1
1
# <span style =" color :#9EB1FF ; font-size :30.0pt " >DEEP LEARNING FOR MUSIC GENERATION</span >
2
2
3
- This file presents the State of the Art of Music Generation. Most of these references are used in the paper [ "Music Composition with Deep Learning: A Review"] ( #https://arxiv.org/abs/2108.12290 ) .
4
3
5
- The [ authors ] ( #Author ) of the paper want to thank Jürgen Schmidhuber for his suggestions.
4
+ This repository is maintained by [ ** Carlos Hernández-Oliván ** ] ( https://carlosholivan.github.io/index.html ) ( [email protected] ) and it presents the State of the Art of Music Generation. Most of these references (previous to 2022) are included in the review paper [ "Music Composition with Deep Learning: A Review" ] ( #https://arxiv.org/abs/2108.12290 ) . The authors of the paper want to thank Jürgen Schmidhuber for his suggestions.
6
5
7
6
[ ![ License] ( https://img.shields.io/badge/license-Apache2.0-green )] ( ./LICENSE )
8
7
@@ -23,9 +22,10 @@ All the images belong to their corresponding authors.
23
22
24
23
2 . [ Neural Network Architectures] ( #neural-network-architectures )
25
24
26
- 3 . [ Deep Learning Models for Music Generation] ( #deep-learning-music-generation )
25
+ 3 . [ Deep Learning Models for Symbolic Music Generation] ( #deep-learning-music-generation )
27
26
28
- - [ 2021] ( #2020deep )
27
+ - [ 2022] ( #2022deep )
28
+ - [ 2021] ( #2021deep )
29
29
- [ 2020] ( #2020deep )
30
30
- [ 2019] ( #2019deep )
31
31
- [ 2018] ( #2018deep )
@@ -39,20 +39,23 @@ All the images belong to their corresponding authors.
39
39
- [ Books] ( #books-deep )
40
40
- [ Reviews] ( #reviews-deep )
41
41
42
+ 4 . [ Deep Learning Models for Audio Music Generation] ( #deep-learning-music-generation )
42
43
43
- 4 . [ Datasets] ( #datasets )
44
+ - [ 2020] ( #2020audiodeep )
45
+ - [ 2017] ( #2017audiodeep )
44
46
45
- 5 . [ Journals and Conferences ] ( #journals )
47
+ 5 . [ Datasets ] ( #datasets )
46
48
47
- 6 . [ Authors ] ( #authors )
49
+ 6 . [ Journals and Conferences ] ( #journals )
48
50
49
- 7 . [ Research Groups and Labs ] ( #labs )
51
+ 7 . [ Authors ] ( #authors )
50
52
51
- 8 . [ Apps for Music Generation with AI ] ( #apps )
53
+ 8 . [ Research Groups and Labs ] ( #labs )
52
54
53
- 9 . [ Other Resources] ( #other-resources )
55
+ 10 . [ Apps for Music Generation with AI] ( #apps )
56
+
57
+ 11 . [ Other Resources] ( #other-resources )
54
58
55
- [ Author] ( #author )
56
59
57
60
58
61
## <span id =" algorithmic-composition " style =" color :#9EB1FF ; font-size :25.0pt " >2. Algorithmic Composition</span >
@@ -89,10 +92,43 @@ Hild, H., Feulner, J., & Menzel, W. (1992). HARMONET: A neural net for harmonizi
89
92
| Variational Auto Encoder (VAE) | 2013 | Diederik P. Kingma, Max Welling | https://arxiv.org/pdf/1312.6114.pdf |
90
93
| Generative Adversarial Networks (GAN) | 2014 | Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio | https://arxiv.org/pdf/1406.2661.pdf | |
91
94
| Transformer | 2017 | Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, Illia Polosukhin | https://arxiv.org/pdf/1706.03762.pdf | |
95
+ | Diffusion Models | 2015 | Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, Surya Ganguli | https://arxiv.org/abs/1503.03585 | |
92
96
93
97
94
98
## <span id =" deep-learning-music-generation " style =" color :#9EB1FF ; font-size :25.0pt " >3. Deep Learning Models for Music Generation</span >
95
99
100
+
101
+ ### <span id =" 2022deep " style =" color :#A8FF9E ; font-size :20.0pt " >2022</span >
102
+
103
+
104
+ #### <span id =" sympony-generation " style =" color :#FF9EC3 ; font-size :15.0pt " >Symphony Generation with Permutation Invariant Language Model</span >
105
+
106
+ Liu, J., Dong, Y., Cheng, Z., Zhang, X., Li, X., Yu, F., & Sun, M. (2022). Symphony Generation with Permutation Invariant Language Model. arXiv preprint arXiv:2205.05448.
