-
Notifications
You must be signed in to change notification settings - Fork 11
/
nextflow.config-edit
132 lines (114 loc) · 2.92 KB
/
nextflow.config-edit
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
profiles {
docker {
docker.enabled = true
process {
// container = 'quay.io/cellgeni/batchbench:theta'
container = 'quay.io/cellgeni/batchbench:v0.28'
}
}
local {
process.executor = 'local'
executor {
name = 'local'
cpus = 1
memory = 8.GB
}
process {
cpus = 1
memory = 8.GB
queue = 'normal'
errorStrategy = 'ignore'
maxRetries = 4
maxErrors = -1
withLabel: long_running {queue = 'long'}
}
}
}
params{
data_dir="${baseDir}/data/test_data/"
dataset_list="${baseDir}/metadata/dataset_list.txt"
output_dir="${baseDir}/results/test_data_results/"
// object related params
batch_key = 'Batch'
celltype_key = 'cell_type1'
assay_name = "logcounts"
corrected_assay = "corrected"
corrected_emb = "corrected_emb"
QC_rds{
batch_thres = 0 // Minimum proportion of total cells for a batch to be considered.
celltype_thres = 0 // Minimum proportion of total cells for a cell type to be considered
min_genes = 0 // Min number of genes expressed per cell.
min_cells = 0 // Min number of cells for a gene to be expressed in.
}
BBKNN{
run= "True" // must be 'True' or 'False'
n_pcs = 25
n_neighbours = 10
}
scanorama{
run= "True" // must be 'True' or 'False'
}
harmony{
run= "True" // must be 'True' or 'False'
n_pcs = 50
}
Limma{
run= "True" // must be 'True' or 'False'
}
Combat{
run= "True" // must be 'True' or 'False'
}
Seurat_3{
run= "True" // must be 'True' or 'False'
hvg_method = "dispersion"
n_features = 2000
verbose = 'FALSE'
n_anchors = 30
}
mnnCorrect{
run= "True" // must be 'True' or 'False'
k = 30
sigma = 0.1
cos_norm = "TRUE"
svd_dim = 2
}
fastMNN{
run= "True" // must be 'True' or 'False'
k = 30
cos_norm = "TRUE"
n_pcs = 50
}
entropy{
run= "True" // must be 'True' or 'False'
k_num = 30 // number of nearest neighbours per cell to construct the graph
dim_num = 50 // number of dimensions to use for a PCA on the expression matrix prior to the nearest neighbor search
}
clust_SC3{
run= "True" // must be 'True' or 'False'
clust_logcounts = "True" // must be 'True' or 'False'
biology = "False" // wether to calculate biological features based on the identified cell clusters
}
clust_Seurat{
run= "True" // must be 'True' or 'False'
clust_logcounts = "True" // must be 'True' or 'False'
n_pcs = 25 //n of PCs for dim reduction
k_num = 30 // n of NN for graph construction
}
clust_Hierarch{
run= "True" // must be 'True' or 'False'
clust_logcounts = "True" // must be 'True' or 'False'
}
clust_RaceID{
run= "True" // must be 'True' or 'False'
clust_logcounts = "True" // must be 'True' or 'False'
dist_metric = "pearson" //options are: 'spearman', 'pearson', 'logpearson', 'euclidean', 'rho', 'phi', 'kendall'
}
find_markers{
run= "True" // must be 'True' or 'False'
}
UMAP{
run= "True" // must be 'True' or 'False'
n_neighbours = 30
n_pcs = 20
}
}