forked from theblackcat102/edgedict
-
Notifications
You must be signed in to change notification settings - Fork 2
/
youtube_live.py
155 lines (123 loc) · 4.67 KB
/
youtube_live.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import subprocess
from datetime import datetime
import av
import torch
import torchaudio
from absl import app, flags
from rnnt.args import FLAGS
from rnnt.stream import PytorchStreamDecoder, OpenVINOStreamDecoder
av.logging.set_level(av.logging.ERROR)
# PytorchStreamDecoder
flags.DEFINE_string('model_name', "last.pt", help='steps of checkpoint')
flags.DEFINE_integer('step_n_frame', 2, help='input frame(stacked)')
flags.DEFINE_enum('stream_decoder', 'openvino', ['torch', 'openvino'],
help='stream decoder implementation')
flags.DEFINE_string('url', 'https://www.youtube.com/watch?v=2EppLNonncc',
help='youtube live link')
flags.DEFINE_integer('reset_step', 500, help='reset hidden state')
flags.DEFINE_string('path', None, help='path to .wav')
def stream_decode(stream_decoder, waveform, verbose=0):
win_size = (
FLAGS.win_length +
FLAGS.hop_length * (FLAGS.downsample * FLAGS.step_n_frame - 1))
hop_size = (
FLAGS.hop_length * (FLAGS.downsample * FLAGS.step_n_frame))
pred_seq = ""
total_frames = FLAGS.win_length
stream_decoder.reset()
for start in range(0, waveform.shape[1] - win_size, hop_size):
total_frames += hop_size
seq = stream_decoder.decode(waveform[:, start: start + win_size])
if verbose > 0:
print(seq, end='', flush=True)
pred_seq += seq
return pred_seq, total_frames
def wav():
waveform, sr = torchaudio.load(FLAGS.path, normalization=True)
if sr != 16000:
resample = torchaudio.transforms.Resample(orig_freq=sr, new_freq=16000)
waveform = resample(waveform)
sr = 16000
stream_decoder = PytorchStreamDecoder(FLAGS)
print("Pytorch: ")
seq = stream_decoder.decode(waveform[:1])
print(seq)
stream_decoder = OpenVINOStreamDecoder(FLAGS)
print("OpenVINO: ")
seq, _ = stream_decode(stream_decoder, waveform[:1])
print(seq)
print(seq)
def live():
'''
youtube-dl
pip install av
'''
filepath = './youtube_live.mp3'
save_strean = True
infinite = True
duration = 50 # seconds
command = ['youtube-dl', '-f', '91', '-g', FLAGS.url]
proc = subprocess.Popen(command, stdout=subprocess.PIPE, bufsize=10**8)
out, err = proc.communicate()
videolink = out.decode("utf-8").strip()
resampler = av.AudioResampler("s16p", layout=1, rate=16 * 1000)
if not infinite and save_strean:
output_container = av.open(filepath, 'w')
output_stream = output_container.add_stream('mp3')
input_container = av.open(videolink)
input_stream = input_container.streams.get(audio=0)[0]
win_size = (
FLAGS.win_length +
FLAGS.hop_length * (FLAGS.downsample * FLAGS.step_n_frame - 1))
hop_size = (
FLAGS.hop_length * (FLAGS.downsample * FLAGS.step_n_frame))
if FLAGS.stream_decoder == 'torch':
stream_decoder = PytorchStreamDecoder(FLAGS)
else:
stream_decoder = OpenVINOStreamDecoder(FLAGS)
# track_counter = 0
begin_time = datetime.now()
buffer = torch.empty(1, 0)
blank_counter = 0
for frame in input_container.decode(input_stream):
frame.pts = None
resample_frame = resampler.resample(frame)
waveform = resample_frame.to_ndarray()
waveform = torch.tensor(waveform.copy())
waveform = waveform.float() / 32768
if torch.isnan(waveform).any():
print("[NAN]", flush=True, end=" ")
if buffer.shape[1] < win_size:
buffer = torch.cat([buffer, waveform], dim=-1)
while buffer.shape[1] >= win_size:
waveform = buffer[:, :win_size]
buffer = buffer[:, hop_size:]
if torch.isnan(waveform).any():
print("[NAN] waveform", flush=True, end=" ")
continue
seq = stream_decoder.decode(waveform)
if seq == "":
blank_counter += 1
if blank_counter == 35:
print(' [Background]')
stream_decoder.reset()
else:
blank_counter = 0
print(seq, end='', flush=True)
if not infinite and save_strean:
for packet in output_stream.encode(resample_frame):
output_container.mux(packet)
if not infinite:
if (datetime.now() - begin_time).total_seconds() > duration:
break
if not infinite and save_strean:
for packet in output_stream.encode(None):
output_container.mux(packet)
output_container.close()
def main(argv):
if FLAGS.path is not None:
wav()
else:
live()
if __name__ == "__main__":
app.run(main)