
Orbis System Architecture

Orbis Labs

March 4, 2022

Orbis is a general purpose ZK rollup layer 2 scalability solution for Car-
dano. ZK rollups are a mechanism by which transactions are processed off-
chain, and their results are published on the blockchain using zero-knowledge
proofs. More precisely, ZK rollups use zkSNARKS, which stands for zero-
knowledge succinct non-interactive arguments of knowledge.

By processing data off-chain, ZK rollups allow for higher transaction
throughput on the blockchain and in the ecosystem as a whole. By using
a secure, decentralized layer 1 blockchain and zkSNARKS, ZK rollups in-
herit certain security properties of the layer 1 solution: namely, that we need
not assume any party is trustworthy and that no one is able to cause unlawful
(i.e., protocol-violating) results to be produced on-chain. Additionally, Orbis
will contain no single point of failure, meaning that once a mature implemen-
tation is in place, then no individual or organization’s ongoing participation
is required for the proper, intended functioning of the solution.

ZK rollups are an increasingly popular choice for layer 2 scalability on
Ethereum, with multiple choices of ZK rollup solutions available for use,
including zkSync, StarkNet, and Loopring. [1] In contrast, Orbis Labs knows
of no prior art for a ZK rollup-based layer 2 solution on Cardano. However, we
believe that ZK rollups will be an important part of the Cardano ecosystem
moving forward, just as they are in Ethereum today.

This is the system architecture document for Orbis. This document de-
fines the key components of the Orbis protocol and their interactions with
each other and the outside world, as well as the rationale for these design
decisions. This document deviates from a whitepaper or a technical spec in
that it does not attempt to provide enough information to implement Orbis.
Instead, one can think of it as a sketch. Technical specs will fill the picture
in much greater detail, sufficient to guide implementation, while a technical

1

whitepaper will describe the Orbis protocol in a form more suitable for gen-
eral consumption. Instead, this document simply provides an overview of the
Orbis protocol and its defining features for a technical audience.

1 Background
This section covers the background information necessary to understand the
design of Orbis and ZK rollup solutions more generally.

A blockchain uses a consensus algorithm executed by a decentralized
network of nodes to process financial transactions and other information.
Thanks to the consensus algorithm, parties can be assured that their money
and other informational assets stored on the blockchain will not be used in a
manner they did not authorize, without the need to vet the trustworthiness
of any particular participant in the protocol.

Blockchains are an important innovation in financial technology; for starters,
they have the potential to liberate humanity from the gatekeeping associated
with centralized systems of finance. However, such liberation will only be pos-
sible to the extent that blockchain developers can achieve massive scalability,
to the point that blockchains could feasibly replace centralized financial tech-
nology as a transaction processor. For example, Visa reportedly processes an
average of over 150 million transactions per day and is capable of processing
more than 24,000 transactions per second. [2]

Scalability of blockchain solutions is a widely recognized problem. How-
ever, a few angles of attack are available to address it. One angle is to
increase the transaction throughput of the blockchain itself. This is an im-
portant task but also a difficult one. Another angle is to multiply the number
of blockchains in use, such as in the case of Kadena’s Chainweb. [3] A third
angle is to use so-called layer 2 solutions, whereby transactions are processed
off-chain and their results are later synced onto the chain. With layer 2
solutions, the blockchain can simply be used as a settlement layer while ap-
plication domain business logic lives off-chain, greatly reducing the amount
of state and state changes stored on the chain.

ZK rollups are an example of a layer 2 solution strategy. ZK rollups make
use of zkSNARKs. zkSNARKs are a type of proof. A proof, for our purposes,
is a piece of information that evidences the truth of some statement. In the
context of formal logic, a proof is a sound or valid argument in which the
premises are true. A valid argument, speaking informally, is an argument

2

that, in virtue of its logical structure, guarantees the conclusion is true pro-
vided that the premises are true. This is not what we mean by a proof, here.
In this context, a proof is a piece of information whose existence demon-
strates only a negligible probability that the statement to be proven is not
true. In this sense of the word “proof,” for example, an ED25519 signature is
a “proof” that a person who possesses the private signing key ran the signing
algorithm to sign the piece of information.

