-
Notifications
You must be signed in to change notification settings - Fork 125
/
Copy pathcombine.py
44 lines (34 loc) · 1.86 KB
/
combine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
"""Combine testing results of the three models to get final accuracy."""
import argparse
import numpy as np
def main():
parser = argparse.ArgumentParser(description="combine predictions")
parser.add_argument('--iframe', type=str, required=True,
help='iframe score file.')
parser.add_argument('--mv', type=str, required=True,
help='motion vector score file.')
parser.add_argument('--res', type=str, required=True,
help='residual score file.')
parser.add_argument('--wi', type=float, default=2.0,
help='iframe weight.')
parser.add_argument('--wm', type=float, default=1.0,
help='motion vector weight.')
parser.add_argument('--wr', type=float, default=1.0,
help='residual weight.')
args = parser.parse_args()
with np.load(args.iframe) as iframe:
with np.load(args.mv) as mv:
with np.load(args.res) as residual:
n = len(mv['names'])
i_score = np.array([score[0][0] for score in iframe['scores']])
mv_score = np.array([score[0][0] for score in mv['scores']])
res_score = np.array([score[0][0] for score in residual['scores']])
i_label = np.array([score[1] for score in iframe['scores']])
mv_label = np.array([score[1] for score in mv['scores']])
res_label = np.array([score[1] for score in residual['scores']])
assert np.alltrue(i_label == mv_label) and np.alltrue(i_label == res_label)
combined_score = i_score * args.wi + mv_score * args.wm + res_score * args.wr
accuracy = float(sum(np.argmax(combined_score, axis=1) == i_label)) / n
print('Accuracy: %f (%d).' % (accuracy, n))
if __name__ == '__main__':
main()