-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSnakefile
282 lines (256 loc) · 10.7 KB
/
Snakefile
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import glob
DATASETS = ["dataset1", "dataset2"]
rule all:
input:
expand("workflow_completed_{dataset}.log", dataset=DATASETS),
rule load_data:
input:
saint="data/{dataset}/saint-latest.txt",
genesymbols="data/{dataset}/genesymbols_uniprotids_less_than_110.csv"
output:
"data/{dataset}/df_norm.csv"
params:
dataset="{dataset}"
shell:
"python3 src/main.py --step load_data --config config/config_{params.dataset}.yaml"
rule run_ga:
input:
df_norm="data/{dataset}/df_norm.csv"
output:
pop_file="results/{dataset}/GA_results/popfile.pkl",
logbook_file="results/{dataset}/GA_results/logbookfile.pkl",
hof_file="results/{dataset}/GA_results/hoffile.pkl"
params:
dataset="{dataset}"
shell:
"python3 src/main.py --step run_ga --config config/config_{params.dataset}.yaml"
rule ga_evaluation:
input:
run_ga_output=rules.run_ga.output
output:
top_features_ga=expand("results/{dataset}/top_features_GA/top {number} selected features GA pop500 gen1000.csv", number=range(1, 11)),
plot_ga_vs_random="results/{dataset}/plots/GA_vs_Random_plot.png",
plot_components_correlation="results/{dataset}/plots/GA_component_corr_plot.png",
plot_lost_preys="results/{dataset}/plots/Lost_Preys_Plot.png",
tsne_plot="results/{dataset}/plots/tsne_original.png",
tsne_plot_subset='results/{dataset}/plots/tsne_subset.png',
tsne_plot_baits='results/{dataset}/plots/preys_for_each_bait.png',
gsea_results_original="results/{dataset}/gsea_results/GSEA_basis_original.xlsx",
gsea_results_subset="results/{dataset}/gsea_results/GSEA_basis_subset.xlsx"
params:
dataset="{dataset}"
shell:
"python3 src/main.py --step ga_evaluation --config config/config_{params.dataset}.yaml"
# rule penalty_evaluation:
# input:
# df_norm="data/{dataset}/df_norm.csv"
# output:
# penalty_evaluation_output="results/{dataset}/plots/fitness_penalty_diagonal_mean.png"
# params:
# dataset="{dataset}"
# shell:
# "python3 src/main.py --step penalty_evaluation --config config/config_{params.dataset}.yaml"
# rule penalty_evaluation_range:
# input:
# df_norm="data/{dataset}/df_norm.csv"
# output:
# penalty_evaluation_output=expand("results/{dataset}/plots/fitness_penalty_diagonal_mean_{baits}.png", baits=range(56, 61))
# params:
# dataset="{dataset}"
# shell:
# "python3 src/main.py --step penalty_evaluation_range --config config/config_{params.dataset}.yaml"
# rule ga_number_of_baits:
# input:
# df_norm="data/{dataset}/df_norm.csv"
# output:
# pop_files=expand("results/{dataset}/GA_number_of_baits/popfile{num_features}.pkl", num_features=range(30, 81)),
# logbook_files=expand("results/{dataset}/GA_number_of_baits/logbookfile{num_features}.pkl", num_features=range(30, 81)),
# hof_files=expand("results/{dataset}/GA_number_of_baits/hoffile{num_features}.pkl", num_features=range(30, 81))
# params:
# dataset="{dataset}"
# shell:
# "python3 src/main.py --step ga_number_of_baits --config config/config_{params.dataset}.yaml"
rule ga_number_of_baits_seeds:
input:
df_norm="data/{dataset}/df_norm.csv"
output:
pop_files=expand("results/{dataset}/GA_number_of_baits_seeds/popfile_features_{num_features}_seed_{seed}.pkl", num_features=range(30, 81), seed=range(10)),
logbook_files=expand("results/{dataset}/GA_number_of_baits_seeds/logbookfile_features_{num_features}_seed_{seed}.pkl", num_features=range(30, 81), seed=range(10)),
hof_files=expand("results/{dataset}/GA_number_of_baits_seeds/hoffile_features_{num_features}_seed_{seed}.pkl", num_features=range(30, 81), seed=range(10))
params:
dataset="{dataset}"
shell:
"python3 src/main.py --step ga_number_of_baits_seeds --config config/config_{params.dataset}.yaml"
# rule nbaits_evaluation:
# input:
# ga_number_of_baits_output=rules.ga_number_of_baits.output
# output:
# nbaits_output="results/{dataset}/plots/nbaits_vs_max_value.png",
# nbaits_output_boxplot="results/{dataset}/plots/nbaits_vs_max_value_boxplot.png"
# params:
# dataset="{dataset}"
# shell:
# "python3 src/main.py --step nbaits_evaluation --config config/config_{params.dataset}.yaml"
rule seeds_evaluation:
input:
ga_number_of_baits_seeds_output=rules.ga_number_of_baits_seeds.output
output:
seeds_output_boxplot="results/{dataset}/plots/nbaits_vs_max_value_seeds_boxplot_GA.png"
params:
dataset="{dataset}"
shell:
"python3 src/main.py --step seeds_evaluation --config config/config_{params.dataset}.yaml"
rule ml_methods:
input:
df_norm="data/{dataset}/df_norm.csv"
output:
"results/{dataset}/plots/ml_correlation_plot_averaged.png",
expand(
["results/{dataset}/plots/ml_correlation_plot_seed{seed}.png",
"results/{dataset}/plots/ml_component_corr_plot_seed{seed}.png"],
seed=range(1, 11)
)
params:
dataset="{dataset}"
shell:
"python3 src/main.py --step ml_methods --config config/config_{params.dataset}.yaml"
