forked from theblackcat102/edgedict
-
Notifications
You must be signed in to change notification settings - Fork 2
/
models.py
282 lines (252 loc) · 11.4 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
import copy
import numpy as np
import torch
from torch import nn, autograd
import torch.nn.functional as F
from torch.nn.utils.rnn import pad_sequence, pack_padded_sequence, pad_packed_sequence
from recurrent import ResidualRNNModel
from tokenizer import BOS
def fast_tanh(x):
return x / (1 + x.abs())
class RNNModel(nn.Module):
def __init__(self, input_size, vocab_size, hidden_size, num_layers, dropout=.2, blank=0, bidirectional=False):
super(RNNModel, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.vocab_size = vocab_size
self.blank = blank
# normalize spectrum feature
self.spectrum_norm = nn.BatchNorm1d(input_size)
# lstm hidden vector: (h_0, c_0) num_layers * num_directions, batch, hidden_size
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, dropout=dropout, bidirectional=bidirectional)
if bidirectional: hidden_size *= 2
self.linear = nn.Linear(hidden_size, vocab_size)
def forward(self, xs, hid=None):
xs = xs.permute(0, 2, 1)
xs = self.spectrum_norm(xs)
xs = xs.permute(0, 2, 1)
h, hid = self.lstm(xs, hid)
return self.linear(h), hid
def greedy_decode(self, xs):
xs = self(xs)[0][0] # only one sequence
xs = F.log_softmax(xs, dim=1)
logp, pred = torch.max(xs, dim=1)
return pred.data.cpu().numpy(), -float(logp.sum())
def beam_search(self, xs, W):
''' CTC '''
xs = self(xs)[0][0] # only one sequence
logp = F.log_softmax(xs, dim=1)
return ctc_beam(logp.data.cpu().numpy(), W)
class Transducer(nn.Module):
def __init__(self, input_size, vocab_size, vocab_embed_size, hidden_size, num_layers, pred_hidden_size=-1, pred_num_layers=1,dropout=.2, blank=0, bidirectional=False):
super(Transducer, self).__init__()
self.blank = blank
self.vocab_size = vocab_size
self.hidden_size = hidden_size
self.num_layers = num_layers
if pred_hidden_size == -1:
pred_hidden_size = hidden_size
# NOTE encoder & decoder only use lstm
self.encoder = ResidualRNNModel(input_size, hidden_size, hidden_size, num_layers, dropout, bidirectional=False)
self.embed = nn.Embedding(vocab_size, vocab_embed_size, padding_idx=1)
# self.embed.weight.data[1:] = torch.eye(vocab_embed_size)
# self.embed.weight.requires_grad = False
# self.decoder = RNNModel(vocab_embed_size, vocab_size, hidden_size, 1, dropout)
self.decoder = nn.LSTM(vocab_embed_size, pred_hidden_size, pred_num_layers, batch_first=True, dropout=dropout)
self.fc1 = nn.Linear(hidden_size+pred_hidden_size, hidden_size)
self.fc2 = nn.Linear(hidden_size, vocab_size)
def joint(self, f, g):
''' `f`: encoder lstm output (B,T,U,2H)
`g`: decoder lstm output (B,T,U,H)
NOTE f and g must have the same size except the last dim'''
out = torch.cat((f, g), dim=-1)
out = fast_tanh(self.fc1(out))
return self.fc2(out)
def forward(self, i_xs, ys, xlen, ylen):
xs, _ = self.encoder(i_xs)
# concat first zero
bos = ys.new_ones((ys.shape[0], 1)).long() * BOS
h_pre = torch.cat([bos, ys.long()], dim=-1)
ymat, _ = self.decoder(self.embed(h_pre))
xs = xs.unsqueeze(dim=2)
ymat = ymat.unsqueeze(dim=1)
# expand
sz = [max(i, j) for i, j in zip(xs.size()[:-1], ymat.size()[:-1])]
xs = xs.expand(torch.Size(sz+[xs.shape[-1]])); ymat = ymat.expand(torch.Size(sz+[ymat.shape[-1]]))
out = self.joint(xs, ymat)
# loss = self.loss(out, ys.int(), xlen, ylen)
return out
def greedy_decode(self, xs, xlen):
# encoder
h_enc, _ = self.encoder(xs)
# initialize decoder
bos = xs.new_ones(xs.shape[0], 1).long() * BOS
h_pre, (h, c) = self.decoder(self.embed(bos)) # decode first zero
y_seq = []
log_p = []
# greedy
for i in range(h_enc.shape[1]):
# joint
logits = self.joint(h_enc[:, i], h_pre[:, 0])
probs = F.log_softmax(logits, dim=1)
prob, pred = torch.max(probs, dim=1)
y_seq.append(pred)
log_p.append(prob)
embed_pred = self.embed(pred.unsqueeze(1))
new_h_pre, (new_h, new_c) = self.decoder(embed_pred, (h, c))
# replace non blank entities with new state
h_pre[pred != self.blank, ...] = new_h_pre[pred != self.blank, ...]
