forked from AnonymousResults123abc/ICCV2984
-
Notifications
You must be signed in to change notification settings - Fork 0
/
losses.py
204 lines (173 loc) · 8.83 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# Copyright (c) 2015-present, Facebook, Inc.
# All rights reserved.
"""
Implements the knowledge distillation loss
"""
import torch
from torch.nn import functional as F
class DistillationLoss(torch.nn.Module):
"""
This module wraps a standard criterion and adds an extra knowledge distillation loss by
taking a teacher model prediction and using it as additional supervision.
"""
def __init__(self, base_criterion: torch.nn.Module, teacher_model: torch.nn.Module,
distillation_type: str, alpha: float, tau: float):
super().__init__()
self.base_criterion = base_criterion
self.teacher_model = teacher_model
assert distillation_type in ['none', 'soft', 'hard']
self.distillation_type = distillation_type
self.alpha = alpha
self.tau = tau
def forward(self, inputs, outputs, labels):
"""
Args:
inputs: The original inputs that are feed to the teacher model
outputs: the outputs of the model to be trained. It is expected to be
either a Tensor, or a Tuple[Tensor, Tensor], with the original output
in the first position and the distillation predictions as the second output
labels: the labels for the base criterion
"""
outputs_kd = None
if not isinstance(outputs, torch.Tensor):
# assume that the model outputs a tuple of [outputs, outputs_kd]
outputs, outputs_kd = outputs
base_loss = self.base_criterion(outputs, labels)
if self.distillation_type == 'none':
return base_loss
if outputs_kd is None:
raise ValueError("When knowledge distillation is enabled, the model is "
"expected to return a Tuple[Tensor, Tensor] with the output of the "
"class_token and the dist_token")
# don't backprop throught the teacher
with torch.no_grad():
teacher_outputs = self.teacher_model(inputs)
if self.distillation_type == 'soft':
T = self.tau
# taken from https://github.com/peterliht/knowledge-distillation-pytorch/blob/master/model/net.py#L100
# with slight modifications
distillation_loss = F.kl_div(
F.log_softmax(outputs_kd / T, dim=1),
#We provide the teacher's targets in log probability because we use log_target=True
#(as recommended in pytorch https://github.com/pytorch/pytorch/blob/9324181d0ac7b4f7949a574dbc3e8be30abe7041/torch/nn/functional.py#L2719)
#but it is possible to give just the probabilities and set log_target=False. In our experiments we tried both.
F.log_softmax(teacher_outputs / T, dim=1),
reduction='sum',
log_target=True
) * (T * T) / outputs_kd.numel()
#We divide by outputs_kd.numel() to have the legacy PyTorch behavior.
#But we also experiments output_kd.size(0)
#see issue 61(https://github.com/facebookresearch/deit/issues/61) for more details
elif self.distillation_type == 'hard':
distillation_loss = F.cross_entropy(outputs_kd, teacher_outputs.argmax(dim=1))
loss = base_loss * (1 - self.alpha) + distillation_loss * self.alpha
return loss
class DistillationLoss_rank(torch.nn.Module):
"""
This module wraps a standard criterion and adds an extra knowledge distillation loss by
taking a teacher model prediction and using it as additional supervision.
"""
def __init__(self, base_criterion: torch.nn.Module, teacher_model: torch.nn.Module,
distillation_type: str, alpha: float, tau: float):
super().__init__()
self.base_criterion = base_criterion
self.teacher_model = teacher_model
assert distillation_type in ['none', 'soft', 'hard']
self.distillation_type = distillation_type
self.alpha = alpha
self.tau = tau
def forward(self, inputs, outputs, labels, teacher_outputs):
"""
Args:
inputs: The original inputs that are feed to the teacher model
outputs: the outputs of the model to be trained. It is expected to be
either a Tensor, or a Tuple[Tensor, Tensor], with the original output
in the first position and the distillation predictions as the second output
labels: the labels for the base criterion
"""
outputs_kd = None
if not isinstance(outputs, torch.Tensor):
# assume that the model outputs a tuple of [outputs, outputs_kd]
outputs, outputs_kd = outputs
base_loss = self.base_criterion(outputs, labels)
if self.distillation_type == 'none':
return base_loss
if outputs_kd is None:
raise ValueError("When knowledge distillation is enabled, the model is "
"expected to return a Tuple[Tensor, Tensor] with the output of the "
"class_token and the dist_token")
# don't backprop throught the teacher
if self.distillation_type == 'soft':
T = self.tau
# taken from https://github.com/peterliht/knowledge-distillation-pytorch/blob/master/model/net.py#L100
# with slight modifications
distillation_loss = F.kl_div(
F.log_softmax(outputs_kd / T, dim=1),
#We provide the teacher's targets in log probability because we use log_target=True
#(as recommended in pytorch https://github.com/pytorch/pytorch/blob/9324181d0ac7b4f7949a574dbc3e8be30abe7041/torch/nn/functional.py#L2719)
#but it is possible to give just the probabilities and set log_target=False. In our experiments we tried both.