By definition, a zkSNARK is a zero-knowledge succinct non-interactive
argument of knowledge. In this description, “argument of knowledge” means
“proof” (in the sense of “proof” defined in this context for our purposes).
A zkSNARK has the characteristics of being zero knowledge (meaning it
does not prove anything more than the statement to be proven), succinct
(meaning the proof can be represented as a small number of bytes), and
non-interactive (meaning the proof can be represented as a single message
as opposed to a multi-step interaction between the proving entity and the
proof-checking entity).

For our purposes, the most relevant characteristics of zkSNARKs are
their succinctness and non-interactivity. It’s possible that we could get by
with just SNARKs, succinct non-interactive proofs that aren’t necessarily
zero-knowledge. However, we are using zkSNARKs because the bulk of the
research available is on zkSNARKs, and we believe that zkSNARK solutions
are the most mature and relevant SNARK solutions available.

The reason succinctness and non-interactivity are key properties here is
that we need to store the proofs in transactions, which are short, single
messages, on the blockchain.

ZK rollups are, in essence, a simple concept. In a pure blockchain protocol
(without a layer 2 solution), all transactions, smart contract code, and smart
contract state data are normally stored on the blockchain. In a ZK rollup
solution, some of this code and data are stored off-chain. In its place, the
chain stores proofs that this information exists. The zkSNARKs stored on-
chain prove that, for some set of inputs and some set of outputs, a set of
transactions exist that were signed by the relevant parties and that followed
the rules of the relevant smart contracts. Those transactions never need to
be recorded on the chain; we need only record the inputs, the outputs, and
the proof that those outputs lawfully (according to the blockchain protocol)
resulted from the inputs.

zkSNARKs allow for a potentially unlimited number of transactions to
be performed with a constant O(1) amount of on-chain information. There-

3

fore, this ZK rollup strategy potentially allows for very efficient usage of the
blockchain’s limited information storage capacity.

Similarly, the computational complexity of verifying a zkSNARK proof
is O(1). Therefore, the ZK rollup strategy allows for a potentially unlimited
amount of computation to be performed off-chain to validate transactions,
which are all verified by a single proof. The on-chain computation required to
validate those transactions is limited to the relatively small and O(1) amount
of computation required to check the proof. This makes for a potentially very
efficient usage of the blockchain’s limited computational capacity.

1.1 Decentralized data stores and throughput
A blockchain is only one type of decentralized data store. Its two main
ingredients are a decentralized data store for a sequence of transactions (i.e.,
a distributed ledger) and a means by which people can agree on how to
update it (i.e., a consensus algorithm).

A blockchain is a very general-purpose piece of equipment that solves a
hard problem. A difficult part of this problem is, how do we agree on how to
extend the ledger when parties may have submitted conflicting (individually
satisfiable but jointly unsatisfiable) requests? The current state of the tech
allows for solutions to this problem that are reliable but limited in terms of
throughput.

Other ways of implementing decentralized data stores (other than block-
chains) exist, and they may provide greater performance by not solving the
entirety of the problem that a blockchain solves. One example of this is a
content-addressed distributed filesystem, e.g. Dat [4] or IPFS [5]. A content-
addressed filesystem does not require the same type of sophisticated consen-
sus algorithm that a blockchain requires. If the only operations that mutate
the data store are additions of new data, and that data is content-addressed
and, thus, contains no possibility of conflict between two additions of data,
then the data store can simply accept all requests to add data without need-
ing a conflict resolution mechanism. This simplification of the problem may
allow for a more performant implementation with higher throughput.

A decentralized filesystem carries a performance penalty compared to a
traditional filesystem. In a traditional filesystem, all files are stored on one
drive, with blocks of data organized into a tree structure to make them easy
to find. In a decentralized filesystem, blocks of data are still organized into
a tree structure, but this structure is stored across many drives connected

4

to many different computers. Therefore, searching the tree requires network
communication between peers.

For storing a small amount of data, a decentralized filesystem is probably
not the right kind of decentralized data store. If the amount of data to be
stored is small, then all of the data can be held in RAM. Updating such a
decentralized data store still carries a cost premium because it still requires
network communication between peers. However, this kind of decentralized
data structure eliminates the need to search through a large amount of data
stored in tree structures on drives. For this, we can expect a performance
benefit compared to using a decentralized filesystem.

