-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathapp.py
34 lines (27 loc) · 1004 Bytes
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import numpy as np
import pandas as pd
from flask import Flask, request, render_template
from sklearn import preprocessing
import pickle
app = Flask(__name__)
model = pickle.load(open('model.pkl', 'rb'))
cols=['age','workclass','education','marital-status','occupation','relationship','race','gender','capital-gain','capital-loss',
'hours-per-week','native-country']
@app.route('/')
def home():
return render_template('index.html')
@app.route('/predict',methods=['POST'])
def predict():
feature_list = request.form.to_dict()
feature_list = list(feature_list.values())
feature_list = list(map(int, feature_list))
final_features = np.array(feature_list).reshape(1, 12)
prediction = model.predict(final_features)
output = int(prediction[0])
if output == 1:
text = ">50K"
else:
text = "<=50K"
return render_template('index.html', prediction_text='Employee Income is {}'.format(text))
if __name__ == "__main__":
app.run(debug=True)