107
+
108
+ <img src =" images/Symphony Generation.png " width =" 300 " height =" 120 " >
109
+
110
+ [ Paper] ( http://128.84.4.34/abs/2205.05448 ) [ Code] ( https://github.com/symphonynet/SymphonyNet ) [ Samples] ( https://symphonynet.github.io/ )
111
+
112
+
113
+ #### <span id =" figaro " style =" color :#FF9EC3 ; font-size :15.0pt " >FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control</span >
114
+
115
+ von Rütte, D., Biggio, L., Kilcher, Y., & Hoffman, T. (2022). FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control. arXiv preprint arXiv:2201.10936.
116
+
117
+ <img src =" images/Figaro.png " width =" 100 " height =" 150 " >
118
+
119
+ [ Paper] ( https://arxiv.org/abs/2201.10936 )
120
+
121
+
122
+ #### <span id =" theme-transformer " style =" color :#FF9EC3 ; font-size :15.0pt " >Theme Transfomer</span >
123
+
124
+ Shih, Y. J., Wu, S. L., Zalkow, F., Muller, M., & Yang, Y. H. (2022). Theme Transformer: Symbolic Music Generation with Theme-Conditioned Transformer. IEEE Transactions on Multimedia.
125
+
126
+ <img src =" images/Theme Transformer.png " width =" 300 " height =" 100 " >
127
+
128
+ [ Paper] ( https://arxiv.org/abs/2111.04093 ) [ GitHub] ( https://github.com/atosystem/ThemeTransformer )
129
+
130
+
131
+
96
132
### <span id =" 2021deep " style =" color :#A8FF9E ; font-size :20.0pt " >2021</span >
97
133
98
134
@@ -178,11 +214,6 @@ Wang, Z., Ma, Y., Liu, Z., & Tang, J. (2019). R-transformer: Recurrent neural ne
178
214
[ Paper] ( https://arxiv.org/abs/1907.05572 )
179
215
180
216
181
- #### <span id =" musenet " style =" color :#FF9EC3 ; font-size :15.0pt " >MuseNet - OpenAI</span >
182
-
183
- [ Web] ( https://openai.com/blog/musenet/ )
184
-
185
-
186
217
#### <span id =" maia " style =" color :#FF9EC3 ; font-size :15.0pt " >Maia Music Generator</span >
187
218
188
219
<img src =" images/Maia Music Generator.png " width =" 400 " height =" 200 " >
@@ -357,19 +388,44 @@ Mozer, M. C. (1994). Neural network music composition by prediction: Exploring t
357
388
358
389
### <span id =" reviews-deep " style =" color :#3C8CE8 ; font-size :20.0pt " >Reviews</span >
359
390
391
+ * Hernandez-Olivan, C., & Beltran, J. R. (2021). Music composition with deep learning: A review. arXiv preprint arXiv:2108.12290.
392
+ [ Paper] ( https://arxiv.org/abs/2108.12290 )
393
+
360
394
* Ji, S., Luo, J., & Yang, X. (2020). A Comprehensive Survey on Deep Music Generation: Multi-level Representations, Algorithms, Evaluations, and Future Directions. arXiv preprint arXiv:2011.06801.
361
395
[ Paper] ( https://arxiv.org/abs/2011.06801 )
362
396
363
397
* Briot, J. P., Hadjeres, G., & Pachet, F. D. (2017). Deep learning techniques for music generation--a survey. arXiv preprint arXiv:1709.01620.