Let’s imagine a decentralized data structure based on two assumptions:
the amount of data to be stored is small, and the ways in which it can be
updated do not conflict with each other. For example, consider a decentral-
ized data store designed to store a set with less than 1,000 elements. The
only way to update it is to add an element to the set. Each element is times-
tamped with the time when it was added. When the cardinality of the set
reaches 1,000, the oldest element of the set is dropped to make room for an
additional element. This is an example of a conflict-free replicated data type
(CRDT). This type of decentralized data store seems particularly amenable
to an efficient implementation with high throughput due to its relative sim-
plicity of negotiating updates to the data store, the entirety of which can be
held in RAM.

We can extend this idea to the concept of an ordered set, where the ele-
ments are ordered by the timestamp. This is, again, a CRDT. One variation
on this idea is a decentralized queue, which contains two operations: adding
to the end of the queue and removing from the start of the queue. This
type of queue can be considered a CRDT depending on how we define the
removal operation. If the removal operation states “remove this element from
the queue if it exists and is the beginning of the queue,” then the removal
operation is conflict-free. This type of removal operation is subject to race
conditions, where different orderings of removal operations may have a dif-
ferent end result. However, if we assume that a removal operation is only
initiated on an element x when x is or recently was the start of the queue,
then there are no race conditions between removal operations. If two identi-
cal removal operations are submitted around the same time, then the result
will be the same regardless of the order in which they occur.

5

2 System components
Orbis has two main components: the prover and the verifier. See Figure 1
for a picture of these components and their contact points with each other
and the rest of the world.

The prover is an off-chain web service, and its essential purpose is to
construct zkSNARKs that verify transaction occurrence. The prover has
an API similar to a blockchain node; it allows for posting transactions and
inspecting state data. Unlike a blockchain node, which allows for posting
transactions to the blockchain and inspecting the state of the blockchain, the
prover allows for posting transactions to a rollup and inspecting the state of
a rollup. Here, “rollup” refers to a sequence of transactions and a collection
of state data that will, at some future time, be used to create outputs on the
blockchain. The rollup is stored in the prover’s persistent state mechanism
(i.e., a database) rather than on the blockchain. Therefore, while the prover
has an API similar to that of a blockchain node, it is something else entirely.

The verifier is an on-chain smart contract. Its essential purpose is to
settle transactions performed on-rollup. The verifier contract accepts on-
chain inputs, locking them up in the contract so they can be used on the
rollup without the risk of them being double-spent once they’re on-chain and
on-rollup. Also, the verifier contract validates prover-created transactions,
which contain outputs from the rollup and proofs that those outputs resulted
from a series of valid transactions based on inputs provided to the verifier
contract.

Orbis provides an off-chain context in which smart contract validator
code can run. Instead of being run to create transactions on the chain,
validator code is run to create transactions on the rollup and proofs that
those transactions belong on the rollup.

It is important to keep two terms distinct here: verifier and validator.
“Validator” refers to a function that takes a transaction as input and out-
puts a boolean value indicating whether the transaction satisfies the rules of
a smart contract. “Verifier” refers to the smart contract validator which vali-
dates transactions over the rollup smart contract. The verifier is a validator,
but other validators are not verifiers. To avoid confusion, let the term “val-
idator” refer to the validator for some smart contract running on the rollup,
as opposed to the verifier, which runs on the blockchain.

Orbis will use Halo 2 [7, 6, 8] as the zkSNARK proving system. Halo 2
has two key properties that make it suitable for this application. First, it

6

chain

verifier

wallet

prover

validator

dapp
off-
chain
code

database

Figure 1: Key components of and related to Orbis.

7

has small proof sizes, of several kilobytes or less, small enough to fit in a
Cardano transaction. Second, it supports proof carrying data, which can be
used to build recursive proofs.

Proof carrying data refers to the process of giving a zkSNARK as in-
put to an arithmetic circuit in order to generate another zkSNARK, such
that the generated zkSNARK proves that the input zkSNARK is valid, indi-
rectly proving the truth of whatever statement the input zkSNARK proves.
Proof carrying data enables recursive proofs when a statement checked by
an arithmetic circuit takes as input a zkSNARK for the same statement.

Recursive proofs are key to Orbis’ strategy for building a ZK rollup which
can scale to any required level of throughput. See Section 4 for more about
this.

