z6FFP{bc3vMPHU%cZDoM}Xca9gA2ccpe8QsfTsiB{&5I4Pum!??w_dp9GF+{Tu@umAQ7(~FyQeUDz>h@)d4lzvNkJu&KtLkCylTkYsBUx<_#ORKL3TQzJ`(UKFWV}ir0FdgG@Ep9YjqT_z&nm zp3G<_#!h(Nu^L4|K{{Z4x0Lw~Lgw2Z6{`Lm=fQbQgDxHEcx2F`*{CZY0!R$|VLY&5 zV5IlGz1Lzl#a_6Z4$22uXTzgj*5A*YmzTF!O6vaW*Ya50=moL8tsDn?z{{6=AMrxo z$HN27B}CbY&5-7j^;fOU)t&-^f)_A9B1c$^kR+Ec`=L6R!epVYtIIYk`RLJ?<2z30 z(+O%*q%KisoDI*s!v@xF6-C^Vy7x8BCgIxTvm>1km`Z&)|A8JmsNLPCoj$PbiKQCY z<#~W=iSlH-=LO2E-TrnnGrMCLQAPL?4u~%;E%lE+YGw%yUj&x7bSeoP%jDj3rdSET#11v=V$&%QnP4(*XJ=8WBP=+Kh z$pXOdsKf0cyH-f9BN#c!P7bW{!MM9HQrt8_?{=kYB_?=HZOW233k zt(j)42F{+)cJgtVB`cAjP*5l7ZMrsW7Zv@Z+WkyzP_jiV$r*`~aV>^KP!V1BQuMB_j{eZ@3S5^8Sb^IEcC8E! z4i2E@Ql>gx?1a4$@O#@TG6>$TdaT!fXHF zNjE{X9FNE5NDNF3rTOMO!5-mEwZ!^{1ClKpnfB~aVvQDBO-ow_$l&M%;*cky759$u z%84}SWJu9phXwX`@82IWJdL$ickkVslJt*ydEP>1{f*|8PZ1Fj=g7RL;39Ux)HD#R zH73P3TOtoDcaxX)c9c1LE*>$xy6QVi*lzvei3K|aT|PaK|9_B0O7#bv^XE`PZ`<_0 zx%mLS^)sBKe93%=Nnl!{jbzte@qK~PnVR8r8>KU}bQ&@O1O^QyZ@NFQeZvbox& zJ{Fg-Lrh628yR7*`_@5a=ffJgFQG z`1Xj0)pj84M7D3I1*=6z!OAK5rb+`auFyYGC{|ssws-F3k9R%(OD81I*}~ zm--wUWhCWzg2R0VJLh$*IFFsfQ%R5uJR@Yx@nsC(!T0xQuFZ*yFlHWw+hzxjLlxZw z4v51y8QYqg@?THi!e>6excIK6MXaiK-+^RX`R1S>NETVDlC+^0g=+quiZ}Q7UN#fxHyFUE zfM*JF3HQf%@6Y=WZmw3r^*IK{VTpD}?P0WFACS=czM|qYS`aYgTRnby{nMO4Ke(Dg zz={#-$}6W03`$YyNdKm!MB%hh4!Ht=w+tOypvZv9JM7za9ASO`ADOTg5-^tz^diCZ z>A^cMUb@tbzy+8<1e-|WAz`8zQmQw|%F3?IaB_BL+vi;XGsELZ(6m9kUXPsK$+Hsdr^(Vkqh#Iw&%l5ib0Ti) zlJ%qFz&`(skB^_Tv`ik`qD)r~&=>US9c8{_Hn028_?n{T7TlOi^{VlzK8j~?3m6@G z6zvFG6BKACo6S6+@Ck(ncX)kn2HuW&L_M^JJX}xKGo!`ueE$5o@pm9$nXH^P0hfvR zZlIe8Bi{=Qx_~{${+>s;NL&902cV-{mHFEGqR83s`X0`sOWJa%IP`zolv6*At(r?*CkC>w`&k6LEyje4_-}5FqH!9EHyf46{@4G%Zuyk*0sHT=y zInZK~j*f2i+0mzmwqQI5JX+_=?xk)`_qTQu5kV9RihS8`1U)M!{b6Aq?nDC`7!~yp z@uu5*Xlscg02y*jXj?ece-A^gcME(R(I!9+W!Q+^WEM=`usO6U$%$=5A0*>4Er8H- zU$BH0vRBZn;BbF}-sc;W8XbS;{q%SsD$K#pV<9{s4FGKX0|YHPz{2;nbH6Sfq=+udZ&XAD9vOLx5t`=mr=6Z+ z=9G+uOcz)_l`+AJ`>tP4PfupqeTW#wE4dN8W81kyd@Yis@?57$u4lcjn*L$#sF&9? zhN4NlGEY&e403HY!A;_mkRY&e&lxV*f>q!cc5*)W8C~bQrY0tGf`Y(f=H+F=13Ek2 z#R~j#nC)u<8y=T(FnfeSU4jOS^t84A$yJOuC_z822 zE1j(vj%gGWJ0Chse02S>HWhyU($?edIY+-*Lw@74Ig->S zUp8{AQVB0c}SQnEqT5D3=wPjWt+=_W&i@<6=mSkr&^008o|$QX|Cvy)ovZPo zg-@hzL_)p&{N(xhg#~G7?bn*RV=;=gw&d@x)(J884eXIFHltHRpVu%-(FCkKPU#05b~cRnp@``4Ye)A!bzwu6fdSj$ zi@imgrlzKD+W^1xLPrk4(!-dCUbD9jdSpzY|2-rad>)`w0kVW+=O7uVfccb2BMR(I zB?ScdTHMIw2tNHNG$jy=#G|i^5HnwgaK@A|D>EgO7;-R|p^<@LSs8gH%`Z;vFe$Xrn>{(a+NHI=+o80tXmGpu%c~0*6 z3&v8j{R+^{1OerQE2v3QRv)(Flk%a4LTXe78t`fw=zalcS|0+kkBE%4SL5P~SHNHc znu!DLLnVeIW>(fact6kq3}UT;3NE@m#LhZZ0yK62kuiv#gVFB#^p~|kK|vcJ21TuS zhBj}@0e1y6vB)ITAfDqEZ4tYD_hQYY&oiz5&g8UaN+Y!a)wxxWloe3FTs_I)=}sAW zdhD6mbDL5;;tvmx3$cI>E+lBCDp5;Rk*@Fbje#ik6PW}mA}dT=Z30pJ+Fb>{|$gYqqIQSbTU z#f$r`tjyN=q#p+MBO8mRS`qNm9h}(@=qH1$2$29pXLPZ08O{2GXV3V78zononW;k% zOZziq?DOYsS2^0TZ@UUW`l|MCEq>K5M>=oP53qP@K@s=<>EV?-DMA}~nG|lUQnY*cG^K_HPnAZ)+sm;EY7El24jYDpmxeKj0eJbz z!@I zhqgUzx5?s=UlZ**N~mxhlS)mElAYa%ASUkV5hG2_<(ZP}+Yb2gG`PMFKK@Jo8k?SJdClG{ldh-y!-zjTfm9*-KF%Md#V$3a%F4>;z}v{4 zJR)&BEJVHrv|7G*@2)yXBmt!$q&^P}Y`waRWfux3D)wPVM+r1NB-Gpg${HsPoN_SB ztZJ{Us5p;N3a29G`}g)>&lTJjH-?3UkwF@rh9tN5#@TP}^n}}ZajG!W1Ga~Kjz2yb z>ZDBn1le)h_RgItyTAK+f147*>+tpIDg7xhN_SvV1*!C1Y7oiLid6uv1S z$AeHi5w)A&adD`M?FUM!a3G}0_J-g5yO=v*WZog)DzPp4mbsU=_rZ%7MS#eD$q1%{0nGS?yUT^yp`JK#kTD}9J&ZD{h(w-1Qk z4>R1WPq6_3o8c4Dj233YHgg6ks+iN8bmj_-YC!ASLV?*^8u00AyA& ziB|;{B{GlPO3LI`RRyrPWYsZ_+7jvdKH>se>LzC91&>b&0tjuQpE%Ys z-E7lc3PmWkWRl(s4PT5kzbBEn63{`xg9P=W#wI`7G`LTuO5Ru4=1cw#QnQKV|9tZ2yA019#{099?ykNEQ4nTM$dLz zEe}>6l`qPv4j4u+Mw>r`EB`hI5JD^5==u0T5{*thb(9^Hj4!cn=^zOhc<|=Un`-Yb0xYFnhVBwp0Slj^rJ<=+yiVDlb z{Jwtus$h!|@)54$i`glc-lMvBY2XOjzZ_kwgUG0zzMhNXWHU_$QnOq#G>!Wtq4 z9QmCH6rAj~e9{e$oa`&*+tI>Q?7Y(wME&hfV@~9~4&0lS6y@Wi2H>x*rB#>hjIjmz z7QAf%-|Ec9KP|ZM>ui$0HUg~v4-uz&2GPvt#2R$^qLLQ8eofzfz7rG@bs_;s_HvSGx?Osr6l8Ny#1OOyNK=Y11w9&S=3gjWdgw!g(S?B6 zt2IMwyS0T+tQ$BmQ4it8_UDFl)p48Q?plSQnZV=B>}*o?US8@ON%ssz7_`!%6Unm} z4sd}F;C29|-zb!A_dC4JRu9l1=^k>h*b~@W_0_(%wv7<#9t5T*38)`R)x(i%sf%W3 zsJ}du#42$g+*^c867d6?ZGzi3Cm-Q$piR(59=|svQ6nEEgfW?BoPEnEEG#U!qb?4k z3@xUW2qahJjiMBJA(H!Xluhc+&gNGq$}B1uT>)|@(ZN=Hrq;r^9kpvrm@hR+Me8FE;catooERxx;^TqhJBz! zzF+HqXSH~ogY$Aujpqe^q+k5~o{$p!s`Ii*Q3vbTx(p(@=Kvgse<=LybXXSU3S%E( zNn>+Swb#(o-@%R`j-Zs-5@UHNLneV59n8hYR)K3s88`;f`D03nb%F*02#72fH}{Ff z`C{jz&a=Zs+rqB>6qEiSw#>!C$D1X{#>wfzIx(YaR1@Us&GF!#ms9WcnGpsoAAq#x zfdWzKOran@?y){~%AP^Iyo{M}BXo_8jf?>HDj_zQPD8-en?|X+*?VAB&CEBu$#9xM{a)iiEDC>cIoe}ICtv2i&UTtetuf`;_dovxY$K$ zWmzfR$n(w}8y;y$03yqN^p-wiS89q?3f(o$Z2jYh(okio7jx+=^U|8&(z@_zp{Lze z_o3|#wNWqM{1T}afNcu|x3&Lucq z@0}L|slP?);ua+62c~S}$3TUJ4KPa?AP)XXG&`LfA*Y1m3eNb_Jo!8@6m&v-*S+Lz}?<{X9TXtMInIQap<| z2j~>klcldWKlrXn2W<+vuJZ`??1}{yqz1?e+J$E$W>=3Li&RT6=W2@c`BT8&Dle{z zf7z}@ZDCQ^e`>sw3wSMQo`GZ0rsywDIeRNpLkNk3>Grd_wnxXs7*;2nu>|S@+DE&g z2E`-gI;;<5v;tJUnby&|UNJBXeFkQ<)B7Nxfo5qnlqv*P1CvP;ht z=G%TuR9svf)WSB{!j8T{vcT-GCi+%e1G@7|JiG= zwb%2kXRoze_r31#jjrMId4JB~IFI8vbC}7~5jI-4ZXHq4uZLm>|A00_qy;UgbFc7s zpN_X82+}Hlb!<0zbXt1)T!s@3|pF`bF&NYsHHS5CqK;X_sJA%w_hXpr106!wEOc*u* zhs%V$s-v%p@x+M}7vmAGq8N9TYW4))8w~MY+KEaNg4hf?j7j%j4Vvk=NAtVa$+8jhOmtPsDna4@cI-?KDS4^CB=YAh4;9ieu8OxR)n;OJC$v z7KWQ_va@}9p{db_TAw2{ki;Etq6XtB7EKhrt~pFBAjg4-6jCoj^| z&YVtXk9gSwz6P`^ctr9&q-$4-p3Q&VsdP9BTqNd=kj>nQ6F&uovb+NIg3qgLqe9Cc~&d{hwa_CtXZ=lP>1i?Z}t2ksB4 zKnOC>?nU}3YE25)GhPy^5Zr6V$$3pM2=f)W9m;f%<$A-08RKd$GA+-D**!62HVH zrhdJ6S*ABDPsk{#7CYJqW#6`a#_lX0>SzDcGpweY##!4Yaghu%kW5lgD-I6)JXkku z(vg}E*F4W!^f}-G!{++p=s2e@w<;Ew{aDMi{!urLsajPvx27DCI6D`Q8m3Tgp*PE+ zeefKZqd9!4Psi7hV1NDiG)ce*KdiK(ZVVWckukBW!kyh(v(60{n?NhOd^^47!@TI2 zn3uL<@WZhC^^LkE)QVR(g%MZTof11D#1RB7*Rc3GB zjoJcRLK7r!vkLFX-R=@%o0KfOe`-AWA9Lz4oRk%W9Q!IFt(#MNV~5DS;9~0Y6csP! z<+TJ6xZye9<^3_ z;8*zU7A-E;R(*W#8X0*%$h_Z_O@|BQr?UN&gCohtS^YMAcX)X3o}5D$dd-fObH7LS z*o<=0SS+-Nd9GjOUjeUU|2Z>&?z=JLP2Hot3ueZ|#2}KmzH;@A{K^8?E)sz*VDJes zu_K}oe`>IX$oh`UVWJ!+YwCY_M9dgdvVKMYl4To?FNXKx&*U77lNz z)Ra9aJ+_Yal=yB;P7M1@dA3h$)8=bI`QJYe8#W@yJo$vx&G{WFr8FHi7R;#HckHMZ zdm0vo^yuXMXr`Vsj`4N&zpS(5-idB|9h50q>3|l962mf1?sfoz0F5-!kWO)< z=OPmg&(}v`GRpf`HxL#rFVD=ERuds&5aD+a>KDBwjtMRxdP)PY^ku9pZ45KAgH6@b zryC%wb^+YoXa2?UV}^oK-zRf=9uEIp5&YvqR#yCdx1M^ZPs12Gckad6b+41_Ny7*C zB1g`fOs!EZxM{X}6g~SLcQqJ;?d}Nx;!#JBiP*DfuY)LMAljBaecAx(pH0#%RoXUm zALn8Y-|>c3IUsG=;K2&?6^gJSpK~mQ01a?!a?0Y#g0O>1qXUV4YLbxNidjk_Dt z=tF(m*Q~FN4rdD7C-C;cSz+mPvf&f`K0>tCSz7ZYhtc$HO29`iiq(2mbY5K40Ziy&n z#1L{Ycec%u?=Ap^LT*fXzO(W(;%vc06>#T4qb+4@zdN`obZl;OlkqKDw2-RzazN*T zjx1oqv#2^oF+y5J(QLwVuoA-C{;s+%_~;E?{bVzPvgC z93?oC;R|i)`JXeXy-GohY;ai056>p+4UVK$j@i~ZJpa7ccSp5|XR)F--JInz+d``e zMBbbYjl%Og_22U|HYG&8!I0!1hQos6MY(pAHg5}WIS;@@$Yv!`^iZM)zv1>(S-86` zE{-qG*}St5S#`RL1Ny3LbCWN5zhJ>7553;efG0ytMrf&?9?uJEYUT)E)4W(o+s=lv z!e-2vF_FvfA|dgo3*la=I+=%gb9rQF(iN1I!{^_m6P+`E{zfpixWTr+&Uydt&U@aZ zT+cOm-nPpiiLmdRuajp9$|NMhG$zeOJx=k1KX)K~p6k;!+K1k_h75T7`3LBXxYZ*f zMa98ytVCAA!!a}PTFRs>-!ZkX5lPuacpkkK&@^J6wf61_r=~p4Y*Ih!3JBcLvXhVZ z@2NMRw~uQHG2#wwv*O0g<9$CqyV6Sd7^J`KCb5VZ+CnUsG14mSd)NIrC@L*}Hf7?c zRy2Y<{on&30K3c z!@)ueM|uL2`xdeB)Zu|iBSbBPq2svRhZn%9`sr@A-bphnL^ESc>Nr}@=<|t3Mrq3~ zU-o>kc+AQ0&Wh6IDRJY<^KA80Z%?yFXkPKMI8xqNQ2BXn%mrPr;aaTU)@$J(mW|{D zY?hy8s#Y{<`@N_`2I?%dkuuvEV2@D@o6t*F+`=?ht1TP>9p(z_icUQFYYY z(UQL1Jk(Cwkh*6(7#Hd;j>PzhhxJXicT@08Fm!p*JaV*`*0P=kHnHuiZ|aSCl6mpX z{fm#!fAq7Rcj(83bzkz9zkfJ=))(~y24MpdUKh!}Je(LwcNy)uW>;z^L!*;) z1}R@X$2KaELr!a+2w_u3`~{AaS;*FY6P6CuPmKhbDJO#De~3!*b*u6Bg=y53TFM6{ zO@F8JFq}x*zEzBG`pr`*He>EjNmdUajE}Yy*eg>4d%dRN*hWT`I;D=kTF`qOv*LCX z_8s~LY@l>ZGJ5%ZXRW=P+e=(nez$4US58H-LRN5)(eaP_P7NGPzEfaXvmB?@IqIc#4xIP121%v`;v2RF8X}n3za!sW?KR#oQ%J0(u$w z&B14&d5acf{}hI_3kNF~N0$MlOpVVZLW$NII8M-wN;ZG!1Oh(!(HO0H{4VFJRrj^W z`aMw!K7Eq;ogjiSMD0C%co#l{U_IPdcmqtXXx|SAP7rYR_HYDK=MA zw7}dG^nNY?>YBVHEEw>Z&~}j)PhR+9h>2N;@*r9|5hIXuk*Zqn@E$I$v3mk^0@lot zm)A6TvXn1U8eF`8UzxwocelC1$ROx|_b=PPxR3b| zJQ14QbkA@g!;6-?cJmYkJ`oGQ8WFX>VoFubjARZ-k5HYU_~Rf?TdXftmIL``!?YH2 zP5~RR`b)5JDSk|NDFEK2O1U}v4|72L<~lh=y!|Gq%GegiRqmC^>_s<7DP*J-)-t}6 zey1Im9TqIugx!_6*)v!YN^aQlUwo3y7cLm0L>sEQ)3mR;n%W%bCFys?_=(jEx6}2e zKq0+K1%CqCPQ8j2Tott=R>nb`WKr2fZ2vmmo>3iYAi>N*ayQn>sy(_f;e3H+w=pJp zx7{ue#2O;B+tHt3v-5Iy^g@lDP0e1sFQD}`-r_d5dWnf{%+aIs`2b>A4@@27nq+{Q zUic6Q5P)9lGUZd*ix-;&34|V_o);*S77SJl-*IKT{Nr3^|MIO{sfFfmAF21UPd#(j zwXR4$T65a*E(}&07w^K@hb=MEzKUCL0$>y`xp?KuX6JR2`5M~~rO^de%TH0?A+MEyq+YYjx& zw@QFwj#j(Bi&V!3K)Ss>dypn6?A+1o)2B}z?5keC&U>k?pgc-^wi}$-#&19N2{sk> z47zGk2in``RK02F{Bu;(rCz&s zjqtB9FrYayt&@}_Oi-iP5fcl~P^fkoZ?1 z?-jD@M%Oe(!aNecCwR-u8-vbVU!a3>wmnBgsAY8b>@YoJ3GT*&V@wU9Q~Hix2}X%f zSECBJYXwbC@Mr)GZ$tmV@WK0BX+eRa5Ru`-zg25${Nh2qG}*0eLO2@4s%3yC&vP^3 z9+6jtg%treI%`w321YiZjai(?TVlhxl$M)51n_YQX*5^&XX)9S>;C> zWHVEcNKjXm#p-DH-g)gd@C*yDG;&m+l;cY&B8%sc@im(TOh|W*R8XJ_o3TuTg5HW0 zZ)wuI(Uc4~N4n?+a2jMQRt%CLsct5yffJ3lGR9)#gyFA%Q#&Igx4+N)-j+$72_;6c z(tsX#2=q+53$#Lp>xf^5<(@$eVAkiQE~Ef}!8*!tXdh`7<51K5we)Yiv6x)!b+D@- zz4^x2i#SCe^sJe*z?GLYBIjBW2#C7Q`fZhCIoyZ1iNf+s{0VbH`~y zr|>Pw(uAwW4Eb08Dj$Wo2u4hxPJ>uL-@k_+4f7lZCyUu$;#VLHa?(eD#?0xQxU zaSgg)j$F5~eB-HBfmL}m%?k{$p@ZErW!FMmKlIUu&;|j9YKUl0PHGQI2v%%s~mub4Y8VctZCsc+>r7o$E4o>{t##e9U~U z%}Gb(rv0fgf+u36aTN&p)A4^&7Apwj>-9Z5IigK1djN6p5H0hw&Am3h1bQthDzbNG zgohXsN0|k3QlcNv=}SBDyfAGz=k!NJ@zjZcs4K}Gg2xhST5L@pzq1!#W$q?|cS zH%=rc7rG5SqWS5Q@Q)+(jkhq8)orSuiV$ZyoLgT)oh+l7;96}ueE4wG0~DS9`}|rL zQ$AHw@sCX<%wU)0o9mxz)#Cj6oSdBbG~&{uy^M-c1`QuRym`FpXwS4&Y|&28C{kA-=hG;1fr43uqARN*HnQ@pz&Ae9CTGJ9d*JjmM7Il|8xBK zapo);qq+_jXaSEIuj0Z&W`(R&hVH(r#;8jh3fy)A?THaM+Z_zUgxn#hhv8Lhvrb~% zBD~!|WiQfb>Z)36=DqO^-?1ag`X9eDjHiTm($S-fcDVvC{yQdIWF1&BL33p4TRzLP z#=VXZ$eL5I7(t;H_Ew{CEaLPDQ^d(M7d$Itk0x#gRa-l;)wJkiXM68lCQ=2i&*9Hm z46qJF#X9berCM8uq$cN9wGXy>q`uQMA6bJNf;CZTo_vYoKwLwB6StR}XK~^hmmp-X zc(g*`Adq1j6U{C$qXIVD1Ppzcxi>vXf!nA8S3;gmJflk^ffzteLmeGj^=<{Al3!R@ zCt<#-+vmFrR9nG0TC(JLl!rs4k~~x_(FI^+X6 zQ^^_*w4_kDqkXH+{c}@ocg@8%7h=g|BWZC3el%qd2qfF~Y-)X<$V27uV^kFhUi8|! zYKI=N1GOzEt*;a0pvkP33+|v0oGIL_@?WH$-E)ZQTE0h?3f$Vb1XoV;%WAT^oJ*Ia zC2=NOku={jPV}P&q8h`K&Gu+#V5@nJ5x9Lk{^`Squ{4u-kG8&pn)VO3m;0-)TWi|` z&q+aR@O1)iIW{D@pWO7*aCPem!l4t${4z%h)=L2BWOQ^irRMnC&+;f)#-J@{J2LTA z4ghoz3UmbtIWqflKE*lb{5jUmreUv_`=v7U+u--EKxz1k+OxRaLblvLQDcvsCAFg-58XQc)S{_l~C=H z;u^t*Vfxw&0+XOo3RR|)O0#Q~RY&*bdCsn@TRldt59qsil)z7}>s-pgt%KcW0Ey|zz0Kedtc#OIHOCY$11%+!VR zTl{Z7v!T=?IUHg7k$%%Bz8D&B&1cGb=(8IK)q!