364
398
[ Paper] ( https://arxiv.org/abs/1709.01620 )
365
399
366
400
367
- ## <span id =" datasets " style =" color :#9EB1FF ; font-size :25.0pt " >4. Datasets</span >
401
+ ## <span id =" audio " style =" color :#9EB1FF ; font-size :25.0pt " >4. Audio Music Generation</span >
402
+
403
+ ### <span id =" 2020audiodeep " style =" color :#A8FF9E ; font-size :20.0pt " >2020</span >
404
+
405
+ #### <span id =" musenet " style =" color :#FF9EC3 ; font-size :15.0pt " >Jukebox - OpenAI</span >
406
+
407
+ <img src =" images/Jukebox.png " width =" 400 " height =" 150 " >
408
+
409
+ [ Web] ( https://openai.com/blog/jukebox/ ) [ Paper] ( https://arxiv.org/abs/2005.00341 ) [ GitHub] ( https://github.com/openai/jukebox/ )
410
+
411
+ ### <span id =" 2017audiodeep " style =" color :#A8FF9E ; font-size :20.0pt " >2017</span >
412
+
413
+ #### <span id =" musenet " style =" color :#FF9EC3 ; font-size :15.0pt " >MuseNet - OpenAI</span >
414
+
415
+ [ Web] ( https://openai.com/blog/musenet/ )
416
+
417
+ ## <span id =" datasets " style =" color :#9EB1FF ; font-size :25.0pt " >5. Datasets</span >
418
+
419
+ * JSB Chorales Dataset [ Web] ( http://www-ens.iro.umontreal.ca/~boulanni/icml2012 )
420
+
421
+ * Maestro Dataset [ Web] ( https://magenta.tensorflow.org/datasets/maestro )
368
422
369
423
* The Lakh MIDI Dataset v0.1 [ Web] ( https://colinraffel.com/projects/lmd/ ) [ Tutorial IPython] ( https://nbviewer.jupyter.org/github/craffel/midi-dataset/blob/master/Tutorial.ipynb )
370
424
425
+ * MetaMIDI Dataset [ Web] ( https://metacreation.net/metamidi-dataset/ ) [ Zenodo] ( https://zenodo.org/record/5142664 )
371
426
372
- ## <span id =" journals " style =" color :#9EB1FF ; font-size :25.0pt " >5. Journals and Conferences</span >
427
+
428
+ ## <span id =" journals " style =" color :#9EB1FF ; font-size :25.0pt " >6. Journals and Conferences</span >
373
429
374
430
* International Society for Music Information Retrieval (ISMIR) [ Web] ( https://www.ismir.net/ )
375
431
@@ -394,7 +450,7 @@ Mozer, M. C. (1994). Neural network music composition by prediction: Exploring t
394
450
* International Conference on Digital Audio Effects (DAFx) [ Web] ( http://dafx.de/ )
395
451
396
452
397
- ## <span id =" authors " style =" color :#9EB1FF ; font-size :25.0pt " >6 . Authors</span >
453
+ ## <span id =" authors " style =" color :#9EB1FF ; font-size :25.0pt " >7 . Authors</span >
398
454
399
455
* David Cope [ Web] ( http://artsites.ucsc.edu/faculty/cope/ )
400
456
@@ -404,19 +460,29 @@ Mozer, M. C. (1994). Neural network music composition by prediction: Exploring t
404
460
405
461
* Douglas Eck [ Web] ( http://www.iro.umontreal.ca/~eckdoug/ )
406
462
463
+ * Anna Huang [ Web] ( https://mila.quebec/en/person/anna-huang/ )
464
+
407
465
* François Pachet [ Web] ( https://www.francoispachet.fr/ )
408
466
467
+ * Jeff Ens [ Web] ( https://jeffens.com/ )
468
+
469
+ * Philippe Pasquier [ Web] ( https://www.sfu.ca/siat/people/research-faculty/philippe-pasquier.html )
409
470
410
- ## <span id =" labs " style =" color :#9EB1FF ; font-size :25.0pt " >7. Research Groups and Labs</span >
471
+
472
+ ## <span id =" labs " style =" color :#9EB1FF ; font-size :25.0pt " >8. Research Groups and Labs</span >
473
+
474
+ * Google Magenta [ Web] ( https://magenta.tensorflow.org/ )
411
475
412
476
* Audiolabs Erlangen [ Web] ( https://www.audiolabs-erlangen.de/ )
413
477
414
478
* Music Informatics Group [ Web] ( https://musicinformatics.gatech.edu/ )
415
479
416
480
* Music and Artificial Intelligence Lab [ Web] ( https://musicai.citi.sinica.edu.tw/ )
417
481
482
+ * Metacreation Lab [ Web] ( https://metacreation.net/ )
483
+
418
484
419
- ## <span id =" apps " style =" color :#9EB1FF ; font-size :25.0pt " >8 . Apps for Music Generation with AI</span >
485
+ ## <span id =" apps " style =" color :#9EB1FF ; font-size :25.0pt " >9 . Apps for Music Generation with AI</span >
420
486
421
487
* AIVA (paid) [ Web] ( https://www.aiva.ai/ )
422
488
@@ -433,13 +499,8 @@ Mozer, M. C. (1994). Neural network music composition by prediction: Exploring t
433
499
* Brain.fm (paid) [ Web] ( https://www.brain.fm/login?next=/app/player )
434
500
435
501
436
- ## <span id =" other-resources " style =" color :#9EB1FF ; font-size :25.0pt " >9 . Other Resources</span >
502
+ ## <span id =" other-resources " style =" color :#9EB1FF ; font-size :25.0pt " >10 . Other Resources</span >
437
503
438
504
* Bustena (web in spanish to learn harmony theory) [ Web] ( http://www.bustena.com/curso-de-armonia-i/ )
439
505
440
506
441
- ## Author
442
-
443
- [ ** Carlos Hernández-Oliván
** ] ( https://carlosholivan.github.io/index.html ) :
[email protected]
444
-
445
- José Ramón Beltrán Blázquez
0 commit comments