-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathQuinticPoly.m
48 lines (32 loc) · 1.29 KB
/
QuinticPoly.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
classdef QuinticPoly
% solve the quinticPoly 5th order equation
properties
% coefficients (c0, c1, c2, c3, c4, c5)
c
end
methods (Access = public)
function obj = QuinticPoly (xi0, dxi0, ddxi0, xiT, dxiT, ddxiT, T)
c012= [xi0; dxi0; ddxi0 / 2.0];
M1=[1, T, T*T;
0, 1, 2*T;
0, 0, 2 ];
M2=[ T^3, T^4, T^5;
3*T^2, 4*T^3, 5*T^4;
6*T, 12*T^2, 20*T^3 ];
c345 = M2\([xiT; dxiT; ddxiT] - M1 * c012);
obj.c = [c012; c345];
end
function x=X(obj, t)
x=obj.c(1) + obj.c(2).*t + obj.c(3).*t.^2 + obj.c(4).*t.^3 + obj.c(5).*t.^4 + obj.c(6).*t.^5;
end
function x=dX(obj, t)
x=obj.c(2) + 2*obj.c(3).*t + 3*obj.c(4).*t.^2 + 4*obj.c(5).*t.^3 + 5* obj.c(6).*t.^4;
end
function x=ddX(obj, t)
x= 2*obj.c(3) + 6*obj.c(4).*t + 12*obj.c(5).*t.^2 + 20* obj.c(6).*t.^3;
end
function x=dddX(obj, t)
x= 2 + 6*obj.c(4) + 24*obj.c(5).*t + 60* obj.c(6).*t.^2;
end
end
end