$(rVo|0kYfPO^+KTtk!C#4`0Y%u zb$j+yt8Y9_g}ON~FtDt2yL+YGfrAu(qB){%R8UlG$oq>tKuV9;Zd_kTF;Z@CBeY=y z>XOts(t}v_EIuOn?&{x;iUIZ~_g)HK3gTjL#IBNFZ)1J#$@(1vL3_6g0Sj%RH0pRM zqW#&3ZA5n-wKbG^yPjSH*Zs;B!8|JO#$t5CV9}xs?xL*xlp;c3H*8~6k<}-5y!i9{ z37e(@v|h$!_%_DdyZHlWowSW{u&}fYdr(e|>LiU(*nR9+KWGmdiTZVth;VG=u^L) z4|;f7k0puMy_m?fWapFQW96afk-VGwVv}n)*+v2QI+-GGinrNt;R2InEM@4LrMkLP3s0Jk zg?lxK;618JbQ$DU?8_9YUtH^eIQsWwNy*7W7$&-&dyi~?^xcqUg9Z;C3q^#v;R=wNCC-B3%NxIb!HG-pz=qLcG&={?-_2#- z27}BIV;0!WelOmGi!a^-J*Jc3(mrcGM74AG?rq0pI@?YxbkK=eLX=$Kv2xeSCy!#> zV7f{q++_7N&Pxm0vPI<*jmwF@2^tQ{idCzO*;Xh11g{di>Xg|_=P_@Ds48%4Vuknz z40EgyurGO(rT~(?5uQrSe8tLWVsjKPeUFJn43!@t_b@rB#{olA*U-|eh#u0#TOfPP z$NI`P!okP$RU!X)F40TH)cF1g?EVu+4uH@tIHIqbHc*S-v!@IEa3w*S{k-}uaT9;X z&iu-e4Q{f!px!s!W?Y?jA^q))m^A}HAFg}3{?ktF`92T`;IxvqcLqaDUHl}|Kva5_ z8d^B`-ac+SMARXiX~~P5GZTA^3pM0I_kQ=}!U5--BJxJPH3o``1KbQ$QrD>?=X^69FaI7}5u%4~f-m-BM2IVq3DbfODGM6k*)8M{ z{BfxBO%baQRs~gAcL;ucVs1<}J%XfX$(21fZ`>ID3+a@!>E-ll*XvQ0B=^ zR!!ZZbmhC}wV!5&AHMjyWIt(FjxKL57`(3&+{tas1uNeaS$KUb6(l9Uc0D2&?dMZt zR(7oL$uWKZ+V28;9@{&Z{zT;ScUFmWp#kKtQk%1i2zzLCkBK2Jmot`Od%XTpnf5@w z`M5P}(x!C1bbGh8=K+g4uoBf>cUoV6TbLAZwTpyCwx9d#D@_)6dcSukmEe4+_qNM| z0t3hMA9omo1oifn+n7~svy%{!C&?4!^L{HBj zIfnfb=Z36&LM$s^^CTe2nbNId{6&(J%cInOOj7f|Q|>I(n0Q}l+=ukdL$e{S3N8gl zAbI9$AqNzR7v5Ub!A;So;od`jd^xff(h0y2&Z8_fZAo9%yU@Ki#UnNVIjEXX&dmlo zwl*djd_DEVNIFG(m^jF8dvKi;1;ohnI`bQt{$YVRq%U9AO13bdDHLXTRB6YzC?F2W z{QIBDxq4M#F{1SZ%RBI@a|?Vg87cdIC0V+SY24}g#nLFiGz~Hx_L84!X@iQgH_6XYHnttDc$n1PND{u-l9o-S`V(Y?$bUb9UjIr_kxg}k8S8RyxUXI)&5Nhbg$i~v zIT7(DnDuTI#mUP!Q9dN&a@)SarfyE>(|OjO^S{1MRJj^!mQGOILWDpd)GKxs{jt8T z_8y@ihuzWOcQan86{}UN>-~Rn`Nmx8?y@7e)0|>X1E8k=M<)+SHNx~iAE5uO-0EaA=hawLV zo-i1j?Q*`P;B|2Mg`b^aCR`Tq10Lu>trD^OjA9foRDOB8w2wUv4L!&{Kyl=SaWI$2 z!OrSDSxL;~??jt*K$-LS)!vP<8Id;m_wIEOco4DHmrBUt!JL~+RXHm;eB-Z=EYy$& zrEId%y1DAi_59`e%NDzFg`eVZ4tbq#)Qedh33?nr*li*ifWV8dX+rGA{<9UxB}EJT z2f`Whx1U+?z;-87p}mkDgnW#m=qUv?*oZOE5Tp$C0X-*0H>78~Ow0G-b#XtzH}UZd zZ+#^&+;knK!5pSV0u~b;HsJAL&IEQxcimD3hLn2bj2H~{XVs8_Qw*8426P*t2x}6X zRlUE|P@8xgv)fmf$ZE>JzMei|_{fpMB51bfZ(+v=eX~}n6yanBjG}i+hQkyTDwUWS zjjj69{?2YqBpQUBLzP|Bb|fTd(>S)3=$~(OP^U_9q`rPjyVXHOIk~wN+n&6KsWzA9 zGl-`0DdWL3_o~i+#{F<#O}3&O3KozQSm+w;M*C}P3!_q-1Um}GkJ=z!pnk#*hE71t zE`g;XMlRM@37+@>SxDIfS`;W4DuRmJhw;@i&k~F1qoQZPcJLYg^Wn=@qx+-d5$#?Z z_1;qHR8%6_#B(uELV>+Ve>y#K|Jj+{D0%O|-oVROfbpV75n2wnM0{4zMJcH0EjxbD zO_otbL1bP`98Ct8Y#MlWfnw!BW>VmQ-Kmiz)jz(u3dd>8Q;NsvNTpMtA#W8_2U>XX z_hK(P4k7J;WD3S){7}|g){Rm7?julzNsuzm`lr-@Ccy_!ojNroe)O4{GyUbQ8wk|? zCFo`ND*Kz)06m7hO)-+mGUn5}iH^fH!3-lk>WkpW$ix_%Z>y21Qd1k22=Ojrx_%FD zhR8J*!Jq1A585_)f9WG1x#`q;-X4R1_9>7kJ@ls?pK;KSc}uhtEm>!qFBIlL=vK64 zy=%U21#09(sJp00e-==bA;Y$}dW&g5+JA-_0XnTRw5%t{qOT+T5hN7BN}&wX7Gh0Y zh=k54VtY&qcqojQ@hi?J+E+Q~DAx;QW=+pz{455;pzxQ9iiVbCQ1;J41Vm7ud)4i;<>_3CO=!qaR<>3+1_OLR?EDtKKItcDn<=FG(uD#f(6 z{9b?S8ZjoP8EfPJF&|L|k-fcrQoj-pT=|(LLTn6szs;K~ z-9b2lQyvI1dZI4#ifo8Hy@E}J(u&M~5j?NmmL_y z<-Y7Jd-uRWSls;PD~1ftb~bY)aseV9kCGrn!2T<-k;gg zuV23qGKMfwIEVtG3&DrhV;i*_=m7R7Zm)}4i2Yy~#GlGfoe~F~O1Ad-q2DqOu^0X- zerMJ2k{+F3rzEjTv>zdQbKK z@p%+emc_!56WytwjqE-nW9%1d3TPCY=v|ixYal2@X>xyg&2D@&gfs$N2&&UzsGp13 z5NKiH_WtcvAkoGpqt{eRm|3MKsvb)aXH;yefICV3ju=auhkB^$wqLGHUa1&lR!bSs z1F3B#?)mRC*A+5sNS|u?sW-53Y)vDjdqkRN{v|St&m(V)#YOm(TA|2M?^UoIVw4z0 zexMn*ICC~V{ps%6>&Mc!>4v_!PUf_WtJ|@oJu0NFp~kf|zMG&kEU@ixOwa-u`au4; zWvQFub1L5~Z}clivGngGHt^`NN94rigUVc{E-LC8P%#7swYVA~rw*8ZvR)!BXGYYD z_>wDTP9*8puUN-^%VMjQM3}m8y63-JteCi;HTCWx)b32M60D>P{Iit zIalTa%Py6*vrX3CPc#%?A!$Y@H+Ps{#8Zc(RM63l+!AczY1nz z>vLJ~nV1syx9&tcD7^R&f(xpce<^3R_eNfME=UWd{jW9aK>q}?D!L8^b_H`T4SfFW znJ-VwTquIjGj6#F@iX{D7Qr)ZKxhADfV{D&3}Hkt?>I)=83nRd0az3BYKhdcOr`z` zo)J#J;@sK+6m}Ojnlsqp>@ki?4dk0R-;DbP`LwCvxI&@W|2REKU?U*2+g};76oq+H z8A=6>sqvvItc?=q158dBmO!6a4W1JU{=+dg zGTW7#l*Q>!pb)gQDy6KY`NHl~`V+;iA0ho9wU&Nq|FfK8*e&}Om6EQ78?3IH;+FmU zRYlQDp>i1Pa>=gX2hF{f%>re4oaxnXS(iih^)3W5k4l=7;m}W`9uS{!aE7BOi*6-! zLs_XjThCGkOVvd^$rbW-5?_rc7doQGBFYg3h2U8pbv1FZwX)~~Fo30LpWzZbx*ufP z!gE=lnXI`IA734-!XvM7p&f5NPL?6N@4V$yt;{drcc$s?zn>uvt_osTC42A@uMd~n z2j8-KX=laaLKG)kmHePreP13!+YM18Pxa3k-%Vj~hb5k4QwbHgz#Jr%n<|Mi7aKNT zr%w+y@0RN%pFV9&p@Yu}9tza-^~*~B#`{{%_@##rN0z8Sg%Kjpk(WV=zr72lM8A~` zbH~H?$=42d`r^*i!8}wW*cpFc-XIQxsein3pXZ<{- zb?|YJHA!PX)4?&yj{RF~aU}Q&-W36w3NPA<>j;?80*{mxZf*jLiLYF2e%AF>TYAC9 zC9~oBT^=e+|5GxFeAY^ME*t)+ZbTEezw$HTk*wK7Or31B5L=al7WmsuiZ-wRn&Pb- z!=Xc!aaGgr3Q{8eV%s7V%Ma|{y?aV61*D>8i^-4w+*A>yq;QM~z8j;&KJ$LMHz)4| zHWD0%u>ur?GoU0k-u$u=M#3DY;4!}eb{HH zK}>7gvrOc#?LIIQ4Cu1w&ksLcQ2!F4d#O-F_ei&pem7y(c{@vgn|=lcs$!1J^GG&j z3f)pn4Jk64)fcYyiNZ^W-eg;x5k94&-lW93gQsMhBfUeOhgwJtAOTg=`#L!8 z(iG<9{PpfvN2k`mdh`fhsJ^bmZxwUpEU;g7^U!)*7JycOkqLzgVV~(}L<2Q}by85# zVath7uG_bFo)AnMxY8Cap?J^FAWRD_BbLJTKeO|0+-S{^bF5$)o%h&G87&wquU1{X zF$mLtT&%T91d9(E2pnX5S0_&sy1SmH7!3?n1t!A2suV7}0IyDvKBFLE)a8 z=G$kunW1wKKZky#@ffkAt7lr|`{|}TIZy>d?rS%X-}>+0TYdi7>`Bs&K0;Zuhz_Yq ziO1Ttg6}GRDt1C@(wdt8rC+pJ{rkfKoVa2s9l&^tarK{~#vh6T?9C=6dP^VJ{C!MK z^M(5j!{2MkiEuI*+H6$$WALWXfI0jXh7pZRdLY>U&%d8BV@4TGM*75?{Sl?GORzb$ zI$OEwzl2d|6=IZ^sj1x5O#ZQ+&57o)3$>CTiokjOfQ zX3gePorBS(f5UR8J?ng(Evbvx$B_^tiysVRWPfyiLt%Hy`!|iVi5CTtV04O~=vO#` z5kZ)V5GCOGD2z}j7jhQJW$kT**WRc#)nml0=j8gx_J9Rqo6dqDO8 zd>1MY7pU)}Od4rrK+=;t+PorLvRX=jTu+oL`_{KoJQFqhPW8Sz{E|g-P3@~AN&n;D zkWk9(0LwXoTY14lH}YFafO|BjC>Co?KD3Fhm8t(CI0$nC@f4~+SYr!9g?9fM#-Ji-+dWJ<-tbSsB?1c%*Dw~ZVNLe=PDc-&zQo5f4iNBTF2Xhe-{TDCRU|?Dl z8er-T4@XQXD~jSe@Gc~kW)!Bci$X^m4R*-uNWa>rB*I&4uFVO`;S;k}$6e^6sW|6S z?uo^!^jqZV#L5}69w!~@L%7{sIuYO3BL0)nx9;;Z{cVfS?&HTS>(&lsM2Sr>A~if; z#7dBrjr?;NFwvk=$>06ceanZUeb6j!EFQ3$``pPUdRc7X5aycv^D*e>Ybp!H<`U3n zF~bmCUXUX=O^tmZA#(~%TLCX>q_&-eeVyD9=|Vq!eY-f1nP>YT5)z1?U@a3&SWPY1 zPGr<^&_#xZZa3WyJ6OEHb75fb;GmvHGd+udE{iBHD~qx@KVW7DYWYBN>LSNo4sxJS z$|Nyp`Zqg@TRt4{n98MP;&Q^^nz_9Haq>RHKB^A91tDSz{CEA&+UZzwm)q^c#TJZ- zFBbPVC5mEdT9?7|Hbv>9Sr=A+FT_W%rhXOdeygQ$U`2fyj2;k>2uE|s*g!(C!&R>Q zDaRZ)i{&;z^67U;Lvwf(%`Knc{W+d6YQoKPO^Acl_VU*LV==OCt8qeS@Y5>MaP_-= zTriivHJxK1Vuhz*{zB}Pyzdy)6@ff7ZL{>pm2!zhs%Rz~YooHbr?Nt@hwVTAJf~Cx zB3rzxT?Kg(TZUhh=KVV}=DBzQ zv1W_5{buS_oTdq8*4ENPZ~lgRyZOXsfo|g08Ct zr%_6;jC6h=!LWCrZ~$g#!2pnLw*m;Lcbk7kTXX1TuRNfy`joU1JW#B-w7)>05+b7D zF0eE=0;G>k<*yhnpkVw@=MXr7CAZAXo0M>Jx9#zh%P&X0N!?rGQK0rG*O)#h=FN3< z)J&^io46UC=VXm_Z(pWH4)y;VGR5;lm)JaU`NPu*;`uS{2$)7<-cnXiIkpkExM_(8!r5X2lFbkky1c8gi~*ie)gnOu@>n5(Cg{I8)9Md;zwyGn}+bDYGDA`t7lIM zO)=a{%NSR1e{okqtD=jFETx0@EY_EZ!Y%la(611^#Q;lShEzm6rGm6T@RG^2M9Tw6 zJ})m+Q?%E7MWM+CmSQ`yb>RoO%TuO|E<>eg((;R?f3XX z|HE5|uc_?E6D)ukQ%lR6B_-G1|1`TmP1r~Rpd?1IPlrY)uqZA6!-KKosvnHqx~8;e zuQjEES`(9*9j5=GHyJx|Unr!SS?2UKm_P5*gf0r2K_zXaQ#vPgm4$A2?<^dvLhNuV z67^f*VAFh1w_e)XmSQ<}4lgUqd*;4Tu2b!m@U+ZCJ-Ra}_dr2nCJJkM&AxK*Cgn+d zz<7NNtuR<`}6P04zu($`r`DqY|Y!KH`N(qF_6oyX53_5s9Q5iD*0KZx9&K3Nbqm5eQ2g9?g`c4?Bao6u9-5 zo~L>J8*(}`92R(qaI_1z`268BIFZ=rIs+Vn)^RAJL+}5DsNh}xkb3ZhIYCIYxOqwp zWrY;68hS>X=-vh1{|QZw;k-_74GoQw2y7)WYce<3AaC9JKM~4Kjj2}seElpbjZG?3 zUf}Du-S4Y`h^XER3$Eb-Vxis0-;@ zD7dW?b@{57_>X!P*?*2|v;!IJq{H>jVpkwD+3;Ipjs#g;jfzAb;h=Kmz7|L1d&BmZAY z8~?w53yYzuKCMkq@S@9(ulWfaCM+%y#E8VOX+iWh3Yt4OX-Y&F2+=eCsVv%(B)5-D zl>Rhz!d=-dfgc}XyVp1mkIznwxfPq zh05l$M#@cX&n;_z=T$dVRk3w~e5e3`<9~~$gp4$4KN}!+Qf6?y$<@>Dk zv#)f2`TO@l5aw5GQISq*nWQRE|7JVsglkoKwuD2|r9ly2XSS}a-cFh={jGcWzo(X+ZPnZql=H}YJ=gW@5 zueOy(YiXU%>&#Ueqn9DFz{7Vtvj+U;E`g@;)GjWHRRI4EtD1jcwX5hQcZ7sA zgw!kweEM)7Lc>RI1+KSXN(JZbH(1vhaB6DZdbA~%=(z&0O)-)NM*(aN!l#CT-3h|N zK3OZ5s03<(D!5Du^r!3jAbf(x<1-VP~{Sr(vnhLEHT`%T8S@3BF zAyLTmQCAG+Tj_x4yj-*NL`sTH-S=M7^4RYW8b|<@1Wgnx=eZao@_B`?FMHsj3uOZ@ zSS8IefKJ;~(O>QQPqwP~QaCr1K=3K6s1RG?D1udouYT8U{r9(eLNNC2LThS9O-fPI za=-#=^(F#$h8^>J`TNHk4`s9+zWw*EnbX?$@ITjD!@p;XSl!fnmz$+_vUKh{@K~YR zgY5-(O`fTJxMT9*r0%LEDqCW7cNF>Sr&jH;dst+mv(S8~inY^18BTrM%*{3AJr6Z) zlX3Cg=b-)P)BBy+)}?Xn_iqzE?^~CD{>GY@)ek?3i6HHAml~CzoWn}9JtsqEGq`vif^l=`dqZ1k&eCOSHq+6ChD<^qRk;yh?eojqF z)q0ZRxD%u(8s@w9%nTbCGCS0!+SpW-T=#}?NilQOYLM>;=>xb>w(bLT3Y-wJ8ehDP+TFAf7xOwq< zEz?FD8nUe5UFgk)g_G8Q>_D3{F~ny2^rNJSik*{2-Wfp1}DsM>fYZ~(0dc}S6U*-vhkS+1n& zjvX;q-1K9c_#~SdGh$<6`e5I&7;l$^Jgf4KA z=|un{K*g`SKKbgm?CjgqZO=3-tIODxIsbOlSO^2V?Fa1UBMe1hTrw&uEwBY&vHWoBlU>J#3BUp$O0dAn-Mxue(1 zbrx>6j2xAIQ~#I4uGNoLnwemfm%AatcwqzvQjAH>B6cPlq+IH{>*#7BB+iv>$<5)K4nCG(2uO z2+UQ*1ZL$`&<^)|=t*Y2visil%)dCSb>c^8)759|6VLRU|3!jxmnw>EG~;&S?)v`eVVYPUWL$?j{8v(|tC zcc)*dE1p=|YD`Jm-Au7YOfbl)LQ>&$sH>}+eGF88>`|pXqFdXaT=rsuWTRidXW!go zH1AOZNok<+LWxHJ{Fd^UFJB+r(tQfPhXSL8VVrC$cyBsKl_za7cwC<@-i zb*I$VuMB^uE9^4M3>O1|Le!QoKCF4MVtB&`HD6k_Y18KI=-u8o6xb%A^P-u=O?%;< z1{IU%&6_9mo)ip8Q*GzYJ*ei$$nMmP{%;>=KmV{8c6~_n@#Fn%6Yj36Lj7bq@hC{- zey1}NEiD5lD~-u_J^wv$d-cHdd4^3<@wkY2sA?nV7JS5{VjaDLqxt$zKA z@7-J6c=oTAGLx&_c*b&czZgk;oW%p67r-Z<5c2NA?_W{1kXVjqWayh6+&%SMkSC+x zO()OfhCLYBz5AH_l1@L3HAtK#M-Qymy7r~n2%oN#)_IxCpZ|PnY0kMH1%}&)d)1}f zd18On1JIB`RUB!3zxDa)veU*9_v#d2;{ZQjCUuZjoc}S$^$7@mR{AZ@E$oe`ht#`5v!2IZz9_wd>aMJ>ouTqcWvnQSVxK+*Z(xw(F z47G|cbo3cetorjR`LULmkzD+E3re2{Fcuz@bj=Ek+8K1LiMEuK9!>T#S-3EUIleki z6g=S9-oL*en0&XO;1I6VLQ@#R`RLQ6|Em;I&NKhMYG$C{h0S_+&Iv6pF4pYZ*Q9%p z352n{+}y9vW~)e6;K-3w^02gBgR+-X$fQi}l?~6Nq==p8EnBs+Cc=JTlXJ%UZ`Wt5 z7%qR1Vn*7UMg>6NSde@lW}GG{vl+~(h>@!kk^Ly9yoErv7#1JxaA@|^=IPhYyy)8V z_e;GClP6COR(obDQn%~TB6dv3X;b8Ypx zAIx)-e*Ex!dp|j+c^<>0p|F4q>M9Q75A^=_d5PPtz@p_Ak)v$+2zP0~-Cy2N4%@x^ zI_Hwn3^U{imdw06|K;(HFAY|_%{cr%7i!VW)ul(ckg;iLGuYBM&CBaN^Nhpr9&zOv zOEpinf4FTe*0wNijWwx@%FD~Knc7F~D#{GY1EURkRy2~h^&lQd>VNvYncMWwf9+}i zpFiU$*Z=sm*r5F9zvhga^MBw!>oY59It>wLfi>b*6eYRNF0QT)Cub};IirS6N@ui| zJ38J0P1eN=mhi5LKR@xK7~}VpIav+ESVVo^d%}cmjPm1`I0L zs(Za(_oNVQL)VWZe&+AlzhB!-OIy2`R1yZVi$Tk^c_(w9uGn<0okVi+=B;P79_LGc zw&#i(m`$9xJ#yW<5oQGtWQIb&imIh28gR5Qj&!|$)Y>V+KOk@4#G{a_6AKCoRwcD- z)v6HMZVl(^jBO^mByxvtGBsGo+$4pB@}#WveC6;>58rhTJ-)>soa z8M;rfwYANtN<7=KbLSX>=lQzV$Fwvx?