Skip to content

Latest commit

 

History

History
38 lines (30 loc) · 2.79 KB

File metadata and controls

38 lines (30 loc) · 2.79 KB

Artificial Intelligence (CS303)

The course

About

  • Instructor: Ke Tang (唐珂)
  • TA: Yao Zhao (赵耀)
  • Semester: 2024 Fall
  • Textbook: Artificial Intelligence: A Modern Approach

Content

Week Theory Lab Content
#1 Intro & Search Algorithm Lab1 & Practice1 Numpy tutorial
#2 Simulated Annealing & Evolutionary Algorithm Practice2 A* Search
#3 Alpha-Beta Search Project1 tutorial Heuristic Search
#4 Machine Learning Intro Practice3 Simulated Annealing
#5 Supervised Learning Practice4 CSP
#6 Performance Evaluation Practice5 Adversairal Search
#7 Unsupervised Learning Lab6 & Practice6 Credit Card Fraud Detection
#8 Recommender System Practice7 SVM
#9 Automated Machine Learning Lab9 & Practice8 Quiz
#10 Logic Agents Lab10 & Practice9 K-Means
#11 Logic Agents cont. Practice10 LLE vesus PCA
#12 First-Order Logic Practice11 Matrix Factorization
#13 First-Order Logic cont. Project3 tutorial KGRS
#14 Representing and Inference with Uncertainty Review
#15 Knowledge graph Review

Project

Three subprojects in total, evaluated by OJ, which are basically

  • Project 1 solves NP search problems
  • Project 2 introduces machine learning in practice, i.e., model training and tuning
  • Project 3 tunes parameters for nerual networks