NOTE: You can use the main branch of the YOLOv5 repo to convert all model versions.
NOTE: The yaml file is not required.
- Convert model
- Compile the lib
- Edit the config_infer_primary_yoloV5 file
- Edit the deepstream_app_config file
- Testing the model
git clone https://github.com/ultralytics/yolov5.git
cd yolov5
pip3 install -r requirements.txt
NOTE: It is recommended to use Python virtualenv.
Copy the gen_wts_yoloV5.py
file from DeepStream-Yolo/utils
directory to the yolov5
folder.
Download the pt
file from YOLOv5 releases (example for YOLOv5s 6.1)
wget https://github.com/ultralytics/yolov5/releases/download/v6.1/yolov5s.pt
NOTE: You can use your custom model, but it is important to keep the YOLO model reference (yolov5_
) in you cfg
and weights
/wts
filenames to generate the engine correctly.
Generate the cfg
and wts
files (example for YOLOv5s)
python3 gen_wts_yoloV5.py -w yolov5s.pt
NOTE: To change the inference size (defaut: 640)
-s SIZE
--size SIZE
-s HEIGHT WIDTH
--size HEIGHT WIDTH
Example for 1280
-s 1280
or
-s 1280 1280
Copy the generated cfg
and wts
files to the DeepStream-Yolo
folder.
Open the DeepStream-Yolo
folder and compile the lib
-
DeepStream 6.1 on x86 platform
CUDA_VER=11.6 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.0.1 / 6.0 on x86 platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.1 on Jetson platform
CUDA_VER=11.4 make -C nvdsinfer_custom_impl_Yolo
-
DeepStream 6.0.1 / 6.0 on Jetson platform
CUDA_VER=10.2 make -C nvdsinfer_custom_impl_Yolo
Edit the config_infer_primary_yoloV5.txt
file according to your model (example for YOLOv5s)
[property]
...
custom-network-config=yolov5s.cfg
model-file=yolov5s.wts
...
...
[primary-gie]
...
config-file=config_infer_primary_yoloV5.txt
deepstream-app -c deepstream_app_config.txt