Using Orbis somewhat complicates the process of developing a dapp (de-
centralized application), in the case where the dapp does not operate ex-
clusively on the rollup, but also does some of its operations on the chain
directly. In that case, the dapp must be aware of and control the movement
of information from the chain to the rollup and back again. It must publish
and subscribe to data not only on the chain but also on the rollup. The dapp
interacts with the rollup by calling the prover API. The next section covers
the processes involved in more detail.

3 Processes
There are three main processes involved in a dapp using Orbis: moving
inputs from the chain to the rollup, posting transactions on the rollup, and
moving outputs from the rollup to the chain. These processes are pictured
in Figures 2, 3, and 4.

3.1 Process of posting a transaction to a rollup
To post a transaction to a rollup, the dapp code must first call the prover
API to lock the on-rollup input UTXOs. The purpose of this step is to
avoid resource contention problems that would prevent the transaction from
going through. These locks should be temporary and expire automatically
after a brief time sufficient to complete the transaction. To avoid denial of
service (DoS) attacks based on this locking mechanism, the user requesting
the transaction should be required to post collateral that will be lost if the

8

submitting a transaction
whose inputs are all on-rollup

user

dapp
off-chain
code

prover

validator

wallet

requests
tx

calls prover
to lock input
UTXOs

locks input
UTXOs

generates
unsigned tx

prompts
user

approves

signs tx

sends tx
to prover

validates
tx

adds tx
to rollup

shows tx
result which
is on-rollup

runs
validator

Figure 2: Process of posting a transaction to a rollup.

9

adding a UTXO to a rollup

user

dapp
off-chain
code

prover

verifier

wallet

requests
send

generates
unsigned
send

prompts
user

approves

posts signed send
to blockchain

posts input tx
to blockchain

validates
input tx

updates
state

shows
updated state

shows
updated
state

Figure 3: Process of adding an input to a rollup.

10

removing a UTXO from a rollup

user

dapp
off-chain
code

prover

verifier

wallet

requests
removal

generates
unsigned
removal

prompts
user

approves

signs
removal

posts signed
removal to
rollup

adds removal
to rollup

posts output
tx to chain

validates
output tx

shows updated
state

updates
state

shows
updated
state

Figure 4: Process of removing an output from a rollup.

11

locks expire without the inputs being used, or some similar measure. The
collateral can, for example, be one of the locked inputs. Every transaction
will have some monetary input, at least to cover the transaction fee needed
to generate the proof. In response to the locking request, the prover provides
some sort of key that the dapp may use to consume the on-rollup inputs.

The next step is for the dapp to generate an unsigned transaction. The
dapp sends the unsigned transaction to the user’s wallet to be signed. The
wallet signs the transaction with the user’s approval. The dapp then receives
the signed transaction from the wallet and posts it to the rollup by calling
the prover API. The prover runs any validator scripts required and generates
a proof. The transaction, its outputs, and the proof are added to the rollup,
and the on-rollup inputs are marked as consumed. The dapp observes the
rollup state changes via the prover API and makes them visible to the user.

3.2 Process of adding an input to a rollup
Adding an on-chain input to a rollup is essentially a two-step process. First,
the user sends the input to the rollup contract address. Second, the input
gets picked up by an input transaction. The input transaction, which is on-
chain, also takes as input the rollup state UTXO. Once the transaction is
authorized by the prover, it outputs the new rollup state UTXO. The rollup
state UTXO contains the monetary values added to the rollup (in aggregate
form, without tracking who owns what). It also contains whatever state data
must be stored on-chain for the rollup contract.

3.3 Process of removing an output from a rollup
Removing an output from the rollup and putting it on the chain is similarly
a two-step process. First, the user posts a removal transaction to the rollup.
Second, the prover posts an output transaction to the chain and updates its
internal state. An output transaction describes a set of output UTXOs and a
proof (checked by the verifier contract) that shows the outputs as lawful. One
output transaction on-chain settles many removal transactions on-rollup.

3.4 Authorization for updating the rollup
The rollup contract will accommodate two methods of authorizing a transac-
tion. These transactions should only be performed by authorized parties to

12

prevent UTXO resource contention. The two methods of authorization are
signing the transaction with a signing key (whose public key hash is stored
in the rollup contract state) or spending an authorization token (described
in Section 4).

