Skip to content

Commit 18cc3c7

Browse files
committed
update 06-2022 papers
1 parent fe45a75 commit 18cc3c7

5 files changed

+88
-27
lines changed

README.md

+88-27
Original file line numberDiff line numberDiff line change
@@ -1,8 +1,7 @@
11
# <span style="color:#9EB1FF; font-size:30.0pt">DEEP LEARNING FOR MUSIC GENERATION</span>
22

3-
This file presents the State of the Art of Music Generation. Most of these references are used in the paper ["Music Composition with Deep Learning: A Review"](#https://arxiv.org/abs/2108.12290).
43

5-
The [authors](#Author) of the paper want to thank Jürgen Schmidhuber for his suggestions.
4+
This repository is maintained by [**Carlos Hernández-Oliván**](https://carlosholivan.github.io/index.html)([email protected]) and it presents the State of the Art of Music Generation. Most of these references (previous to 2022) are included in the review paper ["Music Composition with Deep Learning: A Review"](#https://arxiv.org/abs/2108.12290). The authors of the paper want to thank Jürgen Schmidhuber for his suggestions.
65

76
[![License](https://img.shields.io/badge/license-Apache2.0-green)](./LICENSE)
87

@@ -23,9 +22,10 @@ All the images belong to their corresponding authors.
2322

2423
2. [Neural Network Architectures](#neural-network-architectures)
2524

26-
3. [Deep Learning Models for Music Generation](#deep-learning-music-generation)
25+
3. [Deep Learning Models for Symbolic Music Generation](#deep-learning-music-generation)
2726

28-
- [2021](#2020deep)
27+
- [2022](#2022deep)
28+
- [2021](#2021deep)
2929
- [2020](#2020deep)
3030
- [2019](#2019deep)
3131
- [2018](#2018deep)
@@ -39,20 +39,23 @@ All the images belong to their corresponding authors.
3939
- [Books](#books-deep)
4040
- [Reviews](#reviews-deep)
4141

42+
4. [Deep Learning Models for Audio Music Generation](#deep-learning-music-generation)
4243

43-
4. [Datasets](#datasets)
44+
- [2020](#2020audiodeep)
45+
- [2017](#2017audiodeep)
4446

45-
5. [Journals and Conferences](#journals)
47+
5. [Datasets](#datasets)
4648

47-
6. [Authors](#authors)
49+
6. [Journals and Conferences](#journals)
4850

49-
7. [Research Groups and Labs](#labs)
51+
7. [Authors](#authors)
5052

51-
8. [Apps for Music Generation with AI](#apps)
53+
8. [Research Groups and Labs](#labs)
5254

53-
9. [Other Resources](#other-resources)
55+
10. [Apps for Music Generation with AI](#apps)
56+
57+
11. [Other Resources](#other-resources)
5458

55-
[Author](#author)
5659

5760

5861
## <span id="algorithmic-composition" style="color:#9EB1FF; font-size:25.0pt">2. Algorithmic Composition</span>
@@ -89,10 +92,43 @@ Hild, H., Feulner, J., & Menzel, W. (1992). HARMONET: A neural net for harmonizi
8992
| Variational Auto Encoder (VAE) | 2013 | Diederik P. Kingma, Max Welling | https://arxiv.org/pdf/1312.6114.pdf |
9093
| Generative Adversarial Networks (GAN) | 2014 | Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio | https://arxiv.org/pdf/1406.2661.pdf | |
9194
| Transformer | 2017 | Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz Kaiser, Illia Polosukhin | https://arxiv.org/pdf/1706.03762.pdf | |
95+
| Diffusion Models | 2015 | Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, Surya Ganguli | https://arxiv.org/abs/1503.03585 | |
9296

9397

9498
## <span id="deep-learning-music-generation" style="color:#9EB1FF; font-size:25.0pt">3. Deep Learning Models for Music Generation</span>
9599

