-
Notifications
You must be signed in to change notification settings - Fork 42
/
Copy pathConvLSTM.py
273 lines (223 loc) · 10.7 KB
/
ConvLSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
#!/usr/bin/evn python
# -*- coding: utf-8 -*-
# Copyright (c) 2017 - zihao.chen <[email protected]>
'''
Author: zihao.chen
Create Date: 2018-04-20
Modify Date: 2018-04-20
descirption: ""
'''
import torch.nn as nn
from torch.autograd import Variable
import torch
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv') != -1:
m.weight.data.normal_(0.0, 0.02)
elif classname.find('BatchNorm') != -1:
m.weight.data.normal_(1.0, 0.02)
m.bias.data.fill_(0)
class CLSTM_cell(nn.Module):
"""Initialize a basic Conv LSTM cell.
Args:
shape: int tuple thats the height and width of the hidden states h and c()
filter_size: int that is the height and width of the filters
num_features: int thats the num of channels of the states, like hidden_size
"""
def __init__(self, shape, input_chans, filter_size, num_features):
super(CLSTM_cell, self).__init__()
self.shape = shape # H,W
self.input_chans = input_chans
self.filter_size = filter_size
self.num_features = num_features
self.dropout = nn.Dropout(p=0.5)
# self.batch_size=batch_size
self.padding = (filter_size - 1) / 2 # in this way the output has the same size
self.conv = nn.Conv2d(self.input_chans + self.num_features, 4 * self.num_features, self.filter_size, 1,
self.padding)
def forward(self, input, hidden_state):
# print type(hidden_state)
hidden, c = hidden_state # hidden and c are images with several channels
# print 'hidden ',hidden.size()
# print 'input ',input.size()
combined = torch.cat((input, hidden), 1) # oncatenate in the channels
# print 'combined',combined.size()
# print type(combined.data)
A = self.conv(combined)
(ai, af, ao, ag) = torch.split(A, self.num_features, dim=1) # it should return 4 tensors
i = torch.sigmoid(ai)
i = self.dropout(i)
f = torch.sigmoid(af)
f = self.dropout(f)
o = torch.sigmoid(ao)
o = self.dropout(o)
g = torch.tanh(ag)
g = self.dropout(g)
next_c = f * c + i * g
next_h = o * torch.tanh(next_c)
next_h = self.dropout(next_h)
return next_h, (next_h,next_c)
def init_hidden(self, batch_size):
return (Variable(torch.zeros(batch_size, self.num_features, self.shape[0], self.shape[1])).cuda(),
Variable(torch.zeros(batch_size, self.num_features, self.shape[0], self.shape[1])).cuda())
class CLSTM_all_cell(nn.Module):
"""Initialize a basic Conv LSTM cell.
Args:
shape: int tuple thats the height and width of the hidden states h and c()
filter_size: int that is the height and width of the filters
num_features: int thats the num of channels of the states, like hidden_size
"""
def __init__(self, shape, input_chans, filter_size, num_features):
super(CLSTM_all_cell, self).__init__()
self.shape = shape # H,W
self.input_channels = input_chans
self.kernel_size = filter_size
self.hidden_channels = num_features
self.dropout = nn.Dropout(p=0.5)
# self.batch_size=batch_size
self.padding = (filter_size - 1) / 2 # in this way the output has the same size
self.Wxi = nn.Conv2d(self.input_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=True)
self.Whi = nn.Conv2d(self.hidden_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=False)
self.Wxf = nn.Conv2d(self.input_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=True)
self.Whf = nn.Conv2d(self.hidden_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=False)
self.Wxc = nn.Conv2d(self.input_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=True)
self.Whc = nn.Conv2d(self.hidden_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=False)
self.Wxo = nn.Conv2d(self.input_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=True)
self.Who = nn.Conv2d(self.hidden_channels, self.hidden_channels, self.kernel_size, 1, self.padding, bias=False)
self.Wci = None
self.Wcf = None
self.Wco = None
def forward(self, input, hidden_state):
hidden, c = hidden_state # hidden and c are images with several channels
ci = torch.sigmoid(self.Wxi(input) + self.Whi(hidden) + c * self.Wci)
cf = torch.sigmoid(self.Wxf(input) + self.Whf(hidden) + c * self.Wcf)
co = torch.sigmoid(self.Wxo(input) + self.Who(hidden) + c * self.Wco)
new_c = cf * c + ci * torch.tanh(self.Wxc(input) + self.Whc(hidden))
# co = torch.sigmoid(self.Wxo(input) + self.Who(hidden) + new_c * self.Wco)
new_h = co * torch.tanh(new_c)
# combined = torch.cat((input, hidden), 1) # oncatenate in the channels
# A = self.conv(combined)
# (ai, af, ao, ag) = torch.split(A, self.num_features, dim=1) # it should return 4 tensors
# i = torch.sigmoid(ai)
# i = self.dropout(i)
# f = torch.sigmoid(af)
# f = self.dropout(f)
# o = torch.sigmoid(ao)
# o = self.dropout(o)
# g = torch.tanh(ag)
# g = self.dropout(g)
#
# next_c = f * c + i * g
# next_h = o * torch.tanh(next_c)
# next_h = self.dropout(next_h)
return new_h, (new_h,new_c)