4 Distribution and decentralization of
the prover

Due to the high computational complexity of generating zkSNARK proofs to
verify many transactions, the prover must be made a distributed system. By
making use of recursive zkSNARK proofs, we can split the proof generation
task into pieces that can then be farmed out to various computers.

This architecture style assumes it is possible to split the validation of a
sequence of transactions ~t and the generation of the corresponding proof into
parallel subtasks. This is true if the validation sequence can be split into two
sequences ~u and ~r, where some interpolation of the elements of ~u and ~r is
equal to ~t, and no transaction in ~u takes as input an output of a transaction
in ~r, and no transaction in ~r takes as input an output of a transaction in ~u.

This setup is assumed to be possible given dapp designs that were built
to do this exact thing. Thus, we assume that we can split a sequence ~t of
transactions into as many subsequences as needed to distribute the proof
generation tasks among many computers and, therefore, achieve sufficient
throughput.

As per usual for a distributed system, it should be designed to be fault
tolerant, so that if one computer in the system fails, the system as a whole
will continue to function as intended without human intervention.

Distributing the prover is also a first step towards full decentralization of
the prover. Full decentralization of the prover means no computer, individ-
ual, or organization exists as either a single point of failure or as a trusted
entity within the prover protocol. Full decentralization of the prover is not
within scope of the Orbis Project’s initial release, but is an eventual goal
and commitment of the project. We are designing for an initial release that
features a smooth upgrade path, transparent from an end-user perspective,
to a fully decentralized prover.

In the distributed prover, one computer is, at any given time, designated
as the leader of the system, responsible for coordinating all prover activities.

13

It produces the final output transaction and posts it to the blockchain. In
the centralized distributed prover, this leader is controlled and designated by
Orbis Labs—or, more generally, the organization that controls the signing
key(s) for the rollup contract instance. In the decentralized prover, the leader
will be periodically determined by a leader election process, to be designed
later.

In the centralized prover, the prover is authorized to update the state
of the rollup contract instance by signing the transactions with the signing
key(s), whose public key hashes are stored in the contract instance state.
In the decentralized prover, another mechanism is needed, and the recom-
mended mechanism is authorization tokens.

Authorization tokens allow their holders to perform certain actions within
the system. In this application, authorization tokens allow holders to update
the rollup contract instance in lieu of signing the transaction. The token
holder provides the authorization token as an input to the transaction, and
the transaction outputs it to an address. The token’s output address is stored
in the rollup contract instance state and can be set by a transaction signed
with the authorized signing key(s). Once Orbis moves to full decentralization,
the intention is, at some point, to freeze the token distribution protocol by
removing all of the authorized signing keys from the rollup contract state,
thus disabling further updates to the distribution protocol and heralding the
start of the leader election protocol.

The mechanism to update the authorization token output address is in-
tended to be part of the smooth upgrade path from a centralized prover to
a decentralized prover. To be sufficiently transparent to end users, the up-
grade path must not involve any changes to the rollup contract. Such changes
would necessitate moving funds from one contract to the other, which cannot
be done securely without manual intervention. We could include a provision
in the rollup contract allowing funds to be transferred using the authorized
signing key(s), but this would open a security vulnerability where the per-
son(s) in control of the signing key(s) could make off with the funds. In the
envisioned smooth upgrade path, we instead use a signed transaction with
the rollup contract to set an authorization token’s output to a contract ad-
dress that handles the leader election process, ensuring that an authorization
token passes to the next elected leader.

In the decentralized version of the prover, we must take additional security
considerations into account. We can assume, in the centralized version, that
prover nodes (i.e., the computers that constitute the computing cluster of

14

the prover) are not malicious. In the decentralized version, we cannot make
this assumption. Thus, we will need to perform in-depth security analysis to
guard against acts of malicious prover nodes. To the greatest extent possible,
we should use zkSNARK proofs to ensure that such malicious acts do not
occur. Where this will not work, we can use an enforcement mechanism
that requires prover node operators to post collateral that will be burned
if the nodes act maliciously. (This solution depends on designing reliable
mechanisms for detecting the occurrence of such malicious acts.)