F.log_softmax(teacher_outputs / T, dim=1),
reduction='sum',
log_target=True
) * (T * T) / outputs_kd.numel()
#We divide by outputs_kd.numel() to have the legacy PyTorch behavior.
#But we also experiments output_kd.size(0)
#see issue 61(https://github.com/facebookresearch/deit/issues/61) for more details
elif self.distillation_type == 'hard':
distillation_loss = F.cross_entropy(outputs_kd, teacher_outputs.argmax(dim=1))
loss = base_loss * (1 - self.alpha) + distillation_loss * self.alpha
return loss
def mf_loss(block_outs_s, block_outs_t, layer_ids_s, layer_ids_t, K, w_sample, w_patch, w_rand, max_patch_num=0):
losses = [[], [], []] # loss_mf_sample, loss_mf_patch, loss_mf_rand
for id_s, id_t in zip(layer_ids_s, layer_ids_t):
extra_tk_num = block_outs_s[0].shape[1] - block_outs_t[0].shape[1]
F_s = block_outs_s[id_s][:, extra_tk_num:, :] # remove additional tokens
F_t = block_outs_t[id_t]
if max_patch_num > 0:
F_s = merge(F_s, max_patch_num)
F_t = merge(F_t, max_patch_num)
loss_mf_patch, loss_mf_sample, loss_mf_rand = layer_mf_loss(
F_s, F_t, K)
losses[0].append(w_sample * loss_mf_sample)
losses[1].append(w_patch * loss_mf_patch)
losses[2].append(w_rand * loss_mf_rand)
loss_mf_sample = sum(losses[0]) / len(losses[0])
loss_mf_patch = sum(losses[1]) / len(losses[1])
loss_mf_rand = sum(losses[2]) / len(losses[2])
return loss_mf_sample, loss_mf_patch, loss_mf_rand
def layer_mf_loss(F_s, F_t, K):
# normalize at feature dim
F_s = F.normalize(F_s, dim=-1)
F_t = F.normalize(F_t, dim=-1)
# manifold loss among different patches (intra-sample)
M_s = F_s.bmm(F_s.transpose(-1, -2))
M_t = F_t.bmm(F_t.transpose(-1, -2))
M_diff = M_t - M_s
loss_mf_patch = (M_diff * M_diff).mean()
# manifold loss among different samples (inter-sample)
f_s = F_s.permute(1, 0, 2)
f_t = F_t.permute(1, 0, 2)
M_s = f_s.bmm(f_s.transpose(-1, -2))
M_t = f_t.bmm(f_t.transpose(-1, -2))
M_diff = M_t - M_s
loss_mf_sample = (M_diff * M_diff).mean()
# manifold loss among random sampled patches
bsz, patch_num, _ = F_s.shape
sampler = torch.randperm(bsz * patch_num)[:K]
f_s = F_s.reshape(bsz * patch_num, -1)[sampler]
f_t = F_t.reshape(bsz * patch_num, -1)[sampler]
M_s = f_s.mm(f_s.T)
M_t = f_t.mm(f_t.T)
M_diff = M_t - M_s
loss_mf_rand = (M_diff * M_diff).mean()
return loss_mf_patch, loss_mf_sample, loss_mf_rand
def merge(x, max_patch_num=196):
B, P, C = x.shape
if P <= max_patch_num:
return x
n = int(P ** (1/2)) # original patch num at each dim
m = int(max_patch_num ** (1/2)) # target patch num at each dim
merge_num = n // m # merge every (merge_num x merge_num) adjacent patches
x = x.view(B, m, merge_num, m, merge_num, C)
merged = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, m * m, -1)
return merged