def init_hidden(self, batch_size):
self.Wci = Variable(torch.zeros(1, self.hidden_channels, self.shape[0], self.shape[1])).cuda()
self.Wcf = Variable(torch.zeros(1, self.hidden_channels, self.shape[0], self.shape[1])).cuda()
self.Wco = Variable(torch.zeros(1, self.hidden_channels, self.shape[0], self.shape[1])).cuda()
return (Variable(torch.zeros(batch_size, self.hidden_channels, self.shape[0], self.shape[1])).cuda(),
Variable(torch.zeros(batch_size, self.hidden_channels, self.shape[0], self.shape[1])).cuda())
class MultiConvRNNCell(nn.Module):
def __init__(self,cells,state_is_tuple=True):
super(MultiConvRNNCell, self).__init__()
self._cells = cells
self._state_is_tuple = state_is_tuple
def init_hidden(self, batch_size):
init_states = [] # this is a list of tuples
for i in xrange(len(self._cells)):
init_states.append(self._cells[i].init_hidden(batch_size))
return init_states
def forward(self, input, hidden_state):
cur_inp = input
new_states = []
for i, cell in enumerate(self._cells):
cur_state = hidden_state[i]
# print 'cur_inp size :', cur_inp.size()
# print 'cur_state size :', cur_state[0].size()
# print type(cur_inp.data),type(cur_state[0].data)
cur_inp, new_state = cell(cur_inp, cur_state)
# print 'cur_inp size :',cur_inp.size()
# print 'cur_state size :', cur_state[0].size()
new_states.append(new_state)
new_states = tuple(new_states)
return cur_inp,new_states
class CLSTM(nn.Module):
"""Initialize a basic Conv LSTM cell.
Args:
shape: int tuple thats the height and width of the hidden states h and c()
filter_size: int that is the height and width of the filters
num_features: int thats the num of channels of the states, like hidden_size
"""
def __init__(self, shape, input_chans, filter_size, num_features, num_layers):
super(CLSTM, self).__init__()
self.shape = shape # H,W
self.input_chans = input_chans
self.filter_size = filter_size
self.num_features = num_features
self.num_layers = num_layers
cell_list = []
cell_list.append(
CLSTM_cell(self.shape, self.input_chans, self.filter_size, self.num_features).cuda()) # the first
# one has a different number of input channels
for idcell in xrange(1, self.num_layers):
cell_list.append(CLSTM_cell(self.shape, self.num_features, self.filter_size, self.num_features).cuda())
self.cell_list = nn.ModuleList(cell_list)
def forward(self, input, hidden_state):
"""
args:
hidden_state:list of tuples, one for every layer, each tuple should be hidden_layer_i,c_layer_i
input is the tensor of shape seq_len,Batch,Chans,H,W
"""
# current_input = input.transpose(0, 1) # now is seq_len,B,C,H,W
current_input=input
next_hidden = [] # hidden states(h and c)
seq_len = current_input.size(0)
for idlayer in xrange(self.num_layers): # loop for every layer
hidden_c = hidden_state[idlayer] # hidden and c are images with several channels
all_output = []
output_inner = []
for t in xrange(seq_len): # loop for every step
hidden_c = self.cell_list[idlayer](current_input[t, ...],
hidden_c) # cell_list is a list with different conv_lstms 1 for every layer
output_inner.append(hidden_c[0])
next_hidden.append(hidden_c)
print output_inner[0].size()
current_input = torch.cat(output_inner, 0).view(current_input.size(0),
*output_inner[0].size()) # seq_len,B,chans,H,W
print current_input.size()
return next_hidden, current_input
def init_hidden(self, batch_size):
init_states = [] # this is a list of tuples
for i in xrange(self.num_layers):
init_states.append(self.cell_list[i].init_hidden(batch_size))
return init_states
if __name__ == '__main__':
###########Usage#######################################
num_features = 64
filter_size = 5
batch_size = 8
shape = (120, 120) # H,W
inp_chans = 3
nlayers = 2
seq_len = 10
# If using this format, then we need to transpose in CLSTM
input = Variable(torch.rand( seq_len,batch_size, inp_chans, shape[0], shape[1])).cuda()
conv_lstm = CLSTM(shape, inp_chans, filter_size, num_features, nlayers)
conv_lstm.apply(weights_init)
conv_lstm.cuda()
print 'convlstm module:', conv_lstm
print 'params:'
params = conv_lstm.parameters()
for p in params:
print 'param ', p.size()
print 'mean ', torch.mean(p)
hidden_state = conv_lstm.init_hidden(batch_size)
print 'hidden_h shape ', len(hidden_state)
print 'hidden_h shape ', hidden_state[0][0].size()
out = conv_lstm(input, hidden_state)
print 'out shape', out[1].size()
print 'len hidden ', len(out[0])
print 'next hidden', out[0][0][0].size()
print 'convlstm dict', conv_lstm.state_dict().keys()
# L = torch.sum(out[1])
# L.backward()