h[:, pred != self.blank, :] = new_h[:, pred != self.blank, :]
c[:, pred != self.blank, :] = new_c[:, pred != self.blank, :]
y_seq = torch.stack(y_seq, dim=1)
log_p = torch.stack(log_p, dim=1).sum(dim=1)
ret_y = []
# truncat to xlen and remove blank token
for seq, seq_len in zip(y_seq, xlen):
seq = seq.cpu().numpy()[:seq_len]
ret_y.append(list(filter(lambda tok: tok != self.blank, seq)))
return ret_y, -log_p
def beam_search(self, xs, W=10, prefix=False, bos_idx=1):
'''''
`xs`: acoustic model outputs
NOTE only support one sequence (batch size = 1)
'''''
use_gpu = xs.is_cuda
def forward_step(label, hidden):
''' `label`: int '''
label = autograd.Variable(torch.LongTensor([label]), volatile=True).view(1,1)
if use_gpu: label = label.cuda()
label = self.embed(label)
pred, hidden = self.decoder(label, hidden)
return pred[0][0], hidden
def isprefix(a, b):
# a is the prefix of b
if a == b or len(a) >= len(b): return False
for i in range(len(a)):
if a[i] != b[i]: return False
return True
xs = self.encoder(xs)[0][0]
B = [Sequence(blank=self.blank)]
for i, x in enumerate(xs):
sorted(B, key=lambda a: len(a.k), reverse=True) # larger sequence first add
A = B
B = []
if prefix:
# for y in A:
# y.logp = log_aplusb(y.logp, prefixsum(y, A, x))
for j in range(len(A)-1):
for i in range(j+1, len(A)):
if not isprefix(A[i].k, A[j].k): continue
# A[i] -> A[j]
pred, _ = forward_step(A[i].k[-1], A[i].h)
idx = len(A[i].k)
ytu = self.joint(x, pred)
logp = F.log_softmax(ytu, dim=0)
curlogp = A[i].logp + float(logp[A[j].k[idx]])
for k in range(idx, len(A[j].k)-1):
ytu = self.joint(x, A[j].g[k])
logp = F.log_softmax(ytu, dim=0)
curlogp += float(logp[A[j].k[k+1]])
A[j].logp = log_aplusb(A[j].logp, curlogp)
while True:
y_hat = max(A, key=lambda a: a.logp)
# y* = most probable in A
A.remove(y_hat)
# calculate P(k|y_hat, t)
# get last label and hidden state
pred, hidden = forward_step(y_hat.k[-1], y_hat.h)
ytu = self.joint(x, pred)
logp = F.log_softmax(ytu, dim=0) # log probability for each k
# TODO only use topk vocab
for k in range(self.vocab_size):
yk = Sequence(y_hat)
yk.logp += float(logp[k])
if k == self.blank:
B.append(yk) # next move
continue
# store prediction distribution and last hidden state
# yk.h.append(hidden); yk.k.append(k)
yk.h = hidden; yk.k.append(k);
if prefix: yk.g.append(pred)
A.append(yk)
# sort A
# sorted(A, key=lambda a: a.logp, reverse=True) # just need to calculate maximum seq
# sort B
# sorted(B, key=lambda a: a.logp, reverse=True)
y_hat = max(A, key=lambda a: a.logp)
yb = max(B, key=lambda a: a.logp)
if len(B) >= W and yb.logp >= y_hat.logp: break
