-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbayes_opt_crossval.py
263 lines (222 loc) · 11.8 KB
/
bayes_opt_crossval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import torch
import gpytorch
import torch.nn.functional as F
import math
import numpy as np
from gpytorch.utils import errors
import matplotlib.pyplot as plt
plt.style.use('ggplot')
import acquis_func as acq
import gp_inference as gp
import gp_derivative as gp_dx
import plotting as plotting
import citeseq_exp_setup as citeseq_exp
# Compute correlation matrix from covariance matrix
def get_corr(B, v):
intertask_covar = gp.intertask_kernel(B, v)
intertask_corr = torch.zeros(intertask_covar.shape)
for i in range(intertask_covar.shape[0]):
for j in range(intertask_covar.shape[1]):
intertask_corr[i,j] = intertask_covar[i,j] / (torch.sqrt(intertask_covar[i,i]) * torch.sqrt(intertask_covar[j,j]))
return intertask_corr
# Compute mean positive correlation across k != k' pairs
def get_mean_corr(corr_matrix):
assert corr_matrix.shape[0] == corr_matrix.shape[1], "Correlation matrix is not square"
num_tasks = corr_matrix.shape[0]
mask = torch.diag(torch.ones(num_tasks))
corr_means = torch.sum((1. - mask) * F.relu(corr_matrix), axis=1)
corr_means[corr_means == 0.] = 1e-3
corr_means = corr_means / (num_tasks-1)
return corr_means
# Initialise multi-output GP with previous parameters
def load_gp_params_multi(model, raw_task_noises, task_covar_factor, task_raw_var, raw_lscale):
model.likelihood.raw_task_noises = raw_task_noises
model.covar_module.task_covar_module.covar_factor = task_covar_factor
model.covar_module.task_covar_module.raw_var = task_raw_var
model.covar_module.data_covar_module.raw_lengthscale = raw_lscale
return model
# Save optimised parameters for multi-output GP
def save_gp_params_multi(model):
saved_raw_task_noises = model.likelihood.raw_task_noises
saved_task_covar_factor = model.covar_module.task_covar_module.covar_factor
saved_task_raw_var = model.covar_module.task_covar_module.raw_var
saved_raw_lscale = model.covar_module.data_covar_module.raw_lengthscale
return saved_raw_task_noises, saved_task_covar_factor, saved_task_raw_var, saved_raw_lscale
# Run Bayesian optimisation
def bayes_opt_crossval(experiment,
callback,
optimise_iter,
train_x,
train_y,
data_train,
adata_train,
likelihood,
strategy,
model_class,
mll_class,
acq_fun,
acq_params,
true_f,
x_min,
x_max,
labels,
data_test,
adata_test,
fold,
ablate,
plot=False,
gp_fitting_iter=5):
num_orig_train_pts = train_x.shape[0]
num_Bk = 3
num_tasks = train_y.shape[1]
acq_f_vals_all = torch.zeros((optimise_iter, 100))
train_y_original = train_y.detach().clone()
init_opt_num = 5
output_dict = {}
likelihood.train()
for j in range(optimise_iter):
print(f"Iteration {j}.")
if j==0:
# Center the data
# Then, it gets centered after adding a new pt
train_y = acq.z_score(train_y)
assert not np.isnan(train_y).any(), "There are NaNs in train_y"
best_loss = 100.
tries = 0
for init_n in range(init_opt_num):
while True:
if (tries < 20):
try:
likelihood.raw_task_noises = torch.nn.Parameter(torch.tensor([0.]).repeat(train_y.shape[1]), requires_grad=True)
# New init with current training set
model = model_class(train_x, train_y, likelihood, train_y.shape[1])
optimizer = torch.optim.LBFGS(model.parameters(), line_search_fn='strong_wolfe')
mll = mll_class(likelihood, model)
model, curr_losses_gp = gp.fit_gp(model, optimizer, mll, train_x, train_y, gp_fitting_iter)
break
except (errors.NanError, errors.NotPSDError) as err:
print(f"{type(err)} raised, re-initialising...")
tries = tries + 1
else:
assert False, f"Raised error when attempting to fit GP {tries} times"
print(f"Iteration {j}, {init_n}, GP Loss: {curr_losses_gp[-1]:.6f}")
if curr_losses_gp[-1] < best_loss:
best_loss = curr_losses_gp[-1]
# Save the best model's parameters to load at iteration 1
saved_raw_task_noises, saved_task_covar_factor, saved_task_raw_var, saved_raw_lscale = save_gp_params_multi(model)
# Load the saved parameters from the best initialisation
model = load_gp_params_multi(model, saved_raw_task_noises, saved_task_covar_factor, saved_task_raw_var, saved_raw_lscale)
with torch.no_grad():
log_dict = {}
log_dict["iteration"] = j
log_titles = labels
if strategy == 'manatee':
wandb_plot_title = 'manatee'
# Get inter-task covariance matrix
task_covar_module_var = model.covar_module.task_covar_module.var
intertask_corr = get_corr(model.covar_module.task_covar_module.covar_factor.detach(), task_covar_module_var.detach())
K_T = gp.intertask_kernel(model.covar_module.task_covar_module.covar_factor.detach(), task_covar_module_var.detach())
# Get task observation noises
task_obs_noises = likelihood.task_noises
print(f"Task noises: {task_obs_noises.numpy()}")
rbf_lscale = model.covar_module.data_covar_module.lengthscale.item()
corr_means = get_mean_corr(intertask_corr)
print(f"Corr means: {corr_means.numpy()}")
is_max, mean_dx, mean_dx2, dx_zeros, min_dx2 = gp_dx.desirable_max(torch.linspace(0, 1, 50), rbf_lscale, task_obs_noises, K_T, train_x, train_y)
print(f"Desirable max: {is_max.numpy()}")
lambda_logits, partial_incl_log_probs = acq.logp_include_no_BF_match(task_obs_noises, corr_means, is_max, ablate)
lambda_probs = torch.exp(lambda_logits)
partial_lambda = torch.exp(partial_incl_log_probs)
elif strategy == 'random prob':
lambda_probs = torch.rand(train_y.shape[1])
wandb_plot_title = 'random scalarization'
else:
print(f"{strategy} is an invalid strategy.")
acq_params[0] = lambda_probs
print(f"Lambda probs are: {lambda_probs.numpy()}")
assert (lambda_probs > 0.).all(), "Some p(lambda_k=1|B_k) is <= 0."