rule plot_nmf_scores:
input:
ga_evaluation_output=rules.ga_evaluation.output,
ml_methods_output=rules.ml_methods.output
output:
ga_nmf_plot="results/{dataset}/plots/nmf_scores_vs_each_method.png"
params:
dataset="{dataset}"
shell:
"python3 src/main.py --step plot_nmf_scores --config config/config_{params.dataset}.yaml"
rule plot_nmf_ari_scores:
input:
ga_evaluation_output=rules.ga_evaluation.output,
ml_methods_output=rules.ml_methods.output
output:
ga_nmf_ari_plot="results/{dataset}/plots/nmf_ari_values_vs_each_method.png"
params:
dataset="{dataset}"
shell:
"python3 src/main.py --step plot_nmf_ari_scores --config config/config_{params.dataset}.yaml"
rule plot_nmf_cos_scores:
input:
ga_evaluation_output=rules.ga_evaluation.output,
ml_methods_output=rules.ml_methods.output
output:
ga_nmf_cos_plot="results/{dataset}/plots/nmf_cos_scores_vs_each_method.png"
params:
dataset="{dataset}"
shell:
"python3 src/main.py --step plot_nmf_cos_scores --config config/config_{params.dataset}.yaml"
rule plot_nmf_kl_scores:
input:
ga_evaluation_output=rules.ga_evaluation.output,
ml_methods_output=rules.ml_methods.output
output:
ga_nmf_kl_plot="results/{dataset}/plots/nmf_kl_scores_vs_each_method.png"
params:
dataset="{dataset}"
shell:
"python3 src/main.py --step plot_nmf_kl_scores --config config/config_{params.dataset}.yaml"
rule plot_nmf_spearman_scores:
input:
ga_evaluation_output=rules.ga_evaluation.output,
ml_methods_output=rules.ml_methods.output
output:
ga_nmf_spearman_plot="results/{dataset}/plots/nmf_spearman_scores_vs_each_method.png"
params:
dataset="{dataset}"
shell:
"python3 src/main.py --step plot_nmf_spearman_scores --config config/config_{params.dataset}.yaml"
rule plot_nmf_go_scores:
input:
ga_evaluation_output=rules.ga_evaluation.output,
ml_methods_output=rules.ml_methods.output
output:
ga_nmf_go_plot="results/{dataset}/plots/nmf_go_components_scores_values_vs_each_method.png"
params:
dataset="{dataset}"
shell:
"python3 src/main.py --step plot_nmf_go_scores --config config/config_{params.dataset}.yaml"
rule plot_remaining_preys:
input:
ga_evaluation_output=rules.ga_evaluation.output,
ml_methods_output=rules.ml_methods.output
output:
ga_remaining_preys_plot="results/{dataset}/plots/remaining_preys_vs_each_method_sorted.png"
params:
dataset="{dataset}"
shell:
"python3 src/main.py --step plot_remaining_preys --config config/config_{params.dataset}.yaml"
# rule plot_error_rate:
# input:
# nmf_scores_output=rules.plot_nmf_scores.output
# output:
# error_rate_output="results/{dataset}/plots/nmf_error_rate.png"
# params:
# dataset="{dataset}"
# shell:
# "python3 src/main.py --step plot_error_rate --config config/config_{params.dataset}.yaml"
rule leiden_evaluation:
input:
ga_evaluation_output=rules.ga_evaluation.output,
ml_methods_output=rules.ml_methods.output
output:
"results/{dataset}/plots/Leiden_ARI_values_vs_each_method.png"
params:
dataset="{dataset}"
shell:
"python3 src/main.py --step leiden_evaluation --config config/config_{params.dataset}.yaml"
rule gmm_evaluation:
input:
ga_evaluation_output=rules.ga_evaluation.output,
ml_methods_output=rules.ml_methods.output
output:
"results/{dataset}/plots/GMM_mean_correlation_values_vs_each_method.png"
params:
dataset="{dataset}"
shell:
"python3 src/main.py --step gmm_evaluation --config config/config_{params.dataset}.yaml"
rule gmm_hard_evaluation:
input:
ga_evaluation_output=rules.ga_evaluation.output,
ml_methods_output=rules.ml_methods.output
output:
"results/{dataset}/plots/GMM_ARI_values_vs_each_method.png"
params:
dataset="{dataset}"
shell:
"python3 src/main.py --step gmm_hard_evaluation --config config/config_{params.dataset}.yaml"
rule go_evaluation:
input:
ga_evaluation_output=rules.ga_evaluation.output,
ml_methods_output=rules.ml_methods.output
output:
"results/{dataset}/plots/GO_terms_retrieval_percentage_vs_each_method.png"
params:
dataset="{dataset}"
shell:
"python3 src/main.py --step go_evaluation --config config/config_{params.dataset}.yaml"
rule combined_metrics:
input:
leiden_output="results/{dataset}/plots/Leiden_ARI_values_vs_each_method.png",
gmm_output="results/{dataset}/plots/GMM_mean_correlation_values_vs_each_method.png",
gmm_hard_output="results/{dataset}/plots/GMM_ARI_values_vs_each_method.png",
go_output="results/{dataset}/plots/GO_terms_retrieval_percentage_vs_each_method.png"
output:
'results/{dataset}/plots/combined_metrics_comparison_plot.png'
params:
dataset="{dataset}"
shell:
"python3 src/main.py --step combined_metrics --config config/config_{params.dataset}.yaml"
rule finalize_workflow:
input:
combined_metrics_output='results/{dataset}/plots/combined_metrics_comparison_plot.png'
output:
"workflow_completed_{dataset}.log"
params:
dataset="{dataset}"
shell:
"echo 'Workflow completed for {wildcards.dataset}' > {output}"