~uqH&OEH$Hv7k+sa>_TwYkK%dk2j=G=3mM|Ur4>z&=bf2?Gs$V}o9FMy(F%9#CF6wFxtc9P`ZsvW6XUcOwI0ONb=epKbFvURSViFReM zMiW3=^8mYw+%Nx}_t2fo12<-5^Bdf$2V#X4PGaUE%V#IS1D)p1Lh3nh8VtkC#Ye|` z$FMcka~u{fY`U~xpFYMkD4}YgT?1bvdwssYC_XlpTUtab?~e8ZMA4l66d}>D=>}EQ zlGq3?F1f3ClVwxu1HkR=@Vyr^#foR49L0HU>HGD1QJ!4JkZ9TkCpgs&9B4yAqG`E& zj_f!{gLUTH+O=!bXRZI{z$O(VB2CNF$F5SI`kr1%rd{=Qt$6wIHwJO~7U!T?1y1xf zD*zE{nD^NGx7YI**L(b`-a#M$mp-Q89-FO0grF^6m7&Uucy7PgS|aHw3@c4T$Vw@o zA)LyIA@3XCAi1Bo=}h!k_G4tAO``Tw3>xHoQP%skk}KpWZR) zF_k5ZYLz*LzfLj-?qf#hGx6;A4LA1;HUdW7sU}`lbPx~x9=^TXb@{noM+=p!*V@@d zs68?M<^8j2_QP|ZvAos$Y{Ls)OzmC&x>*a89XV1V(bSR32X2NBIa=y`eA=clUU;e{~I1B0;C|cyls`8F>FvuP>#vfmK^ensLX=JHjw*aNt#Wxg&;ZZzI>kriq7@^G~}` z)jr7BYxpNKp{6gLn(rO)5{7B{is9o%i?E)sm7-rFQDw<*6hfmehG)*){~bn*5uLYq zh5PsKXV9?-`k-yXG!Dfiu4o~jA+coEI!g+f1Uh{Wo>_4fm^AmJETI^pt5zAZFu=vd z#m2^lU{o~l%}h?=GWYriszL%<1A%}72RA`m2M33%0or_wNA`bWW`pTH*v0!ldhs_Xzj?D{>Ae%Z%97W;OE-b(X+uiPsEp$kRv4VvA|BE9 zd<%m4RkN^74*ap6;eQn!_1}R%lUUS8I`Ll}DB|mXE^ZR1TKo*^C61B!`9JrceKY*N WtR|}Z%&$4(dzdk1NgOxF_x}NoWProportional response" @@ -334,7 +334,7 @@ "href": "materials/glm-practical-logistic-proportion.html#exercises", "title": "\n8  Proportional response\n", "section": "\n8.5 Exercises", - "text": "8.5 Exercises\n\n8.5.1 Predicting failure\n\n\n\n\n\n\nExercise\n\n\n\n\n\n\n\nLevel: \nThe data point at 53 degrees Fahrenheit is quite influential for the analysis. Remove this data point and repeat the analysis. Is there still a predicted link between launch temperature and o-ring failure?\n\n\n\n\n\n\nAnswer\n\n\n\n\n\n\n\n\n\nR\nPython\n\n\n\nFirst, we need to remove the influential data point:\n\nchallenger_new <- challenger %>% filter(temp != 53)\n\nWe can create a new generalised linear model, based on these data:\n\nglm_chl_new <- glm(cbind(damage, intact) ~ temp,\n family = binomial,\n data = challenger_new)\n\nWe can get the model parameters as follows:\n\nsummary(glm_chl_new)\n\n\nCall:\nglm(formula = cbind(damage, intact) ~ temp, family = binomial, \n data = challenger_new)\n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 5.68223 4.43138 1.282 0.1997 \ntemp -0.12817 0.06697 -1.914 0.0556 .\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for binomial family taken to be 1)\n\n Null deviance: 16.375 on 21 degrees of freedom\nResidual deviance: 12.633 on 20 degrees of freedom\nAIC: 27.572\n\nNumber of Fisher Scoring iterations: 5\n\n\n\nggplot(challenger_new, aes(temp, prop_damaged)) +\n geom_point() +\n geom_smooth(method = \"glm\", se = FALSE, fullrange = TRUE, \n method.args = list(family = binomial)) +\n xlim(25,85) +\n # add a vertical line at 53 F temperature\n geom_vline(xintercept = 53, linetype = \"dashed\")\n\nWarning in eval(family$initialize): non-integer #successes in a binomial glm!\n\n\n\n\n\n\n\n\nThe prediction proportion of damaged o-rings is markedly less than what was observed.\nBefore we can make any firm conclusions, though, we need to check our model:\n\n1- pchisq(12.633,20)\n\n[1] 0.8925695\n\n\nWe get quite a high score (around 0.9) for this, which tells us that our goodness of fit is pretty rubbish – our points are not very close to our curve, overall.\nIs the model any better than the null though?\n\n1 - pchisq(16.375 - 12.633, 1)\n\n[1] 0.0530609\n\nanova(glm_chl_new, test = 'Chisq')\n\nAnalysis of Deviance Table\n\nModel: binomial, link: logit\n\nResponse: cbind(damage, intact)\n\nTerms added sequentially (first to last)\n\n Df Deviance Resid. Df Resid. Dev Pr(>Chi) \nNULL 21 16.375 \ntemp 1 3.7421 20 12.633 0.05306 .\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n\nHowever, the model is not significantly better than the null in this case, with a p-value here of just over 0.05 for both of these tests (they give a similar result since, yet again, we have just the one predictor variable).\n\n\nFirst, we need to remove the influential data point:\n\nchallenger_new_py = challenger_py.query(\"temp != 53\")\n\nWe can create a new generalised linear model, based on these data:\n\n# create a generalised linear model\nmodel = smf.glm(formula = \"damage + intact ~ temp\",\n family = sm.families.Binomial(),\n data = challenger_new_py)\n# and get the fitted parameters of the model\nglm_chl_new_py = model.fit()\n\nWe can get the model parameters as follows:\n\nprint(glm_chl_new_py.summary())\n\n Generalized Linear Model Regression Results \n================================================================================\nDep. Variable: ['damage', 'intact'] No. Observations: 22\nModel: GLM Df Residuals: 20\nModel Family: Binomial Df Model: 1\nLink Function: Logit Scale: 1.0000\nMethod: IRLS Log-Likelihood: -11.786\nDate: Tue, 06 Feb 2024 Deviance: 12.633\nTime: 15:43:35 Pearson chi2: 16.6\nNo. Iterations: 6 Pseudo R-squ. (CS): 0.1564\nCovariance Type: nonrobust \n==============================================================================\n coef std err z P>|z| [0.025 0.975]\n------------------------------------------------------------------------------\nIntercept 5.6822 4.431 1.282 0.200 -3.003 14.368\ntemp -0.1282 0.067 -1.914 0.056 -0.259 0.003\n==============================================================================\n\n\nGenerate new model data:\n\nmodel = pd.DataFrame({'temp': list(range(25, 86))})\n\nmodel[\"pred\"] = glm_chl_new_py.predict(model)\n\nmodel.head()\n\n temp pred\n0 25 0.922585\n1 26 0.912920\n2 27 0.902177\n3 28 0.890269\n4 29 0.877107\n\n\n\n(ggplot(challenger_new_py,\n aes(x = \"temp\",\n y = \"prop_damaged\")) +\n geom_point() +\n geom_line(model, aes(x = \"temp\", y = \"pred\"), colour = \"blue\", size = 1) +\n # add a vertical line at 53 F temperature\n geom_vline(xintercept = 53, linetype = \"dashed\"))\n\n\n\n\n\n\n\nThe prediction proportion of damaged o-rings is markedly less than what was observed.\nBefore we can make any firm conclusions, though, we need to check our model:\n\nchi2.sf(12.633, 20)\n\n0.8925694610786307\n\n\nWe get quite a high score (around 0.9) for this, which tells us that our goodness of fit is pretty rubbish – our points are not very close to our curve, overall.\nIs the model any better than the null though?\n\nchi2.sf(16.375 - 12.633, 23 - 22)\n\n0.053060897703157646\n\n\nHowever, the model is not significantly better than the null in this case, with a p-value here of just over 0.05 for both of these tests (they give a similar result since, yet again, we have just the one predictor variable).\n\n\n\nSo, could NASA have predicted what happened? This model is not significantly different from the null, i.e., temperature is not a significant predictor. Note that it’s only marginally non-significant, and we do have a high goodness-of-fit value.\nIt is possible that if more data points were available that followed a similar trend, the story might be different). Even if we did use our non-significant model to make a prediction, it doesn’t give us a value anywhere near 5 failures for a temperature of 53 degrees Fahrenheit. So overall, based on the model we’ve fitted with these data, there was no indication that a temperature just a few degrees cooler than previous missions could have been so disastrous for the Challenger.", + "text": "8.5 Exercises\n\n8.5.1 Predicting failure\n\n\n\n\n\n\nExercise\n\n\n\n\n\n\n\nLevel: \nThe data point at 53 degrees Fahrenheit is quite influential for the analysis. Remove this data point and repeat the analysis. Is there still a predicted link between launch temperature and o-ring failure?\n\n\n\n\n\n\nAnswer\n\n\n\n\n\n\n\n\n\nR\nPython\n\n\n\nFirst, we need to remove the influential data point:\n\nchallenger_new <- challenger %>% filter(temp != 53)\n\nWe can create a new generalised linear model, based on these data:\n\nglm_chl_new <- glm(cbind(damage, intact) ~ temp,\n family = binomial,\n data = challenger_new)\n\nWe can get the model parameters as follows:\n\nsummary(glm_chl_new)\n\n\nCall:\nglm(formula = cbind(damage, intact) ~ temp, family = binomial, \n data = challenger_new)\n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 5.68223 4.43138 1.282 0.1997 \ntemp -0.12817 0.06697 -1.914 0.0556 .\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for binomial family taken to be 1)\n\n Null deviance: 16.375 on 21 degrees of freedom\nResidual deviance: 12.633 on 20 degrees of freedom\nAIC: 27.572\n\nNumber of Fisher Scoring iterations: 5\n\n\n\nggplot(challenger_new, aes(temp, prop_damaged)) +\n geom_point() +\n geom_smooth(method = \"glm\", se = FALSE, fullrange = TRUE, \n method.args = list(family = binomial)) +\n xlim(25,85) +\n # add a vertical line at 53 F temperature\n geom_vline(xintercept = 53, linetype = \"dashed\")\n\nWarning in eval(family$initialize): non-integer #successes in a binomial glm!\n\n\n\n\n\n\n\n\nThe prediction proportion of damaged o-rings is markedly less than what was observed.\nBefore we can make any firm conclusions, though, we need to check our model:\n\n1- pchisq(12.633,20)\n\n[1] 0.8925695\n\n\nWe get quite a high score (around 0.9) for this, which tells us that our goodness of fit is pretty rubbish – our points are not very close to our curve, overall.\nIs the model any better than the null though?\n\n1 - pchisq(16.375 - 12.633, 21 - 20)\n\n[1] 0.0530609\n\nanova(glm_chl_new, test = 'Chisq')\n\nAnalysis of Deviance Table\n\nModel: binomial, link: logit\n\nResponse: cbind(damage, intact)\n\nTerms added sequentially (first to last)\n\n Df Deviance Resid. Df Resid. Dev Pr(>Chi) \nNULL 21 16.375 \ntemp 1 3.7421 20 12.633 0.05306 .\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n\nHowever, the model is not significantly better than the null in this case, with a p-value here of just over 0.05 for both of these tests (they give a similar result since, yet again, we have just the one predictor variable).