Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as:
a binary tree in which the left and right subtrees of every node differ in height by no more than 1.
Example 1:
Given the following tree [3,9,20,null,null,15,7]
:
3
/ \
9 20
/ \
15 7
Return true.
Example 2:
Given the following tree [1,2,2,3,3,null,null,4,4]
:
1
/ \
2 2
/ \
3 3
/ \
4 4
这道题要求判断一个二叉树是否为平衡二叉树。平衡二叉树的定义为:任意一个节点的两棵子树深度差不超过1。我首先写一个求深度的函数,然后用递归来判断:如果当前节点符合条件,就判断它的左节点和右节点是否符合条件。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, val=0, left=None, right=None):
# self.val = val
# self.left = left
# self.right = right
class Solution:
def isBalanced(self, root: TreeNode) -> bool:
if not root:
return True
if self.depth(root.left) - self.depth(root.right) > 1 or self.depth(root.right) - self.depth(root.left) > 1:
return False
else:
return self.isBalanced(root.left) and self.isBalanced(root.right)
def depth(self, root: TreeNode) -> int:
if not root:
return 0
else:
return (1 + max(self.depth(root.left),self.depth(root.right)))
我的方法速度较慢,查看别人更快的方法。更快的方法是在求深度的那个函数中就作判断:如果两棵子树深度相差超过1,那么该函数直接返回-1,就不用继续往下求了。
# Definition for a binary tree node.
# class TreeNode:
# def __init__(self, x):
# self.val = x
# self.left = None
# self.right = None
class Solution:
def isBalanced(self, root: TreeNode) -> bool:
if not root: return True
def getDepth(root):
if not root:
return 0
ld = 0
rd = 0
ld = getDepth(root.left)
rd = getDepth(root.right)
if (ld==-1 or rd==-1):
return -1
if abs(ld - rd) > 1:
return -1
return max(ld+1, rd+1)
l = getDepth(root.left)
r = getDepth(root.right)
if l==-1 or r==-1 or (abs(l-r)>1):
return False
return True