-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathciteseq_exp_setup.py
213 lines (169 loc) · 7.18 KB
/
citeseq_exp_setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import scanpy as sc
import pandas as pd
import numpy as np
from sklearn import metrics
import torch
import random
positive_coexpression_pairs = [
['HUMAN_CD3E', 'HUMAN_CD4'],
['HUMAN_CD3D', 'HUMAN_CD8A'],
['HUMAN_PTPRC', 'HUMAN_CD68'],
['HUMAN_CD19', 'HUMAN_MS4A1']
]
negative_coexpression_pairs = [
['HUMAN_CD3D', 'HUMAN_CD68'],
['HUMAN_CD68', 'HUMAN_MS4A1']
]
# This function loads CITE-seq dataset.
def load_data():
# Load data
adata = sc.read_h5ad("anndata_citseq_rnaseq.h5ad")
surface = sc.read_h5ad("anndata_citseq_surface_ab.h5ad")
df_clusters = surface.obs[["seurat_clusters"]]
df_clusters.index = df_clusters.index.set_names('cell_id')
surface_clusters = list(df_clusters.seurat_clusters[adata.obs_names])
adata.obs['target'] = surface_clusters
# Filter genes
rs = adata.X.sum(axis=0)
adata = adata[:, rs > 100.]
# Subsample
seed=10
np.random.seed(seed)
torch.manual_seed(seed)
random.seed(a=seed)
sc.pp.subsample(adata, n_obs=1000)
print(f"max in subsampled adata: {adata.X.max()}")
print(f"shape of adata: {adata.shape}")
# Normalize
sc.pp.normalize_total(adata, target_sum=1e4)
sc.pp.log1p(adata)
sc.pp.scale(adata)
Y = adata.X.copy()
# Compute PCA
sc.tl.pca(adata, svd_solver='arpack')
return adata, Y
def split_data(adata, Y):
# Split subsampled data to train and test
train = np.random.choice(adata.shape[0], size=int(adata.shape[0]*0.7), replace=False)
adata_train = adata[train,:]
Y_train = Y[train,:]
test = set(range(adata.shape[0])).difference(set(train))
adata_test = adata[list(test),:]
Y_test = Y[list(test),:]
return adata_train, Y_train, adata_test, Y_test
# This function computes correlation between cluster
# mean expression.
def get_coexpression(cluster_means, p1, p2, var_names):
df = pd.DataFrame(cluster_means, columns=var_names)
return df[[p1,p2]].corr()[p1][p2]
# This function computes the clustering for a given proportion of
# HVGs in a scRNA-seq dataset.
def get_clustering(adata, proportion, n_neighbors=10, n_pcs=40, resolution=0.8):
# Compute number of genes to retain
n_top_genes = int(np.round(adata.n_vars * proportion))
# Find desired number of HVGs
sc.pp.highly_variable_genes(adata, n_top_genes=n_top_genes)
hvgs = adata.var.highly_variable.tolist()
print(f"Computed {sum(hvgs)} HVGs.")
# Subset adata to HVGs
adata = adata[:,adata.var.highly_variable]
# Compute PCA and neighbour graph
sc.tl.pca(adata, svd_solver='arpack')
sc.pp.neighbors(adata, n_neighbors=n_neighbors, n_pcs=n_pcs)
# Cluster
sc.tl.leiden(adata, resolution=resolution, random_state=int(np.random.choice(1000, 1)))
return adata, hvgs
def cluster_test(adata, hvgs, n_neighbors=10, n_pcs=40, resolution=0.8):
print(f"Got passed in {sum(hvgs)} HVGs")
print(f"Test dataset is {adata.shape}")
# Subset adata to HVGs
adata = adata[:,hvgs]
# Compute PCA and neighbour graph
sc.tl.pca(adata, svd_solver='arpack')
sc.pp.neighbors(adata, n_neighbors=n_neighbors, n_pcs=n_pcs)
# Cluster
sc.tl.leiden(adata, resolution=resolution, random_state=int(np.random.choice(1000, 1)))