# beam width
sorted(B, key=lambda a: a.logp, reverse=True)
B = B[:W]
# return highest probability sequence
# print(B[0])
return B[0].k, -B[0].logp
import math
def log_aplusb(a, b):
return max(a, b) + math.log1p(math.exp(-math.fabs(a-b)))
class Sequence():
def __init__(self, seq=None, blank=0):
if seq is None:
self.g = [] # predictions of phoneme language model
self.k = [1] # prediction phoneme label
# self.h = [None] # input hidden vector to phoneme model
self.h = None
self.logp = 0 # probability of this sequence, in log scale
else:
self.g = seq.g[:] # save for prefixsum
self.k = seq.k[:]
self.h = seq.h
self.logp = seq.logp
class LMModel(nn.Module):
def __init__(self, ntoken, ninp, nhid, nlayers, dropout=0.5, tie_weights=False):
super(LMModel, self).__init__()
self.ntoken = ntoken
self.drop = nn.Dropout(dropout)
self.encoder = nn.Embedding(ntoken, ninp)
self.rnn = nn.LSTM(ninp, nhid, nlayers, dropout=dropout, batch_first=True)
self.decoder = nn.Linear(nhid, ntoken)
if tie_weights:
if nhid != ninp:
raise ValueError('When using the tied flag, nhid must be equal to emsize')
self.decoder.weight = self.encoder.weight
self.init_weights()
self.nhid = nhid
self.rnn_type = 'LSTM'
self.nlayers = nlayers
def init_weights(self):
initrange = 0.1
nn.init.uniform_(self.encoder.weight, -initrange, initrange)
nn.init.zeros_(self.decoder.weight)
nn.init.uniform_(self.decoder.weight, -initrange, initrange)
def forward(self, input, hidden):
emb = self.drop(self.encoder(input))
output, hidden = self.rnn(emb, hidden)
output = self.drop(output)
decoded = self.decoder(output)
decoded = decoded.view(-1, self.ntoken)
return F.log_softmax(decoded, dim=-1), hidden
def init_hidden(self, bsz):
weight = next(self.parameters())
if self.rnn_type == 'LSTM':
return (weight.new_zeros(self.nlayers, bsz, self.nhid),
weight.new_zeros(self.nlayers, bsz, self.nhid))
else:
return weight.new_zeros(self.nlayers, bsz, self.nhid)
if __name__ == "__main__":
import torch
from torch.autograd import Variable
import numpy as np
# model = Transducer(128,3600,8 ,64, 4).cuda()
# x = torch.randn((32, 128, 128)).float().cuda()
# y = torch.randint(0, 3500, (32, 10)).long().cuda()
# xlen = torch.from_numpy(np.array([128]*32)).int()
# ylen = torch.from_numpy(np.array([10]*32)).int()
# x = pad_sequence(x, batch_first=True)
# x = pack_padded_sequence(x, lengths=xlen, batch_first=True)
# loss = model(x, y, xlen, ylen)
# loss.backward()
# print(loss)
model = LMModel(1024, 64, 256, 3, dropout=0.2, tie_weights=False)
checkpoint = torch.load('lm_model.pt',map_location=torch.device('cpu'))
model.load_state_dict(checkpoint)