-
Notifications
You must be signed in to change notification settings - Fork 0
/
step_2.m
101 lines (86 loc) · 4.22 KB
/
step_2.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
function exitcode = step_2(count_matrix_no_ext, kmin_opt, kmax_opt)
% This file is part of GPCCA.
%
% Copyright (c) 2018, 2017 Bernhard Reuter
%
% If you use this code or parts of it, cite the following reference:
%
% Reuter, B., Weber, M., Fackeldey, K., Röblitz, S., & Garcia, M. E. (2018). Generalized
% Markov State Modeling Method for Nonequilibrium Biomolecular Dynamics: Exemplified on
% Amyloid β Conformational Dynamics Driven by an Oscillating Electric Field. Journal of
% Chemical Theory and Computation, 14(7), 3579–3594. https://doi.org/10.1021/acs.jctc.8b00079
%
% GPCCA is free software: you can redistribute it and/or modify
% it under the terms of the GNU Lesser General Public License as published
% by the Free Software Foundation, either version 3 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU Lesser General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% -------------------------------------------------------------------------
% main file for clustering of a row-stochastic matrix by GPCCA
% Written by Bernhard Reuter, Theoretical Physics II,
% University of Kassel, 2017
% -------------------------------------------------------------------------
% set precision with miltiprecision toolbox for certain numerics
% uncomment if you want to use multiprecision:
%mp.Digits(50) ;
% uncomment if you want to use multiprecision:
%disp (['number of digits used in multiprecision numerics (mp): ' ...
%int2str(mp.Digits)])
% global variable to define precision to use
global class_t ;
% set precision of variables or expressions wrapped by numeric_t(),
% i.e. 'double' or 'mp' for multipresicion
class_t = 'double' ;
disp (' ')
disp (['precision to use in sensitive numerics ' ...
'(i.e. Eigenvalue and Schur decomposition): ' class_t])
% -------------------------------------------------------------------------
% Parameters for gpcca
%kmin % min cluster number
%kmax % max cluster number
wk.schur = 1 ; % calculate Schurvectors (schur=1)
% or use existing from file (schur=0)
wk.b = 0 ; % if b < 0 then -b blocks will be sorted,
% if b > 0 then b or b+1 eigenvalues will
% be sorted, depending on the sizes of
% the blocks,
% if b = 0 then the whole Schur form will
% be sorted.
wk.init = 1 ; % if 1 use A=inv(EVS(index,:)) as starting
% guess,
% if =0 read A from file.
wk.solver = 'nelder-mead' ; % solver for unconstrained optimization
% problem, either 'nelder-mead',
% 'levenberg-marquardt', 'gauss-newton'
wk.maxiter = -1 ;
wk.parallel = 0 ;
wk.tolx = 1e-8 ;
wk.tolfun = 1e-8 ;
iopt.init = 2 ; % If =1 use A=inv(EVS(index,:)) as starting
% guess,
% if =0 read A from file with identifier
% interactively passed from the command
% window,
% if =2 use the the optimized A matrices
% from the first optimization loop as
% input for the final optimization.
iopt.solver = 'gauss-newton' ; % solver for optional final optimization
iopt.maxiter = 10 ;
iopt.parallel = 0 ;
% -------------------------------------------------------------------------
% read the count matrix from file, calculate the stochastic matrix,
% and call gpcca rotine gpcca.m
% load the count matrix from file
COUNTMATRIX = strcat(count_matrix_no_ext, '.txt')
wk.id = count_matrix_no_ext
% perform optimization
gpcca_step_2(kmin_opt, kmax_opt, wk, iopt) ;
exitcode = 0
end