\n\n\nFirst, we need to remove the influential data point:\n\nchallenger_new_py = challenger_py.query(\"temp != 53\")\n\nWe can create a new generalised linear model, based on these data:\n\n# create a generalised linear model\nmodel = smf.glm(formula = \"damage + intact ~ temp\",\n family = sm.families.Binomial(),\n data = challenger_new_py)\n# and get the fitted parameters of the model\nglm_chl_new_py = model.fit()\n\nWe can get the model parameters as follows:\n\nprint(glm_chl_new_py.summary())\n\n Generalized Linear Model Regression Results \n================================================================================\nDep. Variable: ['damage', 'intact'] No. Observations: 22\nModel: GLM Df Residuals: 20\nModel Family: Binomial Df Model: 1\nLink Function: Logit Scale: 1.0000\nMethod: IRLS Log-Likelihood: -11.786\nDate: Tue, 06 Feb 2024 Deviance: 12.633\nTime: 16:12:15 Pearson chi2: 16.6\nNo. Iterations: 6 Pseudo R-squ. (CS): 0.1564\nCovariance Type: nonrobust \n==============================================================================\n coef std err z P>|z| [0.025 0.975]\n------------------------------------------------------------------------------\nIntercept 5.6822 4.431 1.282 0.200 -3.003 14.368\ntemp -0.1282 0.067 -1.914 0.056 -0.259 0.003\n==============================================================================\n\n\nGenerate new model data:\n\nmodel = pd.DataFrame({'temp': list(range(25, 86))})\n\nmodel[\"pred\"] = glm_chl_new_py.predict(model)\n\nmodel.head()\n\n temp pred\n0 25 0.922585\n1 26 0.912920\n2 27 0.902177\n3 28 0.890269\n4 29 0.877107\n\n\n\n(ggplot(challenger_new_py,\n aes(x = \"temp\",\n y = \"prop_damaged\")) +\n geom_point() +\n geom_line(model, aes(x = \"temp\", y = \"pred\"), colour = \"blue\", size = 1) +\n # add a vertical line at 53 F temperature\n geom_vline(xintercept = 53, linetype = \"dashed\"))\n\n\n\n\n\n\n\nThe prediction proportion of damaged o-rings is markedly less than what was observed.\nBefore we can make any firm conclusions, though, we need to check our model:\n\nchi2.sf(12.633, 20)\n\n0.8925694610786307\n\n\nWe get quite a high score (around 0.9) for this, which tells us that our goodness of fit is pretty rubbish – our points are not very close to our curve, overall.\nIs the model any better than the null though?\nFirst we need to define the null model:\n\n# create a linear model\nmodel = smf.glm(formula = \"damage + intact ~ 1\",\n family = sm.families.Binomial(),\n data = challenger_new_py)\n# and get the fitted parameters of the model\nglm_chl_new_null_py = model.fit()\n\nprint(glm_chl_new_null_py.summary())\n\n Generalized Linear Model Regression Results \n================================================================================\nDep. Variable: ['damage', 'intact'] No. Observations: 22\nModel: GLM Df Residuals: 21\nModel Family: Binomial Df Model: 0\nLink Function: Logit Scale: 1.0000\nMethod: IRLS Log-Likelihood: -13.657\nDate: Tue, 06 Feb 2024 Deviance: 16.375\nTime: 16:12:16 Pearson chi2: 16.8\nNo. Iterations: 6 Pseudo R-squ. (CS): -2.220e-16\nCovariance Type: nonrobust \n==============================================================================\n coef std err z P>|z| [0.025 0.975]\n------------------------------------------------------------------------------\nIntercept -3.0445 0.418 -7.286 0.000 -3.864 -2.226\n==============================================================================\n\n\n\nchi2.sf(16.375 - 12.633, 21 - 20)\n\n0.053060897703157646\n\n\nHowever, the model is not significantly better than the null in this case, with a p-value here of just over 0.05 for both of these tests (they give a similar result since, yet again, we have just the one predictor variable).\n\n\n\nSo, could NASA have predicted what happened? This model is not significantly different from the null, i.e., temperature is not a significant predictor. Note that it’s only marginally non-significant, and we do have a high goodness-of-fit value.\nIt is possible that if more data points were available that followed a similar trend, the story might be different). Even if we did use our non-significant model to make a prediction, it doesn’t give us a value anywhere near 5 failures for a temperature of 53 degrees Fahrenheit. So overall, based on the model we’ve fitted with these data, there was no indication that a temperature just a few degrees cooler than previous missions could have been so disastrous for the Challenger.", "crumbs": [ "Binary and proportional data", "8  Proportional response" @@ -389,7 +389,7 @@ "href": "materials/glm-practical-poisson.html#constructing-a-model", "title": "\n9  Count data\n", "section": "\n9.3 Constructing a model", - "text": "9.3 Constructing a model\n\n\nR\nPython\n\n\n\n\nglm_isl <- glm(species ~ area,\n data = islands, family = \"poisson\")\n\nand we look at the model summary:\n\nsummary(glm_isl)\n\n\nCall:\nglm(formula = species ~ area, family = \"poisson\", data = islands)\n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 4.241129 0.041322 102.64 <2e-16 ***\narea 0.035613 0.001247 28.55 <2e-16 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for poisson family taken to be 1)\n\n Null deviance: 856.899 on 34 degrees of freedom\nResidual deviance: 30.437 on 33 degrees of freedom\nAIC: 282.66\n\nNumber of Fisher Scoring iterations: 3\n\n\nThe output is strikingly similar to the logistic regression models (who’d have guessed, eh?) and the main numbers to extract from the output are the two numbers underneath Estimate.Std in the Coefficients table:\n(Intercept) 4.241129\narea 0.035613\n\n\n\n# create a generalised linear model\nmodel = smf.glm(formula = \"species ~ area\",\n family = sm.families.Poisson(),\n data = islands_py)\n# and get the fitted parameters of the model\nglm_isl_py = model.fit()\n\nLet’s look at the model output:\n\nprint(glm_isl_py.summary())\n\n Generalized Linear Model Regression Results \n==============================================================================\nDep. Variable: species No. Observations: 35\nModel: GLM Df Residuals: 33\nModel Family: Poisson Df Model: 1\nLink Function: Log Scale: 1.0000\nMethod: IRLS Log-Likelihood: -139.33\nDate: Tue, 06 Feb 2024 Deviance: 30.437\nTime: 14:14:58 Pearson chi2: 30.3\nNo. Iterations: 4 Pseudo R-squ. (CS): 1.000\nCovariance Type: nonrobust \n==============================================================================\n coef std err z P>|z| [0.025 0.975]\n------------------------------------------------------------------------------\nIntercept 4.2411 0.041 102.636 0.000 4.160 4.322\narea 0.0356 0.001 28.551 0.000 0.033 0.038\n==============================================================================\n\n\n\n\n\nThese are the coefficients of the Poisson model equation and need to be placed in the following formula in order to estimate the expected number of species as a function of island size:\n\\[ E(species) = \\exp(4.24 + 0.036 \\times area) \\]\nInterpreting this requires a bit of thought (not much, but a bit). The intercept coefficient, 4.24, is related to the number of species we would expect on an island of zero area (this is statistics, not real life. You’d do well to remember that before you worry too much about what that even means). But in order to turn this number into something meaningful we have to exponentiate it. Since exp(4.24) ≈ 70, we can say that the baseline number of species the model expects on any island is 70. This isn’t actually the interesting bit though.\nThe coefficient of area is the fun bit. For starters we can see that it is a positive number which does mean that increasing area leads to increasing numbers of species. Good so far.\nBut what does the value 0.036 actually mean? Well, if we exponentiate it as well, we get exp(0.036) ≈ 1.04. This means that for every increase in area of 1 km^2 (the original units of the area variable), the number of species on the island is multiplied by 1.04. So, an island of area 1 km^2 will have 1.04 x 70 ≈ 72 species.\nSo, in order to interpret Poisson coefficients, you have to exponentiate them.", + "text": "9.3 Constructing a model\n\n\nR\nPython\n\n\n\n\nglm_isl <- glm(species ~ area,\n data = islands, family = \"poisson\")\n\nand we look at the model summary:\n\nsummary(glm_isl)\n\n\nCall:\nglm(formula = species ~ area, family = \"poisson\", data = islands)\n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 4.241129 0.041322 102.64 <2e-16 ***\narea 0.035613 0.001247 28.55 <2e-16 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for poisson family taken to be 1)\n\n Null deviance: 856.899 on 34 degrees of freedom\nResidual deviance: 30.437 on 33 degrees of freedom\nAIC: 282.66\n\nNumber of Fisher Scoring iterations: 3\n\n\nThe output is strikingly similar to the logistic regression models (who’d have guessed, eh?) and the main numbers to extract from the output are the two numbers underneath Estimate.Std in the Coefficients table:\n(Intercept) 4.241129\narea 0.035613\n\n\n\n# create a generalised linear model\nmodel = smf.glm(formula = \"species ~ area\",\n family = sm.families.Poisson(),\n data = islands_py)\n# and get the fitted parameters of the model\nglm_isl_py = model.fit()\n\nLet’s look at the model output:\n\nprint(glm_isl_py.summary())\n\n Generalized Linear Model Regression Results \n==============================================================================\nDep. Variable: species No. Observations: 35\nModel: GLM Df Residuals: 33\nModel Family: Poisson Df Model: 1\nLink Function: Log Scale: 1.0000\nMethod: IRLS Log-Likelihood: -139.33\nDate: Tue, 06 Feb 2024 Deviance: 30.437\nTime: 16:16:33 Pearson chi2: 30.3\nNo. Iterations: 4 Pseudo R-squ. (CS): 1.000\nCovariance Type: nonrobust \n==============================================================================\n coef std err z P>|z| [0.025 0.975]\n------------------------------------------------------------------------------\nIntercept 4.2411 0.041 102.636 0.000 4.160 4.322\narea 0.0356 0.001 28.551 0.000 0.033 0.038\n==============================================================================\n\n\n\n\n\nThese are the coefficients of the Poisson model equation and need to be placed in the following formula in order to estimate the expected number of species as a function of island size:\n\\[ E(species) = \\exp(4.24 + 0.036 \\times area) \\]\nInterpreting this requires a bit of thought (not much, but a bit). The intercept coefficient, 4.24, is related to the number of species we would expect on an island of zero area (this is statistics, not real life. You’d do well to remember that before you worry too much about what that even means). But in order to turn this number into something meaningful we have to exponentiate it. Since exp(4.24) ≈ 70, we can say that the baseline number of species the model expects on any island is 70. This isn’t actually the interesting bit though.