From c3115fab224d25aadc640bfa310f01f05d790c05 Mon Sep 17 00:00:00 2001 From: Michael-Geuenich Date: Sun, 4 Jun 2023 16:06:36 -0400 Subject: [PATCH] add docker container to snakefile --- Snakefile | 45 ++++++++++++++++++++++++++++++--------------- 1 file changed, 30 insertions(+), 15 deletions(-) diff --git a/Snakefile b/Snakefile index ae17601..a59b56d 100644 --- a/Snakefile +++ b/Snakefile @@ -4,6 +4,8 @@ import numpy as np import yaml from itertools import chain +container: "docker://mgeuenich/al_eval_docker" + configfile: 'config/config.yml' output = 'output/' + config['version'] + '/' @@ -27,8 +29,8 @@ Seurat_resolution = [0.4,0.8,1.2] random_sets = ['set1'] cell_numbers = [100, 250, 500] -corruption_percentages = [0, 0.1, 0.2, 0.3, 1] -random_percentages = [0, 0.25, 0.5, 0.75] +corruption_percentages = [0] +random_percentages = [0] # Get markers for each cohort @@ -74,7 +76,16 @@ original_cell_types = { } selection_expansion_dict = { - 'Seurat-clustering': { + 'NoMarkerSeurat-clustering': { + 'initial': 'NA', + 'neighbors': Seurat_neighbors, + 'res': Seurat_resolution, + 'strategy': 'NA', + 'AL_alg': 'NA', + 'random_selection': [0], + 'corruption': [0] + }, + 'MarkerSeurat-clustering': { 'initial': 'NA', 'neighbors': Seurat_neighbors, 'res': Seurat_resolution, @@ -102,8 +113,8 @@ selection_expansion_dict = { 'corruption': corruption_percentages }, 'Active-Learning_maxp': { - 'initial': initial_selections, - 'neighbors': ['NA'], + 'initial': initial_selections, + 'neighbors': ['NA'], 'res': ['NA'], 'strategy': ['0.05_quant_maxp', '0.25_quant_maxp', 'lowest_maxp'], 'AL_alg': AL_methods, @@ -112,21 +123,25 @@ selection_expansion_dict = { } } -#include: 'pipeline/process-data.smk' +include: 'pipeline/process-data.smk' include: 'pipeline/cell-type-predictions.smk' -#include: 'pipeline/simulate-active-learning.smk' +include: 'pipeline/simulate-active-learning.smk' include: 'pipeline/visualizations.smk' -#include: 'pipeline/predictive-labeling.smk' include: 'pipeline/imbalance.smk' include: 'pipeline/rem-cell-type.smk' +include: 'pipeline/predictive-labeling2.smk' +include: 'pipeline/cell-type-similarity.smk' +include: 'pipeline/paper-figures.smk' rule all: input: - #process_data_output.values(), - #cell_type_predictions.values(), - #active_learner.values(), - #viz.values(), - #pred_lab.values(), - #imbalance.values(), - rem_cell_type.values() + process_data_output.values(), + [expand(x, s = train_test_seeds) for x in list(cell_type_predictions.values())], + active_learner.values(), + viz.values(), + imbalance.values(), + rem_cell_type.values(), + pred_lab2.values(), + similarity.values(), + final_figures.values()