5 Money trap avoidance
One of the risks of ZK rollup solutions is denial of service (DoS). The prover
cannot post any unlawful outputs to the chain, but it can refuse service.
Given that the prover is the only entity able to sign input and output trans-
actions, if it ceases operations, then the funds stored in the rollup contract
would be lost. In a similar DoS case, the prover might refuse service to
certain market participants, causing them to lose money they stored in the
rollup contract. How can we mitigate these risks?

The Orbis protocol uses a model that gives one prover exclusive access to
a given rollup contract UTXO. This design choice was made to avoid resource
contention, which could cause performance issues and complex situations—
such as the double-spending of input UTXOs. Such a situation would not
result in actual double-spends on-chain, but it would prevent both provers
from merging their on-rollup transaction outputs onto the chain.

This exclusive access model (in contrast to a permissionless model) leads
to the aforementioned money trap risk that occurs when a prover stops op-
erating. What if a prover stops operating and no other prover steps up or is
authorized to update the rollup contract state? Decentralization mitigates
this risk, but even in a decentralized protocol, there is no guarantee that
somebody will volunteer to run an Orbis prover node.

To mitigate the money trap risk in the case of a lack of prover node
services, Orbis will provide a backup mechanism for removing funds from
the rollup while a prover is not operating. “A prover is not operating” is
operationally defined as meaning that the rollup contract state UTXO has
not been updated in a certain number of blocks. Under such conditions,
the rollup contract allows for permissionless withdrawal transactions which
contain a zkSNARK proving that the funds transferred from the rollup con-

15

tract to the recipient(s) belong to the addresses of the recipient(s). These
“permissionless offline withdrawal transactions” allow people to recover their
funds from the rollup contract without interacting with a prover.

This permissionless fail-safe withdrawal mechanism has some notable lim-
itations. Firstly, it will allow for withdrawing funds held at a wallet address,
but it will not allow for withdrawing funds locked in smart contracts, which
would require a prover to be running. Secondly, it will be limited in through-
put by the throughput of the chain. However, it should nonetheless allow
people to eventually recover their funds helds on the rollup at their wallet
addresses, as long as the Cardano chain is continuing to function, even if the
prover goes offline and never comes back online.

Expiring exclusive access addresses the money trap risk when a prover
stops operating. However, it does not address the money trap risk that
occurs when a prover refuses service to certain market participants. The
latter risk will need to be addressed in a different way. Our non-binding
recommendation is to process input and output transactions on a first-come,
first-served basis. This would mean that the first inputs sent to the contract
address are the first added to the rollup, and the first removal transactions
posted to the rollup are the first processed in an output transaction.

Our non-binding recommendation for implementing the first-come, first-
served principle is to post transactions to a decentralized data structure,
such as a queue, implemented as a decentralized, conflict-free replicated data
type (CRDT). The principle would be enforced as part of the leader election
protocol by burning the collateral of the leaders who violate it. It seems it
would be possible to check for compliance via the zkSNARK proofs posted
to the rollup verifier contract. However, that would require us to either
build enforcement of the principle into the initial verifier contract release, or
to update the verifier contract post launch. The latter would obscure the
smooth decentralization upgrade path from end users.

Enforcing the first-come, first-served principle is beyond the scope of an
initial release. For the initial release, we do not require a solution to the
money trap risk associated with selective denial of service by a prover. This
is deemed an acceptable risk upon initial release because Orbis Labs will, at
first, be the only authorized prover for the rollup contract instance.

16

6 Fees
The fee structures for on-rollup and on-chain rollup transactions need to
cover the costs of operating the system, as well as balance supply and demand
to ensure availability of services. Defining the fee structures is beyond the
scope of this document. For on-rollup transactions, charging fees that cover
the operation costs of the rollup should be sufficient, since we should be able
to scale to meet all demand for the on-rollup services. For on-chain rollup
transactions, an upper limit exists to the throughput we can achieve pending
further advances in the blockchain technology. Therefore, for on-chain rollup
transactions, we will need to design a fee structure that includes “availability
surchages” to ensure availability of the services. The availability surcharges
will be computed off-chain and charged by the rollup contract. Periodically,
those fees will be collected by an authorized transaction with the rollup
contract, which will send the fees to a specified address (which can also be
updated by another authorized transaction with the rollup contract).

