-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgrids.f90
62 lines (53 loc) · 1.93 KB
/
grids.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
!**
!* Provides functions to produce linearly and exponentially spaced grids
!**
module grids
use kinds, only: dp
implicit none
private
public :: build_grid
contains
! **
! * Searches for the root of the function f(x, [p2,p3,p4,p5])-offset_in.
! *
! * Input:
! * - grid_length: the length of the grid to be produces
! * - min: the value of the first (lowest value) point in the grid
! * - max: the value of the last (highest value) point in the grid
! * - expg_in (optional): specifies the order of the exponential spacing of the grid. Default is 0, which
! * corresponds to a linear spacing of the grid (uniform grid). A value of 1 means an exponential grid,
! * a value of 2 corresponds to a double exponential grid, and so on.
! *
! * Return value: the grid
! **
function build_grid(grid_length,min,max,expg_in) result(grid)
integer, intent(in) :: grid_length
real(dp), intent(in) :: min,max
integer, intent(in), optional :: expg_in
integer :: expg,i,e
real(dp), dimension(grid_length) :: grid
real(dp) :: v1,v2,step
if (present(expg_in)) then
expg = expg_in
else
expg = 0
end if
v1 = min
v2 = max
! Loglinearize
do e=1,expg
v1 = log(v1+1)
v2 = log(v2+1)
end do
step = (v2-v1) / (grid_length-1)
do i=2,grid_length
grid(i) = v1 + (i-1)*step
end do
! Exp
do e=1,expg
grid = exp(grid)-1
end do
grid(1) = min
grid(grid_length) = max
end function build_grid
end module