# Pass in step t
acq_params[1] = j+1
# Placeholder for the solution's loss
sol_loss = float("Inf")
# Define samples to evalaute acqusition function on
samples = torch.rand(100, 1)
# Find initialisation for acqusition function optimisation
x_probe = acq.sample_to_init_opt(acq_fun, samples, model, acq_params)
x_probe = torch.logit(x_probe)
x_probe = x_probe.clone()
x_probe.requires_grad = True
if acq_fun == acq.mobo_ucb_scalarized:
optimizer = torch.optim.Adam([x_probe])
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=300)
elif acq_fun == acq.mobo_acq:
optimizer = torch.optim.LBFGS([x_probe], line_search_fn='strong_wolfe')
scheduler = None
else:
assert False, f"{acq_fun} is an invalid acquisition function"
# Optimise the acquisition curve
x_probe, losses_acq = acq.optimise_acq(optimizer, acq_fun, x_probe, model, acq_params, scheduler=scheduler)
with torch.no_grad():
# Define test locations for plotting only
test_x = torch.linspace(0, 1, 100)
# Compute p(f*|x*, f, X)
f_pred, observed_pred = gp.post_gp(model, likelihood, test_x)
if plot:
# Plot GP fit to current training set
plotting.plot_gp_sampled(train_x, train_y, num_orig_train_pts, test_x, f_pred, observed_pred, labels)
# Add next location to training set
x_next = acq.bounded_x(x_probe)
print(f"Next point in (0,1): {x_next.item():.3f}")
if len(train_x.shape) > 1:
x_next = torch.reshape(x_next, (x_next.shape[0], 1))
train_x = torch.cat([train_x, x_next], dim=0)
# Probe next location, f(x*), at the correct place in original x scale
x_next_range = x_next * (x_max - x_min) + x_min
if experiment == 'toy':
print(f"Next point in original scale: {x_next_range.item():.3f}")
f_next = true_f(x_next_range)
elif experiment == 'imc':
print(f"Next point in original scale: {x_next_range.item():.3f}")
f_next, ari, nmi = true_f(x_next_range, data_train, adata_train)
log_dict[f"ARI/Fold {fold}/{wandb_plot_title}"] = ari.item()
log_dict[f"NMI/Fold {fold}/{wandb_plot_title}"] = nmi.item()
_, ari_test, nmi_test = true_f(x_next_range, data_test, adata_test)
log_dict[f"ARI_test/Fold {fold}/{wandb_plot_title}"] = ari_test.item()
log_dict[f"NMI_test/Fold {fold}/{wandb_plot_title}"] = nmi_test.item()
elif experiment == 'citeseq':
print(f"Next point in original scale: {x_next_range.item():.3f}")
f_next, ari, nmi, hvgs = true_f(x_next_range, data_train, adata_train)
log_dict[f"ARI/Fold {fold}/{wandb_plot_title}"] = ari.item()
log_dict[f"NMI/Fold {fold}/{wandb_plot_title}"] = nmi.item()
ari_test, nmi_test = citeseq_exp.probe_test(x_next_range, data_test, adata_test, hvgs)
log_dict[f"ARI_test/Fold {fold}/{wandb_plot_title}"] = ari_test.item()
log_dict[f"NMI_test/Fold {fold}/{wandb_plot_title}"] = nmi_test.item()
else:
print(f"{experiment} is an invalid experiment type.")
# Add sampled point to original unscaled dataset
train_y_original = torch.cat([train_y_original, f_next], dim=0)
# Standardise the new current training set
train_y = acq.z_score(train_y_original)
if plot:
# Compute acquisition function values for plotting
acq_f_vals = torch.zeros(test_x.shape[0])
for i in range(test_x.shape[0]):
acq_f_vals[i] = acq_fun(test_x[i, None], model, acq_params)
acq_f_vals_all[j,:] = acq_f_vals
# Plot acquisition function
plotting.plot_acq(test_x, acq_f_vals, x_next, xlabel='x', ylabel='a(x)',
title=f"{j}: acquisition f")
log_dict[f"Solution/Fold {fold}/{wandb_plot_title}"] = x_next_range.item()
callback(log_dict)
output_dict[f"model/{strategy}/Fold {fold}/iter {j}"] = model
output_dict[f"likelihood/{strategy}/Fold {fold}/iter {j}"] = likelihood
if strategy == 'manatee':
output_dict[f"mean_dx2/{strategy}/Fold {fold}/iter {j}"] = mean_dx2
output_dict[f"mean_dx/{strategy}/Fold {fold}/iter {j}"] = mean_dx
output_dict[f"intertask_corr/{strategy}/Fold {fold}/iter {j}"] = intertask_corr
output_dict[f"train_x/{strategy}/Fold {fold}"] = train_x
output_dict[f"train_y/{strategy}/Fold {fold}"] = train_y
output_dict[f"train_y_original/{strategy}/Fold {fold}"] = train_y_original
if plot:
output_dict[f"acq_f_vals_all/{strategy}/Fold {fold}"] = acq_f_vals_all
return output_dict