forked from udacity/pdsnd_github
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbikeshare.py
175 lines (126 loc) · 5.49 KB
/
bikeshare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import time
import pandas as pd
import numpy as np
import json
CITY_DATA = { 'chicago': 'chicago.csv',
'new york city': 'new_york_city.csv',
'washington': 'washington.csv' }
def get_filters():
"""
Asks user to specify a city, month, and day to analyze.
Returns:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
"""
print('Hello! Let\'s explore some US bikeshare data!')
# TO DO: get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
city = input("Enter city name: ")
city = city.lower()
# TO DO: get user input for month (all, january, february, ... , june)
month = input("Enter month: ")
# TO DO: get user input for day of week (all, monday, tuesday, ... sunday)
day = input("Enter day of week: ")
print('-'*40)
return city, month, day
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
Returns:
df - Pandas DataFrame containing city data filtered by month and day
"""
df = pd.read_csv(CITY_DATA[city])
df['Start Time'] = pd.to_datetime(df['Start Time'])
df['month'] = df['Start Time'].dt.month
df['day_of_week'] = df['Start Time'].dt.weekday_name
if month != 'all':
months = ['January','February','March', 'April', 'May', 'June', 'July', 'August', 'September', 'October', 'November', 'December']
month = month.title()
month = months.index(month)+1
df = df[df['month'] == month]
if day!= 'all':
day = day.title()
df = df[df['day_of_week'] == day]
return df
def time_stats(df):
"""Displays statistics on the most frequent times of travel."""
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
# TO DO: display the most common month
print("Most common month: ",df['month'].mode()[0])
# TO DO: display the most common day of week
print("Most common day of week: ", df['day_of_week'].mode()[0])
# TO DO: display the most common start hour
df['hour'] = df['Start Time'].dt.hour
print("Most common start hour: ",df['hour'].mode()[0])
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def station_stats(df):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating The Most Popular Stations and Trip...\n')
start_time = time.time()
# TO DO: display most commonly used start station
print("Most popular start station: ",df['Start Station'].mode()[0])
# TO DO: display most commonly used end station
print("Most popular end station: ",df['End Station'].mode()[0])
# TO DO: display most frequent combination of start station and end station trip
print("Most frequent combination of start and end stations:")
print(df[['Start Station','End Station']].mode())
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def trip_duration_stats(df):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating Trip Duration...\n')
start_time = time.time()
# TO DO: display total travel time
print("Total trip duration: ",df['Trip Duration'].sum())
# TO DO: display mean travel time
print("Mean travel time: ",df['Trip Duration'].mean())
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def user_stats(df):
"""Displays statistics on bikeshare users."""
print('\nCalculating User Stats...\n')
start_time = time.time()
# TO DO: Display counts of user types
print("User type counts: ")
print(df['User Type'].value_counts())
# TO DO: Display counts of gender
print("Gender count:")
print(df['Gender'].value_counts())
# TO DO: Display earliest, most recent, and most common year of birth
print("Earliest birth year: ",df['Birth Year'].min())
print("Most recent birth year: ",df["Birth Year"].max())
print("Common birth year: ",df["Birth Year"].mode()[0])
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def main():
while True:
city, month, day = get_filters()
#Call the load_data() functions
df = load_data(city, month, day)
time_stats(df)
station_stats(df)
trip_duration_stats(df)
user_stats(df)
start_row = 0
#Loop runs until user wants to see individual data. Loop stops once user enters no.
while True:
x = input("Would you like to see individual data?\nEnter y if yes, else enter n:")
if x == 'n' or x == 'N':
break
elif x == 'y' or x =='Y':
li = list(range(start_row,start_row+5))
z = json.loads(df.iloc[li].to_json())
print("Individual Data:")
print(json.dumps(z,indent = 2))
start_row += 5
restart = input('\nWould you like to restart? Enter yes or no.\n')
if restart.lower() != 'yes':
break
if __name__ == "__main__":
main()