-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSnakefile
88 lines (77 loc) · 2.65 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import pandas as pd
cell_types = pd.read_excel("data/screen-scrna-celltype-match.xlsx")
cell_types = cell_types['cell_type']
outputs = {
'rank-figs': 'figs/screen-vs-scrna.pdf',
'fig-heatmap-scaled': 'figs/screen_cluster_heatmap_scaled.png',
'fig-heatmap-unscaled': 'figs/screen_cluster_heatmap_unscaled.png',
'fig-umap-celltype': 'figs/UMAP_celltype.png',
'fig-umap-expression': 'figs/UMAP_expression.png',
'fig-correlation': "figs/rna-protein-scatter.pdf",
'fig-sens-spec': 'figs/cytomarker_sens_spec.pdf',
'fig-mammary-heatmap-single-cell': 'figs/heatmap_mammary_single_cell.pdf'
}
rule all:
input:
outputs.values()
rule parse_screen:
input:
'data/singlecells.csv',
'data/antigen-metal-map-simon.xlsx',
output:
'data/sce_screen_full.rds',
"data/sce_screen_subsample.rds",
script:
'scripts/parse-screen-to-sce.R'
rule interpret_clusters:
input:
'data/sce_screen_subsample.rds',
'data/cluster-interpretation-nov23.xlsx',
output:
outputs['fig-heatmap-scaled'],
outputs['fig-heatmap-unscaled'],
outputs['fig-umap-celltype'],
outputs['fig-umap-expression'],
shell:
'quarto render notebooks/interpret-screen-clusters.qmd'
## Prepare the NYGC scRNA data
rule parse_nygc_pbmc_data:
input:
'data/nygc-pbmc.h5ad',
'data/screen-scrna-celltype-match-lee.xlsx',
'data/sce_screen_full.rds'
output:
'results/nygc_pbmc_subsampled.rds'
shell:
'quarto render notebooks/parse-nygc-pbmc-data.qmd'
rule make_rank_figs:
input:
"data/sce_screen_subsample.rds",
"data/screen-scrna-celltype-match-lee.xlsx",
"data/cluster-interpretation-nov23.xlsx",
'data/sce_screen_full.rds',
"data/sce_screen_subsample.rds",
"data/aliasmatch_kieranreview-annots.xlsx",
"results/nygc_pbmc_subsampled.rds"
output:
outputs['rank-figs'],
shell:
'quarto render notebooks/compare-screen-scrna-marker-rank-nygc.qmd'
rule rna_protein_correlation:
input:
"results/nygc_pbmc_subsampled.rds",
'data/cluster-interpretation-nov23.xlsx',
'data/aliasmatch_kieranreview-annots.xlsx',
'data/screen-scrna-celltype-match.xlsx'
output:
outputs['fig-correlation'],
outputs['fig-sens-spec'],
shell:
'quarto render notebooks/rna-protein-correlation-nygc.qmd'
rule mammary_single_cell_heatmap:
input:
'data/mammary_expression_heatmap.csv'
output:
outputs['fig-mammary-heatmap-single-cell']
shell:
'quarto render notebooks/mammary-single-cell-heatmap.qmd'