100+
101+
### <span id="2022deep" style="color:#A8FF9E; font-size:20.0pt">2022</span>
102+
103+
104+
#### <span id="sympony-generation" style="color:#FF9EC3; font-size:15.0pt">Symphony Generation with Permutation Invariant Language Model</span>
105+
106+
Liu, J., Dong, Y., Cheng, Z., Zhang, X., Li, X., Yu, F., & Sun, M. (2022). Symphony Generation with Permutation Invariant Language Model. arXiv preprint arXiv:2205.05448.
107+
108+
<img src="images/Symphony Generation.png" width="300" height="120">
109+
110+
[Paper](http://128.84.4.34/abs/2205.05448) [Code](https://github.com/symphonynet/SymphonyNet) [Samples](https://symphonynet.github.io/)
111+
112+
113+
#### <span id="figaro" style="color:#FF9EC3; font-size:15.0pt">FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control</span>
114+
115+
von Rütte, D., Biggio, L., Kilcher, Y., & Hoffman, T. (2022). FIGARO: Generating Symbolic Music with Fine-Grained Artistic Control. arXiv preprint arXiv:2201.10936.
116+
117+
<img src="images/Figaro.png" width="100" height="150">
118+
119+
[Paper](https://arxiv.org/abs/2201.10936)
120+
121+
122+
#### <span id="theme-transformer" style="color:#FF9EC3; font-size:15.0pt">Theme Transfomer</span>
123+
124+
Shih, Y. J., Wu, S. L., Zalkow, F., Muller, M., & Yang, Y. H. (2022). Theme Transformer: Symbolic Music Generation with Theme-Conditioned Transformer. IEEE Transactions on Multimedia.
125+
126+
<img src="images/Theme Transformer.png" width="300" height="100">
127+
128+
[Paper](https://arxiv.org/abs/2111.04093) [GitHub](https://github.com/atosystem/ThemeTransformer)
129+
130+
131+
96132
### <span id="2021deep" style="color:#A8FF9E; font-size:20.0pt">2021</span>
97133

98134

@@ -178,11 +214,6 @@ Wang, Z., Ma, Y., Liu, Z., & Tang, J. (2019). R-transformer: Recurrent neural ne
178214
[Paper](https://arxiv.org/abs/1907.05572)
179215

180216

181-
#### <span id="musenet" style="color:#FF9EC3; font-size:15.0pt">MuseNet - OpenAI</span>
182-
183-
[Web](https://openai.com/blog/musenet/)
184-
185-
186217
#### <span id="maia" style="color:#FF9EC3; font-size:15.0pt">Maia Music Generator</span>
187218

188219
<img src="images/Maia Music Generator.png" width="400" height="200">
@@ -357,19 +388,44 @@ Mozer, M. C. (1994). Neural network music composition by prediction: Exploring t
357388

358389
### <span id="reviews-deep" style="color:#3C8CE8; font-size:20.0pt">Reviews</span>
359390

391+
* Hernandez-Olivan, C., & Beltran, J. R. (2021). Music composition with deep learning: A review. arXiv preprint arXiv:2108.12290.
392+
[Paper](https://arxiv.org/abs/2108.12290)
393+
360394
* Ji, S., Luo, J., & Yang, X. (2020). A Comprehensive Survey on Deep Music Generation: Multi-level Representations, Algorithms, Evaluations, and Future Directions. arXiv preprint arXiv:2011.06801.
361395
[Paper](https://arxiv.org/abs/2011.06801)
362396

363397
* Briot, J. P., Hadjeres, G., & Pachet, F. D. (2017). Deep learning techniques for music generation--a survey. arXiv preprint arXiv:1709.01620.
364398
[Paper](https://arxiv.org/abs/1709.01620)
365399

366400

367-
## <span id="datasets" style="color:#9EB1FF; font-size:25.0pt">4. Datasets</span>
401+
## <span id="audio" style="color:#9EB1FF; font-size:25.0pt">4. Audio Music Generation</span>
402+
403+
### <span id="2020audiodeep" style="color:#A8FF9E; font-size:20.0pt">2020</span>
404+
405+
#### <span id="musenet" style="color:#FF9EC3; font-size:15.0pt">Jukebox - OpenAI</span>
406+
407+
<img src="images/Jukebox.png" width="400" height="150">
408+
409+
[Web](https://openai.com/blog/jukebox/) [Paper](https://arxiv.org/abs/2005.00341) [GitHub](https://github.com/openai/jukebox/)
410+
411+
### <span id="2017audiodeep" style="color:#A8FF9E; font-size:20.0pt">2017</span>
412+
413+
#### <span id="musenet" style="color:#FF9EC3; font-size:15.0pt">MuseNet - OpenAI</span>
414+
415+
[Web](https://openai.com/blog/musenet/)
416+
417+
## <span id="datasets" style="color:#9EB1FF; font-size:25.0pt">5. Datasets</span>
418+
419+
* JSB Chorales Dataset [Web](http://www-ens.iro.umontreal.ca/~boulanni/icml2012)
420+
421+
* Maestro Dataset [Web](https://magenta.tensorflow.org/datasets/maestro)
368422