7 Database
The Orbis architecture does not specify the nature of the database used to
store the current rollup state and on-rollup transaction history. For the sake
of transparency and fault tolerance, using a decentralized data store might
be the best option. For the sake of performance, using a traditional database,
such as PostgreSQL, might be the best option. It might make sense to use
more than one database to address different considerations. It might make
sense to store currently needed data in one database and archival data in
another database.

8 Verifer contract state data
Here is a speculative, non-binding description of some state data that must
be stored in the rollup UTXO.

1. A nonce that gets incremented on every output transaction. The pur-
pose of the nonce is to help ensure on-rollup UTXOs are used only
once.

17

2. A hash of all the on-rollup UTXOs. The mentioned hash may be a
recursive hash, i.e., a hash of UTXOs and a previous hash. The purpose
of the state hash is to serve as an input to the proof-checking algorithm.

3. The public key hashes of the authorized signing key(s).

4. The authorization token output address.

5. The most recent time at which the prover posted an input transaction.

6. The most recent time at which the prover posted an output transaction.

7. The amount of collected availability surcharges currently stored in the
rollup contract.

8. The address to send collected availability surcharges to.

18

References
[1] Ethworks. Zero-Knowledge Blockchain Scalability. Ethworks

Reports, 2020. https://ethworks.io/assets/download/
zero-knowledge-blockchain-scaling-ethworks.pdf

[2] Visa. Power your retail business beyond the point of sale. Accessed
December 17, 2021. https://usa.visa.com/run-your-business/
small-business-tools/retail.html

[3] Will Martino, Monica Quaintance, and Stuart Popejoy. Chainweb:
A Proof-of-Work Parallel-Chain Architecture for Massive Through-
put. DRAFT v15. https://d31d887a-c1e0-47c2-aa51-c69f9f998b07.
filesusr.com/ugd/86a16f_029c9991469e4565a7c334dd716345f4.pdf

[4] Maxwell Ogden, Karissa McKelvey, Mathias Buus Madsen, Code for Sci-
ence. Dat - Distributed Dataset Synchronization And Versioning. May
2017 (last updated: Jan 2018). https://github.com/datprotocol/
whitepaper/blob/master/dat-paper.pdf

[5] Juan Benet. IPFS - Content Addressed, Versioned, P2P File System.
Accessed Dec 22, 2021. https://github.com/ipfs/ipfs/blob/master/
papers/ipfs-cap2pfs/ipfs-p2p-file-system.pdf

[6] The Electric Coin Company. The halo2 Book. 2021. https://zcash.
github.io/halo2/index.html

[7] The Electric Coin Company. halo2. 2022. https://github.com/zcash/
halo2

[8] Sean Bowe, Jack Grigg, and Daira Hopwood. Recursive Proof Composi-
tion without a Trusted Setup. IACR Cryptol. ePrint Arch., 2019, #1021.
https://eprint.iacr.org/2019/1021

19

https://ethworks.io/assets/download/zero-knowledge-blockchain-scaling-ethworks.pdf
https://ethworks.io/assets/download/zero-knowledge-blockchain-scaling-ethworks.pdf
https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://d31d887a-c1e0-47c2-aa51-c69f9f998b07.filesusr.com/ugd/86a16f_029c9991469e4565a7c334dd716345f4.pdf
https://d31d887a-c1e0-47c2-aa51-c69f9f998b07.filesusr.com/ugd/86a16f_029c9991469e4565a7c334dd716345f4.pdf
https://github.com/datprotocol/whitepaper/blob/master/dat-paper.pdf
https://github.com/datprotocol/whitepaper/blob/master/dat-paper.pdf
https://github.com/ipfs/ipfs/blob/master/papers/ipfs-cap2pfs/ipfs-p2p-file-system.pdf
https://github.com/ipfs/ipfs/blob/master/papers/ipfs-cap2pfs/ipfs-p2p-file-system.pdf
https://zcash.github.io/halo2/index.html
https://zcash.github.io/halo2/index.html
https://github.com/zcash/halo2
https://github.com/zcash/halo2
https://eprint.iacr.org/2019/1021

	Background
	Decentralized data stores and throughput

	System components
	Processes
	Process of posting a transaction to a rollup
	Process of adding an input to a rollup
	Process of removing an output from a rollup
	Authorization for updating the rollup

	Distribution and decentralization of the prover
	Money trap avoidance
	Fees
	Database
	Verifer contract state data