\nThe coefficient of area is the fun bit. For starters we can see that it is a positive number which does mean that increasing area leads to increasing numbers of species. Good so far.\nBut what does the value 0.036 actually mean? Well, if we exponentiate it as well, we get exp(0.036) ≈ 1.04. This means that for every increase in area of 1 km^2 (the original units of the area variable), the number of species on the island is multiplied by 1.04. So, an island of area 1 km^2 will have 1.04 x 70 ≈ 72 species.\nSo, in order to interpret Poisson coefficients, you have to exponentiate them.", "crumbs": [ "Count data", "9  Count data" @@ -433,7 +433,7 @@ "href": "materials/glm-practical-poisson.html#exercises", "title": "\n9  Count data\n", "section": "\n9.7 Exercises", - "text": "9.7 Exercises\n\n9.7.1 Seat belts\n\n\n\n\n\n\nExercise\n\n\n\n\n\n\n\nLevel: \nFor this exercise we’ll be using the data from data/seatbelts.csv.\nI’d like you to do the following:\n\nLoad the data\nVisualise the data and create a poisson regression model\nPlot the regression model on top of the data\nAssess if the model is a decent predictor for the number of fatalities\n\n\n\n\n\n\n\nAnswer\n\n\n\n\n\n\n\nLoad and visualise the data\nFirst we load the data, then we visualise it.\n\n\nR\nPython\n\n\n\n\nseatbelts <- read_csv(\"data/seatbelts.csv\")\n\n\n\n\nseatbelts_py = pd.read_csv(\"data/seatbelts.csv\")\n\nLet’s have a glimpse at the data:\n\nseatbelts_py.head()\n\n drivers_killed drivers front rear ... van_killed law year month\n0 107 1687 867 269 ... 12 0 1969 Jan\n1 97 1508 825 265 ... 6 0 1969 Feb\n2 102 1507 806 319 ... 12 0 1969 Mar\n3 87 1385 814 407 ... 8 0 1969 Apr\n4 119 1632 991 454 ... 10 0 1969 May\n\n[5 rows x 10 columns]\n\n\n\n\n\nThe data tracks the number of drivers killed in road traffic accidents, before and after the seat belt law was introduced. The information on whether the law was in place is encoded in the law column as 0 (law not in place) or 1 (law in place).\nThere are many more observations when the law was not in place, so we need to keep this in mind when we’re interpreting the data.\nFirst we have a look at the data comparing no law vs law:\n\nR\n\n\nWe have to convert the law column to a factor, otherwise R will see it as numerical.\n\nseatbelts %>% \n ggplot(aes(as_factor(law), drivers_killed)) +\n geom_boxplot()\n\n\n\n\n\n\n\nThe data are recorded by month and year, so we can also display the number of drivers killed by year:\n\nseatbelts %>% \n ggplot(aes(year, drivers_killed)) +\n geom_point()\n\n\n\n\n\n\n\n\n\n\nThe data look a bit weird. There is quite some variation within years (keeping in mind that the data are aggregated monthly). The data also seems to wave around a bit… with some vague peaks (e.g. 1972 - 1973) and some troughs (e.g. around 1976).\nSo my initial thought is that these data are going to be a bit tricky to interpret. But that’s OK.\nConstructing a model\n\nR\n\n\n\nglm_stb <- glm(drivers_killed ~ year,\n data = seatbelts, family = \"poisson\")\n\nand we look at the model summary:\n\nsummary(glm_stb)\n\n\nCall:\nglm(formula = drivers_killed ~ year, family = \"poisson\", data = seatbelts)\n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 37.168958 2.796636 13.29 <2e-16 ***\nyear -0.016373 0.001415 -11.57 <2e-16 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for poisson family taken to be 1)\n\n Null deviance: 984.50 on 191 degrees of freedom\nResidual deviance: 850.41 on 190 degrees of freedom\nAIC: 2127.2\n\nNumber of Fisher Scoring iterations: 4\n\n\n(Intercept) 37.168958\nyear 0.016373\n\n\n\nThese are the coefficients of the Poisson model equation and need to be placed in the following formula in order to estimate the expected number of species as a function of island size:\n\\[ E(drivers\\_killed) = \\exp(37.17 + 0.164 \\times year) \\]\nAssessing significance\nIs the model well-specified?\n\nR\n\n\n\n1 - pchisq(850.41, 190)\n\n[1] 0\n\n\nThis value indicates that the model is actually pretty good. Remember, it is between \\([0, 1]\\) and the closer to zero, the better the model.\n\n\n\nHow about the overall fit?\n\nR\n\n\n\n1 - pchisq(984.50 - 850.41, 191 - 190)\n\n[1] 0\n\n\nAgain, this indicates that the model is markedly better than the null model.\n\n\n\nPlotting the regression\n\nR\n\n\n\nggplot(seatbelts, aes(year, drivers_killed)) +\n geom_point() +\n geom_smooth(method = \"glm\", se = FALSE, fullrange = TRUE, \n method.args = list(family = poisson)) +\n xlim(1970,1985)\n\n\n\n\n\n\n\n\n\n\nConclusions\nThe model we constructed appears to be a decent predictor for the number of fatalities.", + "text": "9.7 Exercises\n\n9.7.1 Seat belts\n\n\n\n\n\n\nExercise\n\n\n\n\n\n\n\nLevel: \nFor this exercise we’ll be using the data from data/seatbelts.csv.\nI’d like you to do the following:\n\nLoad the data\nVisualise the data and create a poisson regression model\nPlot the regression model on top of the data\nAssess if the model is a decent predictor for the number of fatalities\n\n\n\n\n\n\n\nAnswer\n\n\n\n\n\n\n\nLoad and visualise the data\nFirst we load the data, then we visualise it.\n\n\nR\nPython\n\n\n\n\nseatbelts <- read_csv(\"data/seatbelts.csv\")\n\n\n\n\nseatbelts_py = pd.read_csv(\"data/seatbelts.csv\")\n\nLet’s have a glimpse at the data:\n\nseatbelts_py.head()\n\n casualties drivers front rear ... van_killed law year month\n0 107 1687 867 269 ... 12 0 1969 Jan\n1 97 1508 825 265 ... 6 0 1969 Feb\n2 102 1507 806 319 ... 12 0 1969 Mar\n3 87 1385 814 407 ... 8 0 1969 Apr\n4 119 1632 991 454 ... 10 0 1969 May\n\n[5 rows x 10 columns]\n\n\n\n\n\nThe data tracks the number of drivers killed in road traffic accidents, before and after the seat belt law was introduced. The information on whether the law was in place is encoded in the law column as 0 (law not in place) or 1 (law in place).\nThere are many more observations when the law was not in place, so we need to keep this in mind when we’re interpreting the data.\nFirst we have a look at the data comparing no law vs law:\n\n\nR\nPython\n\n\n\nWe have to convert the law column to a factor, otherwise R will see it as numerical.\n\nseatbelts %>% \n ggplot(aes(as_factor(law), casualties)) +\n geom_boxplot()\n\n\n\n\n\n\n\nThe data are recorded by month and year, so we can also display the number of drivers killed by year:\n\nseatbelts %>% \n ggplot(aes(year, casualties)) +\n geom_point()\n\n\n\n\n\n\n\n\n\nWe have to convert the law column to a factor, otherwise R will see it as numerical.\n\n(ggplot(seatbelts_py,\n aes(x = seatbelts_py.law.astype(object),\n y = \"casualties\")) +\n geom_boxplot())\n\n\n\n\n\n\n\nThe data are recorded by month and year, so we can also display the number of casualties by year:\n\n(ggplot(seatbelts_py,\n aes(x = \"year\",\n y = \"casualties\")) +\n geom_point())\n\n\n\n\n\n\n\n\n\n\nThe data look a bit weird. There is quite some variation within years (keeping in mind that the data are aggregated monthly). The data also seems to wave around a bit… with some vague peaks (e.g. 1972 - 1973) and some troughs (e.g. around 1976).\nSo my initial thought is that these data are going to be a bit tricky to interpret. But that’s OK.\nConstructing a model\n\n\nR\nPython\n\n\n\n\nglm_stb <- glm(casualties ~ year,\n data = seatbelts, family = \"poisson\")\n\nand we look at the model summary:\n\nsummary(glm_stb)\n\n\nCall:\nglm(formula = casualties ~ year, family = \"poisson\", data = seatbelts)\n\nCoefficients:\n Estimate Std. Error z value Pr(>|z|) \n(Intercept) 37.168958 2.796636 13.29 <2e-16 ***\nyear -0.016373 0.001415 -11.57 <2e-16 ***\n---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n\n(Dispersion parameter for poisson family taken to be 1)\n\n Null deviance: 984.50 on 191 degrees of freedom\nResidual deviance: 850.41 on 190 degrees of freedom\nAIC: 2127.2\n\nNumber of Fisher Scoring iterations: 4\n\n\n(Intercept) 37.168958\nyear -0.016373\n\n\n\n# create a linear model\nmodel = smf.glm(formula = \"casualties ~ year\",\n family = sm.families.Poisson(),\n data = seatbelts_py)\n# and get the fitted parameters of the model\nglm_stb_py = model.fit()\n\n\nprint(glm_stb_py.summary())\n\n Generalized Linear Model Regression Results \n==============================================================================\nDep. Variable: casualties No. Observations: 192\nModel: GLM Df Residuals: 190\nModel Family: Poisson Df Model: 1\nLink Function: Log Scale: 1.0000\nMethod: IRLS Log-Likelihood: -1061.6\nDate: Tue, 06 Feb 2024 Deviance: 850.41\nTime: 16:16:38 Pearson chi2: 862.