369423
* The Lakh MIDI Dataset v0.1 [Web](https://colinraffel.com/projects/lmd/) [Tutorial IPython](https://nbviewer.jupyter.org/github/craffel/midi-dataset/blob/master/Tutorial.ipynb)
370424

425+
* MetaMIDI Dataset [Web](https://metacreation.net/metamidi-dataset/) [Zenodo](https://zenodo.org/record/5142664)
371426

372-
## <span id="journals" style="color:#9EB1FF; font-size:25.0pt">5. Journals and Conferences</span>
427+
428+
## <span id="journals" style="color:#9EB1FF; font-size:25.0pt">6. Journals and Conferences</span>
373429

374430
* International Society for Music Information Retrieval (ISMIR) [Web](https://www.ismir.net/)
375431

@@ -394,7 +450,7 @@ Mozer, M. C. (1994). Neural network music composition by prediction: Exploring t
394450
* International Conference on Digital Audio Effects (DAFx) [Web](http://dafx.de/)
395451

396452

397-
## <span id="authors" style="color:#9EB1FF; font-size:25.0pt">6. Authors</span>
453+
## <span id="authors" style="color:#9EB1FF; font-size:25.0pt">7. Authors</span>
398454

399455
* David Cope [Web](http://artsites.ucsc.edu/faculty/cope/)
400456

@@ -404,19 +460,29 @@ Mozer, M. C. (1994). Neural network music composition by prediction: Exploring t
404460

405461
* Douglas Eck [Web](http://www.iro.umontreal.ca/~eckdoug/)
406462

463+
* Anna Huang [Web](https://mila.quebec/en/person/anna-huang/)
464+
407465
* François Pachet [Web](https://www.francoispachet.fr/)
408466

467+
* Jeff Ens [Web](https://jeffens.com/)
468+
469+
* Philippe Pasquier [Web](https://www.sfu.ca/siat/people/research-faculty/philippe-pasquier.html)
409470

410-
## <span id="labs" style="color:#9EB1FF; font-size:25.0pt">7. Research Groups and Labs</span>
471+
472+
## <span id="labs" style="color:#9EB1FF; font-size:25.0pt">8. Research Groups and Labs</span>
473+
474+
* Google Magenta [Web](https://magenta.tensorflow.org/)
411475

412476
* Audiolabs Erlangen [Web](https://www.audiolabs-erlangen.de/)
413477

414478
* Music Informatics Group [Web](https://musicinformatics.gatech.edu/)
415479

416480
* Music and Artificial Intelligence Lab [Web](https://musicai.citi.sinica.edu.tw/)
417481

482+
* Metacreation Lab [Web](https://metacreation.net/)
483+
418484

419-
## <span id="apps" style="color:#9EB1FF; font-size:25.0pt">8. Apps for Music Generation with AI</span>
485+
## <span id="apps" style="color:#9EB1FF; font-size:25.0pt">9. Apps for Music Generation with AI</span>
420486

421487
* AIVA (paid) [Web](https://www.aiva.ai/)
422488

@@ -433,13 +499,8 @@ Mozer, M. C. (1994). Neural network music composition by prediction: Exploring t
433499
* Brain.fm (paid) [Web](https://www.brain.fm/login?next=/app/player)
434500

435501

436-
## <span id="other-resources" style="color:#9EB1FF; font-size:25.0pt">9. Other Resources</span>
502+
## <span id="other-resources" style="color:#9EB1FF; font-size:25.0pt">10. Other Resources</span>
437503

438504
* Bustena (web in spanish to learn harmony theory) [Web](http://www.bustena.com/curso-de-armonia-i/)
439505

440506

441-
## Author
442-
443-
[**Carlos Hernández-Oliván**](https://carlosholivan.github.io/index.html): [email protected]
444-
445-
José Ramón Beltrán Blázquez

images/Figaro.png

93.4 KB
Loading

images/Jukebox.png

47.5 KB
Loading

images/Symphony Generation.png

255 KB
Loading

images/Theme Transformer.png

47.6 KB
Loading

0 commit comments

Comments
 (0)