return adata
# This function computes the clustering for a given propotion
# of HVGs retained in scRNA-seq data and computes objective values for it
# (supervised objectives are # w.r.t. labels from surface protein expression
# clustering).
def true_f(proportions, adata, Y):
results = {}
from collections import defaultdict
results_list = defaultdict(list)
ari = []
nmi = []
sil = []
cal = []
db = []
for prop in proportions:
results[prop] = {}
clustered, hvgs = get_clustering(adata.copy(), prop)
# Supervised metrics
ari.append(metrics.adjusted_rand_score(adata.obs.target.astype(str), clustered.obs.leiden))
nmi.append(metrics.normalized_mutual_info_score(adata.obs.target.astype(str), clustered.obs.leiden))
# Unsupervised metrics
sil.append(metrics.silhouette_score(adata.obsm['X_pca'], clustered.obs.leiden).astype(np.float32))
cal.append(metrics.calinski_harabasz_score(adata.obsm['X_pca'], clustered.obs.leiden).astype(np.float32))
db.append(-metrics.davies_bouldin_score(adata.obsm['X_pca'], clustered.obs.leiden).astype(np.float32))
# Coexpression metrics
unique_clusters = np.unique(clustered.obs.leiden)
cluster_means = np.concatenate([Y[clustered.obs.leiden == cl,:].mean(0).reshape(1,-1) for cl in unique_clusters], axis=0)
for pair in positive_coexpression_pairs:
pair_str = pair[0] + "_" + pair[1] + "_+"
results[prop][pair_str] = get_coexpression(cluster_means, pair[0], pair[1], adata.var_names).astype(np.float32)
for pair in negative_coexpression_pairs:
pair_str = pair[0] + "_" + pair[1] + "_-"
results[prop][pair_str] = -get_coexpression(cluster_means, pair[0], pair[1], adata.var_names).astype(np.float32)
for k,v in results[prop].items():
results_list[k].append(v)
pos_pairs = []
for pair in positive_coexpression_pairs:
pair_str = pair[0] + "_" + pair[1] + "_+"
obj = np.array(results_list[pair_str])
pos_pairs.append(torch.reshape(torch.tensor([obj]), (obj.shape[0], 1)))
neg_pairs = []
for pair in negative_coexpression_pairs:
pair_str = pair[0] + "_" + pair[1] + "_-"
obj = np.array(results_list[pair_str])
neg_pairs.append(torch.reshape(torch.tensor([obj]), (obj.shape[0], 1)))
ari = np.array(ari)
nmi = np.array(nmi)
sil = np.array(sil)
cal = np.array(cal)
db = np.array(db)
ari = torch.reshape(torch.tensor([ari]), (ari.shape[0], 1))
nmi = torch.reshape(torch.tensor([nmi]), (nmi.shape[0], 1))
sil = torch.reshape(torch.tensor([sil]), (sil.shape[0], 1))
cal = torch.reshape(torch.tensor([cal]), (cal.shape[0], 1))
db = torch.reshape(torch.tensor([db]), (db.shape[0], 1))
y = torch.cat([sil, cal, db] + pos_pairs + neg_pairs, axis=1)
return y, ari, nmi, hvgs
def probe_test(proportions, adata, Y, hvgs):
results = {}
from collections import defaultdict
results_list = defaultdict(list)
ari = []
nmi = []
for prop in proportions:
clustered = cluster_test(adata.copy(), hvgs)
# Supervised metrics
ari.append(metrics.adjusted_rand_score(adata.obs.target.astype(str), clustered.obs.leiden))
nmi.append(metrics.normalized_mutual_info_score(adata.obs.target.astype(str), clustered.obs.leiden))
print(f"ARI on test dataset {adata.shape} is {ari}")
ari = np.array(ari)
nmi = np.array(nmi)
ari = torch.reshape(torch.tensor([ari]), (ari.shape[0], 1))
nmi = torch.reshape(torch.tensor([nmi]), (nmi.shape[0], 1))
return ari, nmi
def get_labels():
labels = []
labels.append('Sil')
labels.append('Cal')
labels.append('Db')
for pair in positive_coexpression_pairs:
labels.append(pair[0] + "_" + pair[1] + "_+")
for pair in negative_coexpression_pairs:
labels.append(pair[0] + "_" + pair[1] + "_-")
return labels