\nNo. Iterations: 4 Pseudo R-squ. (CS): 0.5026\nCovariance Type: nonrobust \n==============================================================================\n coef std err z P>|z| [0.025 0.975]\n------------------------------------------------------------------------------\nIntercept 37.1690 2.797 13.291 0.000 31.688 42.650\nyear -0.0164 0.001 -11.569 0.000 -0.019 -0.014\n==============================================================================\n\n\n======================\n coef \n----------------------\nIntercept 37.1690 \nyear -0.0164 \n======================\n\n\n\nThese are the coefficients of the Poisson model equation and need to be placed in the following formula in order to estimate the expected number of species as a function of island size:\n\\[ E(casualties) = \\exp(37.17 - 0.164 \\times year) \\]\nAssessing significance\nIs the model well-specified?\n\n\nR\nPython\n\n\n\n\n1 - pchisq(850.41, 190)\n\n[1] 0\n\n\n\n\n\nchi2.sf(850.41, 190)\n\n3.1319689119997022e-84\n\n\n\n\n\nThis value indicates that the model is actually pretty good. Remember, it is between \\([0, 1]\\) and the closer to zero, the better the model.\nHow about the overall fit?\n\n\nR\nPython\n\n\n\n\n1 - pchisq(984.50 - 850.41, 191 - 190)\n\n[1] 0\n\n\n\n\nFirst we need to define the null model:\n\n# create a linear model\nmodel = smf.glm(formula = \"casualties ~ 1\",\n family = sm.families.Poisson(),\n data = seatbelts_py)\n# and get the fitted parameters of the model\nglm_stb_null_py = model.fit()\n\nprint(glm_stb_null_py.summary())\n\n Generalized Linear Model Regression Results \n==============================================================================\nDep. Variable: casualties No. Observations: 192\nModel: GLM Df Residuals: 191\nModel Family: Poisson Df Model: 0\nLink Function: Log Scale: 1.0000\nMethod: IRLS Log-Likelihood: -1128.6\nDate: Tue, 06 Feb 2024 Deviance: 984.50\nTime: 16:16:38 Pearson chi2: 1.00e+03\nNo. Iterations: 4 Pseudo R-squ. (CS): 1.942e-13\nCovariance Type: nonrobust \n==============================================================================\n coef std err z P>|z| [0.025 0.975]\n------------------------------------------------------------------------------\nIntercept 4.8106 0.007 738.670 0.000 4.798 4.823\n==============================================================================\n\n\n\nchi2.sf(984.50 - 850.41, 191 - 190)\n\n5.2214097202831414e-31\n\n\n\n\n\nAgain, this indicates that the model is markedly better than the null model.\nPlotting the regression\n\n\nR\nPython\n\n\n\n\nggplot(seatbelts, aes(year, casualties)) +\n geom_point() +\n geom_smooth(method = \"glm\", se = FALSE, fullrange = TRUE, \n method.args = list(family = poisson)) +\n xlim(1970,1985)\n\n\n\n\n\n\n\n\n\n\nmodel = pd.DataFrame({'year': list(range(1968, 1985))})\n\nmodel[\"pred\"] = glm_stb_py.predict(model)\n\nmodel.head()\n\n year pred\n0 1968 140.737690\n1 1969 138.452153\n2 1970 136.203733\n3 1971 133.991827\n4 1972 131.815842\n\n\n\n(ggplot(seatbelts_py,\n aes(x = \"year\",\n y = \"casualties\")) +\n geom_point() +\n geom_line(model, aes(x = \"year\", y = \"pred\"), colour = \"blue\", size = 1))\n\n\n\n\n\n\n\n\n\n\nConclusions\nThe model we constructed appears to be a decent predictor for the number of fatalities.", "crumbs": [ "Count data", "9  Count data" diff --git a/materials/data/seatbelts.csv b/materials/data/seatbelts.csv index 2750fcb..ea0eb83 100644 --- a/materials/data/seatbelts.csv +++ b/materials/data/seatbelts.csv @@ -1,193 +1,193 @@ -drivers_killed,drivers,front,rear,kms,petrol_price,van_killed,law,year,month -107,1687,867,269,9059,0.102971811805368,12,0,1969,Jan -97,1508,825,265,7685,0.102362995884646,6,0,1969,Feb -102,1507,806,319,9963,0.102062490635914,12,0,1969,Mar -87,1385,814,407,10955,0.100873300511862,8,0,1969,Apr -119,1632,991,454,11823,0.101019672891934,10,0,1969,May -106,1511,945,427,12391,0.10058119170287,13,0,1969,Jun -110,1559,1004,522,13460,0.103773981457839,11,0,1969,Jul -106,1630,1091,536,14055,0.104076403554621,6,0,1969,Aug -107,1579,958,405,12106,0.103773981457839,10,0,1969,Sep -134,1653,850,437,11372,0.103026401330572,16,0,1969,Oct -147,2152,1109,434,9834,0.102730112155946,13,0,1969,Nov -180,2148,1113,437,9267,0.101997191539847,14,0,1969,Dec -125,1752,925,316,9130,0.101274563494893,14,0,1970,Jan -134,1765,903,311,8933,0.10070397563972,6,0,1970,Feb -110,1717,1006,351,11000,0.100139606658898,8,0,1970,Mar -102,1558,892,362,10733,0.0986211043713023,11,0,1970,Apr -103,1575,990,486,12912,0.0983492854059603,7,0,1970,May -111,1520,866,429,12926,0.0980801772105387,13,0,1970,Jun -120,1805,1095,551,13990,0.0972792082183714,13,0,1970,Jul -129,1800,1204,646,14926,0.0974106238350488,11,0,1970,Aug -122,1719,1029,456,12900,0.0974252365245483,11,0,1970,Sep -183,2008,1147,475,12034,0.0963806330037465,14,0,1970,Oct -169,2242,1171,456,10643,0.0957389559626943,16,0,1970,Nov -190,2478,1299,468,10742,0.0951063062359475,14,0,1970,Dec -134,2030,944,356,10266,0.0967359671470176,17,0,1971,Jan -108,1655,874,271,10281,0.096109222487367807,16,0,1971,Feb -104,1693,840,354,11527,0.095367254851379,15,0,1971,Mar -117,1623,893,427,12281,0.0947095915871269,13,0,1971,Apr -157,1805,1007,465,13587,0.0941176202174608,13,0,1971,May -148,1746,973,440,13049,0.0935321548190638,15,0,1971,Jun -130,1795,1097,539,16055,0.0929540494377308,12,0,1971,Jul -140,1926,1194,646,15220,0.0928397862431927,6,0,1971,Aug -136,1619,988,457,13824,0.0927247362539862,9,0,1971,Sep -140,1992,1077,446,12729,0.0922696509793897,13,0,1971,Oct -187,2233,1045,402,11467,0.0917066851479679,14,0,1971,Nov -150,2192,1115,441,11351,0.0912620719433678,15,0,1971,Dec -159,2080,1005,359,10803,0.090711603254936,14,0,1972,Jan -143,1768,857,334,10548,0.090276328119195,3,0,1972,Feb -114,1835,879,312,12368,0.0899519176272147,12,0,1972,Mar -127,1569,887,427,13311,0.0890996386561615,13,0,1972,Apr -159,1976,1075,434,13885,0.0886791925043499,12,0,1972,May -156,1853,1121,486,14088,0.0881592888670634,8,0,1972,Jun -138,1965,1190,569,16932,0.0889020568552906,8,0,1972,Jul -120,1689,1058,523,16164,0.0881813314444876,15,0,1972,Aug -117,1778,939,418,14883,0.0889402929599117,8,0,1972,Sep -170,1976,1074,452,13532,0.0877266104275971,5,0,1972,Oct -168,2397,1089,462,12220,0.087428846437772,17,0,1972,Nov -198,2654,1208,497,12025,0.0870354301608856,14,0,1972,Dec -144,2097,903,354,11692,0.0864499193294655,13,0,1973,Jan -146,1963,916,347,11081,0.0858726409121568,5,0,1973,Feb -109,1677,787,276,13745,0.0853982218357345,8,0,1973,Mar -131,1941,1114,472,14382,0.083821981233605,5,0,1973,Apr -151,2003,1014,487,14391,0.0845907801489325,12,0,1973,May -140,1813,1022,505,15597,0.0841369037739444,11,0,1973,Jun -153,2012,1114,619,16834,0.0837784051341314,13,0,1973,Jul -140,1912,1132,640,17282,0.0835107427259604,15,0,1973,Aug -161,2084,1111,559,15779,0.0828063938633846,11,0,1973,Sep -168,2080,1008,453,13946,0.0811788933269884,11,0,1973,Oct -152,2118,916,418,12701,0.0828536069623417,10,0,1973,Nov -136,2150,992,419,10431,0.0941901186933595,13,0,1973,Dec -113,1608,731,262,11616,0.0923998429510411,8,0,1974,Jan -100,1503,665,299,10808,0.108161478199019,6,0,1974,Feb -103,1548,724,303,12421,0.10721168869023,8,0,1974,Mar -103,1382,744,401,13605,0.114042966782082,14,0,1974,Apr -121,1731,910,413,14455,0.112454115810183,12,0,1974,May -134,1798,883,426,15019,0.111316253290611,14,0,1974,Jun -133,1779,900,516,15662,0.11030125221242,13,0,1974,Jul -129,1887,1057,600,16745,0.108197177376865,9,0,1974,Aug -144,2004,1076,459,14717,0.107027443082328,4,0,1974,Sep -154,2077,919,443,13756,0.104946980916917,13,0,1974,Oct -156,2092,920,412,12531,0.119357749193208,6,0,1974,Nov -163,2051,953,400,12568,0.117621904277373,15,0,1974,Dec -122,1577,664,278,11249,0.133027420877451,12,0,1975,Jan -92,1356,607,302,11096,0.130845243689729,16,0,1975,Feb -117,1652,777,381,12637,0.128318477474772,7,0,1975,Mar -95,1382,633,279,13018,0.123547448292297,12,0,1975,Apr -96,1519,791,442,15005,0.118586811514179,10,0,1975,May -108,1421,790,409,15235,0.116337480161004,9,0,1975,Jun -108,1442,803,416,15552,0.11516147558196,9,0,1975,Jul -106,1543,884,511,16905,0.114501197216867,6,0,1975,Aug -140,1656,769,393,14776,0.113522979499817,7,0,1975,Sep -114,1561,732,345,14104,0.111930179432996,13,0,1975,Oct -158,1905,859,391,12854,0.110610528503361,14,0,1975,Nov -161,2199,994,470,12956,0.11527438914664,13,0,1975,Dec -102,1473,704,266,12177,0.113793485966034,14,0,1976,Jan -127,1655,684,312,11918,0.112349582098189,11,0,1976,Feb -125,1407,671,300,13517,0.111753469387189,11,0,1976,Mar -101,1395,643,373,14417,0.109642522576533,10,0,1976,Apr -97,1530,771,412,15911,0.10844089510559,4,0,1976,May -112,1309,644,322,15589,0.107884938936114,8,0,1976,Jun -112,1526,828,458,16543,0.109084769191454,9,0,1976,Jul -113,1327,748,427,17925,0.107571450111271,10,0,1976,Aug -108,1627,767,346,15406,0.106164022368002,10,0,1976,Sep -128,1748,825,421,14601,0.106299999323319,5,0,1976,Oct -154,1958,810,344,13107,0.104825313000088,13,0,1976,Nov -162,2274,986,370,12268,0.103451745711815,12,0,1976,Dec -112,1648,714,291,11972,0.101449920129493,10,0,1977,Jan -79,1401,567,224,12028,0.100402316427863,9,0,1977,Feb -82,1411,616,266,14033,0.098862033680192,7,0,1977,Mar -127,1403,678,338,14244,0.102496154313521,5,0,1977,Apr -108,1394,742,298,15287,0.103027431599736,10,0,1977,May -110,1520,840,386,16954,0.102178908220655,5,0,1977,Jun -123,1528,888,479,17361,0.0998366428726473,6,0,1977,Jul -103,1643,852,473,17694,0.0926366895833353,8,0,1977,Aug -97,1515,774,332,16222,0.0918149629077569,6,0,1977,Sep -140,1685,831,391,14969,0.090724303768407,12,0,1977,Oct -165,2000,889,370,13624,0.0900212072768793,15,0,1977,Nov -183,2215,1046,431,13842,0.0893307058230937,7,0,1977,Dec -148,1956,889,366,12387,0.0884427348717763,14,0,1978,Jan -111,1462,626,250,11608,0.0883525692744791,4,0,1978,Feb -116,1563,808,355,15021,0.0867573619308237,10,0,1978,Mar -115,1459,746,304,14834,0.0849952420449752,8,0,1978,Apr -100,1446,754,379,16565,0.0845679437213488,7,0,1978,May -106,1622,865,440,16882,0.0844318988774436,11,0,1978,Jun -134,1657,980,500,18012,0.0843508831482932,3,0,1978,Jul -125,1638,959,511,18855,0.0836009830491076,5,0,1978,Aug -117,1643,856,384,17243,0.0834172630524962,11,0,1978,Sep -122,1683,798,366,16045,0.0827451397987249,10,0,1978,Oct -153,2050,942,432,14745,0.0852352669035281,10,0,1978,Nov -178,2262,1010,390,13726,0.0847703028296526,7,0,1978,Dec -114,1813,796,306,11196,0.0844589214084587,10,0,1979,Jan -94,1445,643,232,12105,0.085352119244763,11,0,1979,Feb -128,1762,794,342,14723,0.0875592125175749,9,0,1979,Mar -119,1461,750,329,15582,0.0903829170614837,7,0,1979,Apr -111,1556,809,394,16863,0.0907832937355188,8,0,1979,May -110,1431,716,355,16758,0.108742780219868,13,0,1979,Jun -114,1427,851,385,17434,0.114142227335262,8,0,1979,Jul -118,1554,931,463,18359,0.112992933231466,5,0,1979,Aug -115,1645,834,453,17189,0.111320706029796,8,0,1979,Sep -132,1653,762,373,16909,0.109126229280665,7,0,1979,Oct -153,2016,880,401,15380,0.107698459343112,12,0,1979,Nov -171,2207,1077,466,15161,0.107601574334496,10,0,1979,Dec -115,1665,748,306,14027,0.103775019202843,7,0,1980,Jan -95,1361,593,263,14478,0.107114170431059,4,0,1980,Feb -92,1506,720,323,16155,0.107374774370757,10,0,1980,Mar -100,1360,646,310,16585,0.111695372689559,4,0,1980,Apr -95,1453,765,424,18117,0.110638184592354,8,0,1980,May -114,1522,820,403,17552,0.111855211329895,8,0,1980,Jun -102,1460,807,406,18299,0.109742342683337,7,0,1980,Jul -104,1552,885,466,19361,0.108193931510232,10,0,1980,Aug -132,1548,803,381,17924,0.106255362697951,8,0,1980,Sep -136,1827,860,369,17872,0.104193034427699,14,0,1980,Oct -117,1737,825,378,16058,0.101933972880902,8,0,1980,Nov -137,1941,911,392,15746,0.102793824574291,9,0,1980,Dec -111,1474,704,284,15226,0.10476034144929,8,0,1981,Jan -106,1458,691,316,14932,0.104002535534347,6,0,1981,Feb -98,1542,688,321,16846,0.116655515402424,7,0,1981,Mar -84,1404,714,358,16854,0.11516147558196,6,0,1981,Apr -94,1522,814,378,18146,0.112989543494316,5,0,1981,May -105,1385,736,382,17559,0.113860643932406,4,0,1981,Jun -123,1641,876,433,18655,0.119118081064489,5,0,1981,Jul -109,1510,829,506,19453,0.124489986005886,10,0,1981,Aug -130,1681,818,428,17923,0.123222945411622,7,0,1981,Sep -153,1938,942,479,17915,0.12067793212866,10,0,1981,Oct -134,1868,782,370,16496,0.121048982651421,12,0,1981,Nov -99,1726,823,349,13544,0.116968571491487,7,0,1981,Dec -115,1456,595,238,13601,0.112750259392875,4,0,1982,Jan -104,1445,673,285,15667,0.108079306704711,5,0,1982,Feb -131,1456,660,324,17358,0.108838515984019,6,0,1982,Mar -108,1365,676,346,18112,0.111291766408542,4,0,1982,Apr -103,1487,755,410,18581,0.111304009176187,4,0,1982,May -115,1558,815,411,18759,0.115454357532553,8,0,1982,Jun -122,1488,867,496,20668,0.114768296055692,8,0,1982,Jul -122,1684,933,534,21040,0.117207430931122,3,0,1982,Aug -125,1594,798,396,18993,0.119076397031248,7,0,1982,Sep -137,1850,950,470,18668,0.117965862171995,12,0,1982,Oct -138,1998,825,385,16768,0.117449127100423,2,0,1982,Nov -152,2079,911,411,16551,0.116988457838933,7,0,1982,Dec -120,1494,619,281,16231,0.11261053571781,8,0,1983,Jan -95,1057,426,300,15511,0.113657015681422,3,1,1983,Feb -100,1218,475,318,18308,0.113144445252379,2,1,1983,Mar -89,1168,556,391,17793,0.118495534815352,6,1,1983,Apr -82,1236,559,398,19205,0.117969401200945,3,1,1983,May -89,1076,483,337,19162,0.1176866141183,7,1,1983,Jun -60,1174,587,477,20997,0.120059238961094,6,1,1983,Jul -84,1139,615,422,20705,0.119437745680998,8,1,1983,Aug -113,1427,618,495,18759,0.118881271786551,8,1,1983,Sep -126,1487,662,471,19240,0.118462360710195,4,1,1983,Oct -122,1483,519,368,17504,0.118016598400236,3,1,1983,Nov -118,1513,585,345,16591,0.117706622543368,5,1,1983,Dec -92,1357,483,296,16224,0.117776089941536,5,1,1984,Jan -86,1165,434,319,16670,0.114796991716514,3,1,1984,Feb -81,1282,513,349,18539,0.11573525277085,4,1,1984,Mar -84,1110,548,375,19759,0.115356263024722,3,1,1984,Apr -87,1297,586,441,19584,0.114815360704668,6,1,1984,May -90,1185,522,465,19976,0.114777477886645,6,1,1984,Jun -79,1222,601,472,21486,0.114935980147534,7,1,1984,Jul -96,1284,644,521,21626,0.114796991716514,5,1,1984,Aug -122,1444,643,429,20195,0.114093156728444,7,1,1984,Sep -120,1575,641,408,19928,0.116465521799171,7,1,1984,Oct -137,1737,711,490,18564,0.116026113132354,4,1,1984,Nov -154,1763,721,491,18149,0.116066729379379,7,1,1984,Dec +casualties,drivers,front,rear,kms,petrol_price,van_killed,law,year,month +107,1687,867,269,9059,0.102971812,12,0,1969,Jan +97,1508,825,265,7685,0.102362996,6,0,1969,Feb +102,1507,806,319,9963,0.102062491,12,0,1969,Mar +87,1385,814,407,10955,0.100873301,8,0,1969,Apr +119,1632,991,454,11823,0.101019673,10,0,1969,May +106,1511,945,427,12391,0.100581192,13,0,1969,Jun +110,1559,1004,522,13460,0.103773981,11,0,1969,Jul +106,1630,1091,536,14055,0.104076404,6,0,1969,Aug +107,1579,958,405,12106,0.103773981,10,0,1969,Sep +134,1653,850,437,11372,0.103026401,16,0,1969,Oct +147,2152,1109,434,9834,0.102730112,13,0,1969,Nov +180,2148,1113,437,9267,0.101997192,14,0,1969,Dec +125,1752,925,316,9130,0.101274563,14,0,1970,Jan +134,1765,903,311,8933,0.100703976,6,0,1970,Feb +110,1717,1006,351,11000,0.100139607,8,0,1970,Mar +102,1558,892,362,10733,0.098621104,11,0,1970,Apr +103,1575,990,486,12912,0.098349285,7,0,1970,May +111,1520,866,429,12926,0.098080177,13,0,1970,Jun +120,1805,1095,551,13990,0.097279208,13,0,1970,Jul +129,1800,1204,646,14926,0.097410624,11,0,1970,Aug +122,1719,1029,456,12900,0.097425237,11,0,1970,Sep +183,2008,1147,475,12034,0.096380633,14,0,1970,Oct +169,2242,1171,456,10643,0.095738956,16,0,1970,Nov +190,2478,1299,468,10742,0.095106306,14,0,1970,Dec +134,2030,944,356,10266,0.096735967,17,0,1971,Jan +108,1655,874,271,10281,0.096109222487367807,16,0,1971,Feb +104,1693,840,354,11527,0.095367255,15,0,1971,Mar +117,1623,893,427,12281,0.094709592,13,0,1971,Apr +157,1805,1007,465,13587,0.09411762,13,0,1971,May +148,1746,973,440,13049,0.093532155,15,0,1971,Jun +130,1795,1097,539,16055,0.092954049,12,0,1971,Jul +140,1926,1194,646,15220,0.092839786,6,0,1971,Aug +136,1619,988,457,13824,0.092724736,9,0,1971,Sep +140,1992,1077,446,12729,0.092269651,13,0,1971,Oct +187,2233,1045,402,11467,0.091706685,14,0,1971,Nov +150,2192,1115,441,11351,0.091262072,15,0,1971,Dec +159,2080,1005,359,10803,0.090711603,14,0,1972,Jan +143,1768,857,334,10548,0.090276328,3,0,1972,Feb +114,1835,879,312,12368,0.089951918,12,0,1972,Mar +127,1569,887,427,13311,0.089099639,13,0,1972,Apr +159,1976,1075,434,13885,0.088679193,12,0,1972,May +156,1853,1121,486,14088,0.088159289,8,0,1972,Jun +138,1965,1190,569,16932,0.088902057,8,0,1972,Jul +120,1689,1058,523,16164,0.088181331,15,0,1972,Aug +117,1778,939,418,14883,0.088940293,8,0,1972,Sep +170,1976,1074,452,13532,0.08772661,5,0,1972,Oct +168,2397,1089,462,12220,0.087428846,17,0,1972,Nov +198,2654,1208,497,12025,0.08703543,14,0,1972,Dec +144,2097,903,354,11692,0.086449919,13,0,1973,Jan +146,1963,916,347,11081,0.085872641,5,0,1973,Feb +109,1677,787,276,13745,0.085398222,8,0,1973,Mar +131,1941,1114,472,14382,0.083821981,5,0,1973,Apr +151,2003,1014,487,14391,0.08459078,12,0,1973,May +140,1813,1022,505,15597,0.084136904,11,0,1973,Jun +153,2012,1114,619,16834,0.083778405,13,0,1973,Jul +140,1912,1132,640,17282,0.083510743,15,0,1973,Aug +161,2084,1111,559,15779,0.082806394,11,0,1973,Sep +168,2080,1008,453,13946,0.081178893,11,0,1973,Oct +152,2118,916,418,12701,0.082853607,10,0,1973,Nov +136,2150,992,419,10431,0.094190119,13,0,1973,Dec +113,1608,731,262,11616,0.092399843,8,0,1974,Jan +100,1503,665,299,10808,0.108161478,6,0,1974,Feb +103,1548,724,303,12421,0.107211689,8,0,1974,Mar +103,1382,744,401,13605,0.114042967,14,0,1974,Apr +121,1731,910,413,14455,0.112454116,12,0,1974,May +134,1798,883,426,15019,0.111316253,14,0,1974,Jun +133,1779,900,516,15662,0.110301252,13,0,1974,Jul +129,1887,1057,600,16745,0.108197177,9,0,1974,Aug +144,2004,1076,459,14717,0.107027443,4,0,1974,Sep +154,2077,919,443,13756,0.104946981,13,0,1974,Oct +156,2092,920,412,12531,0.119357749,6,0,1974,Nov +163,2051,953,400,12568,0.117621904,15,0,1974,Dec +122,1577,664,278,11249,0.133027421,12,0,1975,Jan +92,1356,607,302,11096,0.130845244,16,0,1975,Feb +117,1652,777,381,12637,0.128318477,7,0,1975,Mar +95,1382,633,279,13018,0.123547448,12,0,1975,Apr +96,1519,791,442,15005,0.118586812,10,0,1975,May +108,1421,790,409,15235,0.11633748,9,0,1975,Jun +108,1442,803,416,15552,0.115161476,9,0,1975,Jul +106,1543,884,511,16905,0.114501197,6,0,1975,Aug +140,1656,769,393,14776,0.113522979,7,0,1975,Sep +114,1561,732,345,14104,0.111930179,13,0,1975,Oct +158,1905,859,391,12854,0.110610529,14,0,1975,Nov +161,2199,994,470,12956,0.115274389,13,0,1975,Dec +102,1473,704,266,12177,0.113793486,14,0,1976,Jan +127,1655,684,312,11918,0.112349582,11,0,1976,Feb +125,1407,671,300,13517,0.111753469,11,0,1976,Mar +101,1395,643,373,14417,0.109642523,10,0,1976,Apr +97,1530,771,412,15911,0.108440895,4,0,1976,May +112,1309,644,322,15589,0.107884939,8,0,1976,Jun +112,1526,828,458,16543,0.109084769,9,0,1976,Jul +113,1327,748,427,17925,0.10757145,10,0,1976,Aug +108,1627,767,346,15406,0.106164022,10,0,1976,Sep +128,1748,825,421,14601,0.106299999,5,0,1976,Oct +154,1958,810,344,13107,0.104825313,13,0,1976,Nov +162,2274,986,370,12268,0.103451746,12,0,1976,Dec +112,1648,714,291,11972,0.10144992,10,0,1977,Jan +79,1401,567,224,12028,0.100402316,9,0,1977,Feb +82,1411,616,266,14033,0.098862034,7,0,1977,Mar +127,1403,678,338,14244,0.102496154,5,0,1977,Apr +108,1394,742,298,15287,0.103027432,10,0,1977,May +110,1520,840,386,16954,0.102178908,5,0,1977,Jun +123,1528,888,479,17361,0.099836643,6,0,1977,Jul +103,1643,852,473,17694,0.09263669,8,0,1977,Aug +97,1515,774,332,16222,0.091814963,6,0,1977,Sep +140,1685,831,391,14969,0.090724304,12,0,1977,Oct +165,2000,889,370,13624,0.090021207,15,0,1977,Nov +183,2215,1046,431,13842,0.089330706,7,0,1977,Dec +148,1956,889,366,12387,0.088442735,14,0,1978,Jan +111,1462,626,250,11608,0.088352569,4,0,1978,Feb +116,1563,808,355,15021,0.086757362,10,0,1978,Mar +115,1459,746,304,14834,0.084995242,8,0,1978,Apr +100,1446,754,379,16565,0.084567944,7,0,1978,May +106,1622,865,440,16882,0.084431899,11,0,1978,Jun +134,1657,980,500,18012,0.084350883,3,0,1978,Jul +125,1638,959,511,18855,0.083600983,5,0,1978,Aug +117,1643,856,384,17243,0.083417263,11,0,1978,Sep +122,1683,798,366,16045,0.08274514,10,0,1978,Oct +153,2050,942,432,14745,0.085235267,10,0,1978,Nov +178,2262,1010,390,13726,0.084770303,7,0,1978,Dec +114,1813,796,306,11196,0.084458921,10,0,1979,Jan +94,1445,643,232,12105,0.085352119,11,0,1979,Feb +128,1762,794,342,14723,0.087559213,9,0,1979,Mar +119,1461,750,329,15582,0.090382917,7,0,1979,Apr +111,1556,809,394,16863,0.090783294,8,0,1979,May +110,1431,716,355,16758,0.10874278,13,0,1979,Jun +114,1427,851,385,17434,0.114142227,8,0,1979,Jul +118,1554,931,463,18359,0.112992933,5,0,1979,Aug +115,1645,834,453,17189,0.111320706,8,0,1979,Sep +132,1653,762,373,16909,0.109126229,7,0,1979,Oct +153,2016,880,401,15380,0.107698459,12,0,1979,Nov +171,2207,1077,466,15161,0.107601574,10,0,1979,Dec +115,1665,748,306,14027,0.103775019,7,0,1980,Jan +95,1361,593,263,14478,0.10711417,4,0,1980,Feb +92,1506,720,323,16155,0.107374774,10,0,1980,Mar +100,1360,646,310,16585,0.111695373,4,0,1980,Apr +95,1453,765,424,18117,0.110638185,8,0,1980,May +114,1522,820,403,17552,0.111855211,8,0,1980,Jun +102,1460,807,406,18299,0.109742343,7,0,1980,Jul +104,1552,885,466,19361,0.108193932,10,0,1980,Aug +132,1548,803,381,17924,0.106255363,8,0,1980,Sep +136,1827,860,369,17872,0.104193034,14,0,1980,Oct +117,1737,825,378,16058,0.101933973,8,0,1980,Nov +137,1941,911,392,15746,0.102793825,9,0,1980,Dec +111,1474,704,284,15226,0.104760341,8,0,1981,Jan +106,1458,691,316,14932,0.104002536,6,0,1981,Feb +98,1542,688,321,16846,0.116655515,7,0,1981,Mar +84,1404,714,358,16854,0.115161476,6,0,1981,Apr +94,1522,814,378,18146,0.112989543,5,0,1981,May +105,1385,736,382,17559,0.113860644,4,0,1981,Jun +123,1641,876,433,18655,0.119118081,5,0,1981,Jul +109,1510,829,506,19453,0.124489986,10,0,1981,Aug +130,1681,818,428,17923,0.123222945,7,0,1981,Sep +153,1938,942,479,17915,0.120677932,10,0,1981,Oct +134,1868,782,370,16496,0.121048983,12,0,1981,Nov +99,1726,823,349,13544,0.116968571,7,0,1981,Dec +115,1456,595,238,13601,0.112750259,4,0,1982,Jan +104,1445,673,285,15667,0.108079307,5,0,1982,Feb +131,1456,660,324,17358,0.108838516,6,0,1982,Mar +108,1365,676,346,18112,0.111291766,4,0,1982,Apr +103,1487,755,410,18581,0.111304009,4,0,1982,May +115,1558,815,411,18759,0.115454358,8,0,1982,Jun +122,1488,867,496,20668,0.114768296,8,0,1982,Jul +122,1684,933,534,21040,0.117207431,3,0,1982,Aug +125,1594,798,396,18993,0.119076397,7,0,1982,Sep +137,1850,950,470,18668,0.117965862,12,0,1982,Oct +138,1998,825,385,16768,0.117449127,2,0,1982,Nov +152,2079,911,411,16551,0.116988458,7,0,1982,Dec +120,1494,619,281,16231,0.112610536,8,0,1983,Jan +95,1057,426,300,15511,0.113657016,3,1,1983,Feb +100,1218,475,318,18308,0.113144445,2,1,1983,Mar +89,1168,556,391,17793,0.118495535,6,1,1983,Apr +82,1236,559,398,19205,0.117969401,3,1,1983,May +89,1076,483,337,19162,0.117686614,7,1,1983,Jun +60,1174,587,477,20997,0.120059239,6,1,1983,Jul +84,1139,615,422,20705,0.119437746,8,1,1983,Aug +113,1427,618,495,18759,0.118881272,8,1,1983,Sep +126,1487,662,471,19240,0.118462361,4,1,1983,Oct +122,1483,519,368,17504,0.118016598,3,1,1983,Nov +118,1513,585,345,16591,0.117706623,5,1,1983,Dec +92,1357,483,296,16224,0.11777609,5,1,1984,Jan +86,1165,434,319,16670,0.114796992,3,1,1984,Feb +81,1282,513,349,18539,0.115735253,4,1,1984,Mar +84,1110,548,375,19759,0.115356263,3,1,1984,Apr +87,1297,586,441,19584,0.114815361,6,1,1984,May +90,1185,522,465,19976,0.114777478,6,1,1984,Jun +79,1222,601,472,21486,0.11493598,7,1,1984,Jul +96,1284,644,521,21626,0.114796992,5,1,1984,Aug +122,1444,643,429,20195,0.114093157,7,1,1984,Sep +120,1575,641,408,19928,0.116465522,7,1,1984,Oct +137,1737,711,490,18564,0.116026113,4,1,1984,Nov +154,1763,721,491,18149,0.116066729,7,1,1984,Dec \ No newline at end of file diff --git a/materials/glm-practical-logistic-proportion.qmd b/materials/glm-practical-logistic-proportion.qmd index 10dc60d..b1e671e 100644 --- a/materials/glm-practical-logistic-proportion.qmd +++ b/materials/glm-practical-logistic-proportion.qmd @@ -347,7 +347,7 @@ We get quite a high score (around 0.9) for this, which tells us that our goodnes Is the model any better than the null though? ```{r} -1 - pchisq(16.375 - 12.633, 1) +1 - pchisq(16.375 - 12.633, 21 - 20) anova(glm_chl_new, test = 'Chisq') ``` @@ -414,8 +414,21 @@ We get quite a high score (around 0.9) for this, which tells us that our goodnes Is the model any better than the null though? +First we need to define the null model: + +```{python} +# create a linear model +model = smf.glm(formula = "damage + intact ~ 1", + family = sm.families.Binomial(), + data = challenger_new_py) +# and get the fitted parameters of the model +glm_chl_new_null_py = model.fit() + +print(glm_chl_new_null_py.summary()) +``` + ```{python} -chi2.sf(16.375 - 12.633, 23 - 22) +chi2.sf(16.375 - 12.633, 21 - 20) ``` However, the model is not significantly better than the null in this case, with a p-value here of just over 0.05 for both of these tests (they give a similar result since, yet again, we have just the one predictor variable). diff --git a/materials/glm-practical-poisson.qmd b/materials/glm-practical-poisson.qmd index 783b727..56d7366 100644 --- a/materials/glm-practical-poisson.qmd +++ b/materials/glm-practical-poisson.qmd @@ -392,7 +392,7 @@ We have to convert the `law` column to a factor, otherwise R will see it as nume ```{r} seatbelts %>% - ggplot(aes(as_factor(law), drivers_killed)) + + ggplot(aes(as_factor(law), casualties)) + geom_boxplot() ``` @@ -400,10 +400,32 @@ The data are recorded by month and year, so we can also display the number of dr ```{r} seatbelts %>% - ggplot(aes(year, drivers_killed)) + + ggplot(aes(year, casualties)) + geom_point() ``` +## Python + +We have to convert the `law` column to a factor, otherwise R will see it as numerical. + +```{python} +#| results: hide +(ggplot(seatbelts_py, + aes(x = seatbelts_py.law.astype(object), + y = "casualties")) + + geom_boxplot()) +``` + +The data are recorded by month and year, so we can also display the number of casualties by year: + +```{python} +#| results: hide +(ggplot(seatbelts_py, + aes(x = "year", + y = "casualties")) + + geom_point()) +``` + ::: The data look a bit weird. There is quite some variation within years (keeping in mind that the data are aggregated monthly). The data also seems to wave around a bit... with some vague peaks (e.g. 1972 - 1973) and some troughs (e.g. around 1976). @@ -416,7 +438,7 @@ So my initial thought is that these data are going to be a bit tricky to interpr ## R ```{r} -glm_stb <- glm(drivers_killed ~ year, +glm_stb <- glm(casualties ~ year, data = seatbelts, family = "poisson") ``` @@ -428,13 +450,37 @@ summary(glm_stb) ``` (Intercept) 37.168958 -year 0.016373 +year -0.016373 +``` + +## Python + +```{python} +# create a linear model +model = smf.glm(formula = "casualties ~ year", + family = sm.families.Poisson(), + data = seatbelts_py) +# and get the fitted parameters of the model +glm_stb_py = model.fit() +``` + +```{python} +print(glm_stb_py.summary()) +``` + +``` +====================== + coef +---------------------- +Intercept 37.1690 +year -0.0164 +====================== ``` ::: These are the coefficients of the Poisson model equation and need to be placed in the following formula in order to estimate the expected number of species as a function of island size: -$$ E(drivers\_killed) = \exp(37.17 + 0.164 \times year) $$ +$$ E(casualties) = \exp(37.17 - 0.164 \times year) $$ #### Assessing significance @@ -447,9 +493,15 @@ Is the model well-specified? 1 - pchisq(850.41, 190) ``` -This value indicates that the model is actually pretty good. Remember, it is between $[0, 1]$ and the closer to zero, the better the model. +## Python + +```{python} +chi2.sf(850.41, 190) +``` ::: +This value indicates that the model is actually pretty good. Remember, it is between $[0, 1]$ and the closer to zero, the better the model. + How about the overall fit? ::: {.panel-tabset group="language"} @@ -459,10 +511,28 @@ How about the overall fit? 1 - pchisq(984.50 - 850.41, 191 - 190) ``` -Again, this indicates that the model is markedly better than the null model. +## Python +First we need to define the null model: + +```{python} +# create a linear model +model = smf.glm(formula = "casualties ~ 1", + family = sm.families.Poisson(), + data = seatbelts_py) +# and get the fitted parameters of the model +glm_stb_null_py = model.fit() + +print(glm_stb_null_py.summary()) +``` + +```{python} +chi2.sf(984.50 - 850.41, 191 - 190) +``` ::: +Again, this indicates that the model is markedly better than the null model. + #### Plotting the regression ::: {.panel-tabset group="language"} @@ -471,13 +541,31 @@ Again, this indicates that the model is markedly better than the null model. ```{r} #| message: false #| warning: false -ggplot(seatbelts, aes(year, drivers_killed)) + +ggplot(seatbelts, aes(year, casualties)) + geom_point() + geom_smooth(method = "glm", se = FALSE, fullrange = TRUE, method.args = list(family = poisson)) + xlim(1970,1985) ``` +## Python + +```{python} +model = pd.DataFrame({'year': list(range(1968, 1985))}) + +model["pred"] = glm_stb_py.predict(model) + +model.head() +``` + +```{python} +#| results: hide +(ggplot(seatbelts_py, + aes(x = "year", + y = "casualties")) + + geom_point() + + geom_line(model, aes(x = "year", y = "pred"), colour = "blue", size = 1)) +``` :::